Supporting Information

The Journal of Organic Chemistry

Selectivity Guidelines and a Reductive Elimination-Based Model for Predicting the Stereochemical Course of Conjugate Addition Reactions of Organocuprates to γ -Alkoxy- α , β -Enoates

Artem S. Kireev, Madhuri Manpadi and Alexander Kornienko*

Contribution from the Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801

akornien@nmt.edu

Table of contents

1. General Methods	S2
2. Characterization data for cuprate addition product mixtures 14a, 14d, 14f, 15a, 15d, 15f, 16a, 16d, 16f, 17a, 17d, 17f, 18a, 18d, 18f.	S2 - S7
3. References	S7
4. Copies of ¹ H and ¹³ C-NMR spectra for compounds 1, 2, 3, 5, 9, 12a, 12b, 12c, 12d, 12e, 12f, 13a, 13d, 13f, 29, 30.	S8 – S39
5. Copies of ¹ H NMR showing the epimeric ratios of cuprate addition product mixtures 14a, 14d, 14f, 15a, 15d, 15f, 16a, 16d, 16f, 17a, 17d, 17f, 18a, 18d, 18f.	S40 - S54

1. General Methods.

Unless otherwise noted all commercially obtained reagents were used without purification. THF was distilled from sodium-benzophenone ketyl prior to use. Dichloromethane and methanol were distilled from calcium hydride. Reactions were carried out under a nitrogen atmosphere in ovendried glassware using standard syringe, cannula and septa techniques. Reactions were monitored by TLC (Silica Gel 60 F_{254} , 250 µm) and visualized with UV light and ceric ammonium molybdate solution. Flash chromatography was performed on silica gel (32-63 µm, 60 Å pore size).

Aryl bromides \mathbf{d}^1 and $\mathbf{f}^{2,3}$ were prepared as previously described.

2. Characterization data for cuprate addition product mixtures

Epimeric mixture 14a: 94%; R_f 0.45 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.55 – 7.15 (m, 15H), 4.80 (d, J = 11.6 Hz, 1H), 4.55 (d, J = 11.6 Hz, 1H), 4.44 (s, 2H), 3.81 – 3.73 (m, 1H), 3.58 – 3.47 (m, 1H), 3.50 (s, 3H), 3.36 (dd, J = 10.5, 5.2 Hz, 1H), 3.04 (dd, J = 16.0, 5.8 Hz, 1H), 2.64 (dd, J=16.0, 9.1 Hz, 1H); HRMS *m/z* (ESI) calcd for C₂₆H₂₈O₄Na (M+Na)⁺ 427.1879, found 427.1891.

Epimeric mixture 14d: 76%; $R_f 0.55$ (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.63 – 7.15 (m, 10H), 6.68 – 5.59 (m, 3H), 5.92 (s, 2H), 4.75 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.42 (s, 2H), 3.78 – 3.30 (m, 4H), 3.50 (s, 3H), 2.96 (dd, J = 16.0, 5.2 Hz, 1H), 2.53 (dd, J = 16.0, 9.3 Hz, 1H); HRMS m/z (ESI) calcd for C₂₇H₂₈O₆Na (M+Na)⁺ 471.1778, found 471.1756.

Epimeric mixture 14f: 88%; $R_f 0.45$ (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.51 – 7.25 (m, 10H), 6.66 (d, J = 8.5 Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.75 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.43 (s, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.68 - 3.32 (m, 4H), 3.51 (s, 3H), 2.93 (dd, J = 16.0, 5.5 Hz, 1H), 2.54 (dd, J = 16.0, 9.4 Hz, 1H); HRMS m/z (ESI) calcd for C₂₈H₃₀O₇Na (M+Na)⁺ 501.1883, found 501.1906.

Epimeric mixture 15a: 89%; $R_f 0.54$ (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.50 – 7.19 (m, 10H), 4.65 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 3.69 – 3.62 (m, 1H), 3.48 (s, 3H), 3.35 – 3.23 (m, 1H), 3.06 (dd, J = 16.0, 6.0 Hz, 1H), 2.62 (dd, J = 16.0, 8.5 Hz, 1H), 1.07 (d, J = 6.0 Hz, 3H); HRMS m/z (ESI) calcd for C₁₉H₂₂O₃Na (M+Na)⁺ 321.1461, found 321.1452.

Epimeric mixture 15d: 80%; R_f 0.61 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.60 – 7.20 (m, 5H), 6.90 – 6.55 (m, 3H), 5.92 (s, 2H), 4.62 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 3.65 - 3.35 (m, 1H), 3.49 (s, 3H), 3.20 – 3.08 (m, 1H), 2.90 (dd, J = 16.0, 5.8 Hz, 1H), 2.51 (dd, J = 16.0, 8.8 Hz, 1H), 1.05 (d, J = 6.0 Hz, 3H); HRMS m/z (ESI) calcd for C₂₀H₂₂O₅Na (M+Na)⁺ 365.1359, found 365.1364.

Epimeric mixture 15f: 82%; R_f 0.46 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.62 – 7.21 (m, 5H), 6.66 (d, J = 8.0 Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.62 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 3.85 (s, 3H), 3.63 – 3.35 (m, 1H), 3.49 (s, 3H), 3.19 – 3.08 (m, 1H), 2.97 (dd, J = 16.0, 6.0 Hz, 1H), 2.52 (dd, J = 16.0, 8.5 Hz, 1H), 1.06 (d, J = 6.0 Hz, 3H); HRMS m/z (ESI) calcd for C₂₁H₂₄O₆Na (M+Na)⁺ 395.1465, found 395.1462.

Epimeric mixture 16a: 87%; $R_f 0.35$ (15% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 4.67 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 3.72 - 3.46 (m, 4H), 3.46 (s, 3H), 2.98 (dd, J = 16.0, 5.0 Hz, 1H), 2.62 (dd, J = 16.0, 8.8 Hz, 1H), 1.04 (s, 9H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 4.57 (d, J = 11.8 Hz, 1H), 4.35 (d, J = 11.8 Hz, 1H), 3.72 -3.46 (m, 4H), 3.55 (s, 3H), 2.86 (dd, J = 16.0, 7.2 Hz, 1H), 2.72 (dd, J = 16.0, 8.0 Hz, 1H), 1.05 (s, 9H).

Epimeric mixture 16d: 69%; R_f 0.4 (15% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.67 – 7.50 (m, 5H), 7.47 – 7.17 (m, 10H), 6.69 (d, J = 8.0 Hz, 3H), 5.92 (s, 2H), 4.67 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 3.72 - 3.39 (m, 4H), 3.46 (s, 3H), 2.93 (dd, J = 16.0, 5.0 Hz, 1H), 2.54 (dd, J = 16.0, 9.4 Hz, 1H), 1.04 (s, 9H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 6.67 (d, J = 8.0 Hz, 3H), 5.90 (s, 2H), 4.57 (d, *J* = 11.8 Hz, 1H), 4.34 (d, *J* = 11.8 Hz, 1H), 3.72 - 3.46 (m, 4H), 3.56 (s, 3H), 2.77 (dd, *J* = 16.0, 6.9 Hz, 1H), 2.66 (dd, *J* = 16.0, 8.3 Hz, 1H), 1.05 (s, 9H).

Epimeric mixture 16f: 53%; R_f 0.6 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.65 – 7.50 (m, 5H), 7.45 – 7.20 (m, 10H), 6.45 (m, 2H), 5.95 (s, 2H), 4.67 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 3.79 (s, 3H), 3.72 - 3.45 (m, 4H), 3.47 (s, 3H), 2.93 (dd, J = 16.0, 5.3 Hz, 1H), 2.52 (dd, J = 16.0, 9.5 Hz, 1H), 1.05 (s, 9H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.65 – 7.5 (m, 5H), 7.45 – 7.20 (m, 10H), 6.39 (s, 2H), 5.92 (s, 2H), 4.60 (d, J = 11.8 Hz, 1H), 4.36 (d, J = 11.8 Hz, 1H), 3.87 (s, 3H), 3.80 - 3.40 (m, 4H), 3.52 (s, 3H), 2.77 (dd, J = 16.0, 6.9 Hz, 1H), 2.66 (dd, J = 16.0, 8.3 Hz, 1H), 1.04 (s, 9H).

Epimeric mixture 17a: 72%; $R_f 0.45$ (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.55 – 7.15 (m, 15H), 4.80 (d, J = 11.6 Hz, 1H), 4.55 (d, J = 11.6 Hz, 1H), 4.44 (s, 2H), 3.81 – 3.73 (m, 1H), 3.58 – 3.47 (m, 1H), 3.50 (s, 3H), 3.36 (dd, J = 10.5, 5.2 Hz, 1H), 3.04 (dd, J = 16.0, 5.8 Hz, 1H), 2.64 (dd, J=16.0, 9.1 Hz, 1H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.55 – 7.15 (m, 15H), 4.76 (d, J = 11.8 Hz, 1H), 4.57 (d, J = 11.8 Hz, 1H), 4.47 (s, 2H), 3.94 – 3.89 (m, 1H), 3.70 – 3.41 (m, 2H), 3.57 (s, 3H), 2.91 (dd, J = 16.0, 6.9 Hz, 1H), 2.79 (dd, J=16.0, 8.3 Hz, 1H).

Epimeric mixture 17d: 68%; R_f 0.55 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.63 – 7.15 (m, 10H), 6.67 – 5.59 (m, 3H), 5.89 (s, 2H), 4.75 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.43 (s, 2H), 3.78 – 3.30 (m, 4H), 3.50 (s, 3H), 2.96 (dd, J = 16.0, 5.2 Hz, 1H), 2.53 (dd, J = 16.0, 9.3 Hz, 1H); selected ¹H NMR (CDCl₃) data for the *syn*isomer δ 7.63 – 7.15 (m, 10H), 6.67 – 5.59 (m, 3H), 5.91 (s, 2H), 4.72 (d, J = 11.8 Hz, 1H), 4.51 d, J = 11.8 Hz, 1H), 4.44 (s, 2H), 3.87 – 3.79 (m, 1H), 3.78–3.30 (m, 3H), 3.56 (s, 3H), 2.78 (dd, J = 16.0, 6.6 Hz, 1H), 2.69 (dd, J = 16.0, 8.5 Hz, 1H).

Epimeric mixture 17f: 63%; R_f 0.45 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.45 – 7.20 (m, 10H), 6.45 (d, J = 8.5 Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.75 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.43 (s, 2H), 2.94 (dd, J = 16.0, 5.5 Hz, 1H), 2.54 (dd, J = 16.0, 9.4 Hz, 1H); selected ¹H NMR (CDCl₃) data for the *syn*isomer δ 7.51 – 7.25 (m, 10H), 6.45 (d, J = 8.5 Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.43 (s, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.68 – 3.32 (m, 4H), 3.51 (s, 3H), 2.93 (dd, J = 16.0, 6.9 Hz, 1H), 2.54 (dd, J = 16.0, 8.5 Hz, 1H).

Epimeric mixture 18a: 65%; R_f 0.54 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.50 – 7.19 (m, 10H), 4.65 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 3.69 – 3.62 (m, 1H), 3.48 (s, 3H), 3.35 – 3.23 (m, 1H), 3.06 (dd, J = 16.0, 6.0 Hz, 1H), 2.62 (dd, J = 16.0, 8.5 Hz, 1H), 1.07 (d, J = 6.0 Hz, 3H); selected ¹H NMR (CDCl₃) data for the *syn*isomer δ 7.50 – 7.19 (m, 10H), 4.60 (d, J = 11.8 Hz, 1H), 4.46 (d, J = 11.8 Hz, 1H), 3.82 – 3.74 (m, 1H), 3.57 (s, 3H), 3.45 – 3.39 (m, 1H), 2.93 (dd, J = 16.0, 6.6 Hz, 1H), 2.78 (dd, J = 16.0, 8.5 Hz, 1H), 1.06 (d, J = 6.3 Hz, 3H).

Epimeric mixture 18d: 56%; R_f 0.61 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.50 – 7.20 (m, 5H), 6.90 – 6.60 (m, 3H), 5.91 (s, 2H), 4.62 (d, J = 11.6 Hz, 1H), 4.41 (d, J = 11.6 Hz, 1H), 3.69 – 3.41 (m, 1H), 3.49 (s, 3H), 3.20 – 3.08 (m, 1H), 2.95 (dd, J = 16.0, 5.8 Hz, 1H), 2.52 (dd, J = 16.0, 8.8 Hz, 1H), 1.05 (d, J = 6.0 Hz, 3H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.50 – 7.20 (m, 5H), 6.90 – 6.60 (m, 3H), 5.91 (s, 2H), 4.60 (d, J = 11.8 Hz, 1H), 4.42 (d, J = 11.8 Hz, 1H), 3.84 (s, 3H), 3.80 – 3.67 (m, 1H), 3.59 (s, 3H), 3.32 – 3.21 (m, 1H), 2.84 (dd, J = 16.0, 6.3 Hz, 1H), 2.69 (dd, J = 16.0, 8.8 Hz, 1H), 1.05 (d, J = 6.3Hz, 3H).

Epimeric mixture 18f: 54%; R_f 0.46 (30% EtOAc/hexanes); selected ¹H NMR (CDCl₃) data for the *anti*-isomer δ 7.45 – 7.21 (m, 5H), 6.45 (d, J = 8.0 Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.59 (d, J = 11.6 Hz, 1H), 4.41 (d, J = 11.6 Hz, 1H), 3.85 (s, 3H), 3.65 – 3.47 (m, 1H), 3.49 (s, 3H), 3.15 – 3.08 (m, 1H), 2.97 (dd, J = 16.0, 5.8 Hz, 1H), 2.52 (dd, J = 16.0, 8.5 Hz, 1H), 1.07 (d, J = 6.0 Hz, 3H); selected ¹H NMR (CDCl₃) data for the *syn*-isomer δ 7.45 – 7.21 (m, 5H), 6.45 (d, J = 8.0 Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.59 (d, J = 11.8 Hz, 1H), 4.40 (d, J = 11.8 Hz, 1H), 3.84 (s, 3H), 3.74 – 3.67 (m, 1H), 3.57 (s, 3H), 3.27 – 3.21 (m, 1H), 2.84 (dd, J = 16.0, 6.3 Hz, 1H), 2.67 (dd, J = 16.0, 8.5 Hz, 1H), 1.06 (d, J = 6.3 Hz, 3H).

3. References

- 1. Gensler, W.J.; Stouffer, J.E. J. Org. Chem. 1958, 23, 908-910.
- 2. Comber, M.F.; Sargent, M.V. Aust. J. Chem. 1985, 38, 1481-1489.
- 3. Iinuma M.; Tanaka T.; Matsuura, S. Yakugaku Zasshi 1983, 103, 997-1000.

