Supporting information for

Kinetic resolution displaying zeroth order dependence on substrate consumption: Copper-catalyzed asymmetric alcoholysis of azlactones.

Makoto Tokunaga*, Junya Kiyosu, Yasushi Obora and Yasushi Tsuji

Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University,SORST and CREST, Japan Science and Technology Agency (JST), Sapporo 001-0021 Japan
Table of Contents
General 1
Materials 1
Synthesis of Substrates 2
Synthesis of rac-products 2 as authentic samples 13
$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{DTBM}-\mathrm{SEGPHOS}$ catalyzed alcoholytic kinetic resolution of (1a-I) 17
Determination of absolute configuration of the azlactones and al coholized products. 22
Introduction of Equations and Graphic Drawing 23
Figure S-1 and S-2 26
Figure S-3 27
Figure S-4 28
References. 29

General

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 600 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 150 \mathrm{MHz}$) spectra were recorded on Bruker ARX 400 or JEOL JMN-ECX400 and JMN-ECX600 instruments. Optical rotations were measured with a HORIBA SEPA-300 polarimeter. Column chromatography was performed on silica-gel (Kanto Chemicals, Sillica Gel 60N (spherical, neutral), 40-100 $\mu \mathrm{m}$). Recycling preparative HPLC was performed with Japan Analytical Industry LC-918 equipped with GPC columns JAIGEL-1H and 2H. Elemental analysis was performed at the Center for Instrumental Analysis of Hokkaido University. GC analysis was carried out using Agilent GC 6850 equipped with Agilent HP-1 Column (length $30 \mathrm{~m}, 0.32$ mm I.D.). The enantiomeric excess (ee) was determined by GC using Chiraldex G-TA (ASTEC) and HPLC using CHIRALPAK AD-H (DAICEL), CHIRALCEL OD (DAICEL).

Materials

CDCl_{3} (Cambridge Isotope Laboratories, Inc.) and DMSO- d_{6} (ACROS) were used as solvent for obtaining NMR spectra. Benzene (Wako Chemicals), THF (Kanto Chemicals), CHCl_{3} (Wako Chemicals), EtOH (Wako Chemicals) were used spectrochemical analysis grade for measurement of optical rotation. Toluene was dried by distillation with CaH_{2} before use. 2-Methoxyethanol (Wako Chemicals) was dried by molecular sieves 4A before use. (S)-DTBM-SEGPHOS and
(R)-DTBM-SEGPHOS were provided from Takasago International Corporation. All other chemical reagents were used in commercial grade.

Synthesis of Substrates

2-Phenyl-4-methyl-5-oxazalone ${ }^{1}$, 2-Phenyl-4-ethyl-5-oxazalone ${ }^{1}$, 2-Phenyl-4-propyl-5-oxazalone ${ }^{1}$ 2-Phenyl-4-butyl-5-oxazalone ${ }^{1}$ and 5-ethoxycarbonyloxy-4-methyl-2-(4-methoxyphenyl)oxazole ${ }^{2}$ were synthesized by literature methods. Synthesis of the substrates was summarized by the following scheme.

Synthesis of \boldsymbol{N}-(4-chlorobenzoyl)norleucine

A mixture of DL-norleucine ($5.45 \mathrm{~g}, 40.0 \mathrm{mmol}$) and $\mathrm{KOH}(6.07 \mathrm{~g}, 92.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(67 \mathrm{~mL})$ were stirred at $0^{\circ} \mathrm{C}$. To this was added 4-chlorobenzoyl chloride ($5.21 \mathrm{~mL}, 40.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for 21 h . The reaction was quenched by the dropwised addition of conc. HCl until $\mathrm{pH} \sim 1$, which resulted in the formation of a white precipitate. The solid was isolated by filtration and then recrystallized from $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$ to give N -(4-chlorobenzoyl)norleucine (10.0 g, 93\%) as colorless solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta=0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.24-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.85(\mathrm{~m}, 2 \mathrm{H})$, 4.31-4.35 (m, 1H), $7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.66(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 12.58$ (brs).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=14.0,21.9,28.2,30.5,52.9,128.5$ (2C), 129.6 (2C), 132.9, 136.4, 165.7, 174.0.

Elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{Cl}$: C 57.89, H 5.98, N 5.19; found: C 57.74, H 5.91, N 5.02.

Synthesis of 2-(4-chlorophenyl)-4-butyl-5-oxazalone

To a stirred suspension of N -(4-chlorobenzoyl)norleucine ($10.0 \mathrm{~g}, 37.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(93 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under Ar was added N, N^{\prime}-dicyclohexylcarbodiimide ($8.05 \mathrm{~g}, 37.1 \mathrm{mmol}$) in small portion. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and at room temperature for 24 h then filtered. The filtrate was concentrated to give a crude product (9.34 g , quant) as white solid that was used next step without further purification. For characterization of this compound, the crude product was recrystallized from hexane to give colorless crystal.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.34-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.97-2.06(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, 1 \mathrm{H}, J=6.6,6.6 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,22.3,27.3,31.2,65.4,124.4,129.2$ (4C), 139.0, 160.7, 178.2 .
Elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}$: C 62.03, H 5.61, N 5.56 ; found: C 61.99, H 5.57 , N 5.51.

Synthesis of 5-methoxycarbonyloxy-4-methyl-2-phenyloxazole (3a)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added methyl chloroformate ($0.866 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{t}_{2} \mathrm{O}=3 / 1$) to give the product ($1.64 \mathrm{~g}, 71 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.11(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.94(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.3,56.6,120.5,125.9$ (2C), 127.2, 128.8 (2C), 130.3, 146.1, 152.3, 154.8.

Elemental analysis calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}$: C 61.80, H 4.75, N 6.01; found: C 61.82, H 4.74, N 5.99.

5-Ethoxycarbonyloxy-4-methyl-2-phenyloxazole (3b)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($6.13 \mathrm{~g}, 35.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(3.68 \mathrm{~mL}, 38.5 \mathrm{mmol})$ in THF (300 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added ethyl chloroformate ($3.68 \mathrm{~mL}, 38.5 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{t}_{2} \mathrm{O}=3 / 1$) to give ($6.67 \mathrm{~g}, 77 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.43(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 7.43-7.45 (m, 3H) 7.96-7.98 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=10.3,14.0,66.4,120.4,125.8$ (2C), 127.1, 128.7 (2C), 130.2, 146.0, 151.5, 154.7.

Elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 63.15, H 5.30, N 5.67; found: C 63.06, H 5.50, N 5.69.

5-Propoxycarbonyloxy-4-methyl-2-phenyloxazole (3c)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added propyl chloroformate ($1.30 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{t}_{2} \mathrm{O}=3 / 1$) to give ($1.44 \mathrm{~g}, 55 \%$) as colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.02(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.80(\mathrm{tq}, 2 \mathrm{H}, J=6.5,7.6 \mathrm{~Hz}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $4.28(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.40-7.43(\mathrm{~m}, 3 \mathrm{H}) 7.92-7.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.2,10.4,21.9,71.9,120.4,125.9$ (2C), 127.2, 128.8 (2C), 130.3, 146.2, 151.7, 154.8.

Elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 64.36, H 5.79, N 5.36; found: C 64.19, H 5.99, N 5.38.

5-Allyloxycarbonyloxy-4-methyl-2-phenyloxazole (3d)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added allyl chloroformate $(1.19 \mathrm{~mL}, 11.0 \mathrm{mmol})$ and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=3 / 1$) to give ($1.87 \mathrm{~g}, 72 \%$) as white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.14(\mathrm{~s}, 3 \mathrm{H}), 4.79(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.38(\mathrm{dd}, 1 \mathrm{H}, J=1.0,10.8 \mathrm{~Hz})$, 5.46 (dd, 1H, $J=1.0,16.0 \mathrm{~Hz}$), 5.96-6.03 (m, 1H), 7.40-7.43 (m, 3H) 7.92-7.95 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=10.4,70.6,120.5$ (2C), 125.9 (2C), 127.2, 128.8 (2C), 130.3, 130.4, 146.1, 151.5, 154.9.

Elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 64.86, H 5.05, N 5.40; found: C 64.56, H 5.28, N 5.48.

5-Butoxycarbonyloxy-4-methyl-2-phenyloxazole (3e)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($526 \mathrm{mg}, 3.00 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.460 \mathrm{~mL}, 3.30 \mathrm{mmol})$ in THF (30 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added butyl chloroformate ($0.428 \mathrm{~mL}, 3.30 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} x \mathrm{3})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=5 / 1$) to give ($578 \mathrm{mg}, 70 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.43(\mathrm{tq}, 2 \mathrm{H}, J=7.4,7.3 \mathrm{~Hz}), 1.73(\mathrm{tt}, 2 \mathrm{H}, J=$ $7.4,6.6 \mathrm{~Hz}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.39-7.41(\mathrm{~m}, 3 \mathrm{H}) 7.91-7.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=10.4,13.7,18.9,30.5,70.3,120.4,125.9$ (2C), 127.2, 128.8 (2C), 130.3, 146.2, 151.7, 154.8.

Elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 65.44, H 6.22, N 5.09; found: C 65.26, H 6.39, N 5.10.

5-(2-Methylpropyl)carbonyloxy-4-methyl-2-phenyloxazole (3f)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($1.75 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added 2-methylpropyl chloroformate ($1.47 \mathrm{~mL}, 11.0$ mmol) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and t the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=3 / 1$) to give ($1.93 \mathrm{~g}, 70 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.01(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.04-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, 2 \mathrm{H}, J$ $=6.4 \mathrm{~Hz})$, 7.40-7.43 (m, 3H), 7.92-7.96 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=10.4,18.8$ (2C), 27.8, 76.3, 120.4, 125.9 (2C), 127.2, 128.8 (2C), 130.3, 146.2, 151.7, 154.8.

Elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 65.44, H 6.22, N 5.09; found: C 65.25, H 6.37, N 5.25.

5-Benzyloxycarbonyloxy-4-methyl-2-phenyloxazole (3g)

A mixture of 2-phenyl-4-methyl-5-oxazalone ($3.50 \mathrm{~g}, 20.0 \mathrm{mmol}$) and NEt_{3} ($3.11 \mathrm{~mL}, 22.0 \mathrm{mmol}$) in THF (200 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added benzyl chloroformate ($3.31 \mathrm{~mL}, 22.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{E}_{2} \mathrm{O}=3 / 1$) to give ($5.40 \mathrm{~g}, 87 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.13(\mathrm{~s}, 3 \mathrm{H})$, $5.32(\mathrm{~s}, 2 \mathrm{H})$, 7.39-7.47 (m, 8H), 7.91-7.94 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.4,71.9,120.5,126.0$ (2C), 127.2, 128.77 (2C), 128.82 (2C), 128.9 (2C), 129.3, 130.4, 133.9, 146.1, 151.6, 154.9.
Elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 69.89, H 4.89, N 4.53; found: C 69.98, H 4.95, N 4.57.

5-Benzyloxycarbonyloxy-4-ethyl-2-phenyloxazole (3h)

A mixture of 2-phenyl-4-ethyl-5-oxazalone ($1.89 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added benzyl chloroformate ($1.65 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica gel column chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=3 / 1$) to give ($2.31 \mathrm{~g}, 71 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{t}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}), 2.53(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.32(\mathrm{~s}, 2 \mathrm{H})$, 7.39-7.49 (m, 8H), 7.93-7.98 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.5,18.5,71.8,125.9,126.0$ (2C), 127.3, 128.76 (2C), 128.8 (2C), 128.9 (2C), 129.3, 130.3, 134.0, 145.5, 151.9, 155.0.

Elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 70.58, H 5.30, N 4.33; found: C 70.50, H 5.26, N 4.39.

5-Benzyloxycarbonyloxy-4-propyl-2-phenyloxazole (3i)

A mixture of 2-phenyl-4-propyl-5-oxazalone ($2.03 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added benzyl chloroformate ($1.65 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et2 $\mathrm{O}=3 / 1$) to give ($2.85 \mathrm{~g}, 85 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.68(\mathrm{tq}, 2 \mathrm{H}, J=7.5,7.3 \mathrm{~Hz}), 2.45(\mathrm{t}, 2 \mathrm{H}, J=$ 7.5 Hz), 5.32 ($\mathrm{s}, 2 \mathrm{H}$), 7.38-7.48 (m, 8H), 7.93-7.97 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,21.2,26.8,71.7,124.4,125.8$ (2C), 127.2, 128.6 (4C), 128.7 (2C), 129.1, 130.1, 133.8, 145.8, 151.7, 154.8.

Elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 71.20, H 5.68, N 4.15; found: C 71.00, H 5.63, N 4.30.

5-Benzyloxycarbonyloxy-4-butyl-2-phenyloxazole (3j)

A mixture of 2-phenyl-4-butyl-5-oxazalone ($2.61 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.55 \mathrm{~mL}, 11.0 \mathrm{mmol})$ in THF (100 mL) were stirred at $0^{\circ} \mathrm{C}$. To this was added benzyl chloroformate ($1.65 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{t}_{2} \mathrm{O}=3 / 1$) to give ($3.21 \mathrm{~g}, 76 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.35(\mathrm{tq}, 2 \mathrm{H}, J=7.5,7.6 \mathrm{~Hz}), 1.62(\mathrm{tt}, 2 \mathrm{H}, J=$ $7.7,7.8 \mathrm{~Hz}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $5.32(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.93-7.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,22.4,24.7,30.1,71.8,124.8,126.0$ (2C), 127.3, 128.8 (4C), 128.9 (2C), 129.2, 130.3, 134.0, 145.8, 151.8, 155.0.

Elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$: C 71.78, H 6.02, N 3.99; found: C 71.72, H 6.14, N 3.94.

5-Benzyloxycarbonyloxy-4-butyl-2-(4-chlorophenyl)oxazole (3k)

A mixture of 2-(4-chlorophenyl)-4-butyl-5-oxazalone ($3.02 \mathrm{~g}, 12.0 \mathrm{mmol}$) and NEt_{3} ($1.86 \mathrm{~mL}, 13.2$ $\mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ were stirred at $0^{\circ} \mathrm{C}$. To this was added benzyl chloroformate ($1.98 \mathrm{~mL}, 13.2$ mmol) and the mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane $/ \mathrm{Et}_{2} \mathrm{O}=10 / 1$) to give ($3.35 \mathrm{~g}, 72 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.35(\mathrm{tq}, 2 \mathrm{H}, J=7.6,7.4 \mathrm{~Hz}), 1.62(\mathrm{tt}, 2 \mathrm{H}, J=$ $7.6,7.6 \mathrm{~Hz}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.88(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,22.2,24.5,29.9,71.8,124.9,125.7,127.2$ (2C), 128.7 (2C), 128.8 (2C), 129.0 (2C), 129.2, 133.8, 136.2, 145.8, 151.6, 153.9.

Elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{Cl}$: C 65.37, H 5.22, N 3.63 ; found: C 65.35, H $5.24, \mathrm{~N}$ 3.59.

Synthesis of substrate rac-azlactones 1

Typical procedure: synthesis of 4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid methyl ester (1a)

To a solution of $\mathbf{3 a}(1.64 \mathrm{~g}, 7.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added 4-pyrrolidinoprydine (0.104 g , 0.703 mmol). This mixture was stirred at room temperature for 14 h . The mixture was passed through a plug of silica. The silica was washed with $\mathrm{Hexane} / \mathrm{Et}_{2} \mathrm{O}=1 / 1$ to elute the product. The volatiles were removed by rotary evaporation, then the residue was purified by silica-gel column chromatography to give 1a ($1.20 \mathrm{~g}, 73 \%$) as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.50(\mathrm{dd}, 2 \mathrm{H}, J=7.3,8.2 \mathrm{~Hz}), 7.61(\mathrm{t}, 1 \mathrm{H}, J$ $=7.3 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.7,53.8,72.8,125.3,128.4$ (2C), 129.0 (2C), 133.5, 163.3, 166.5, 175.1.

Elemental analysis calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}$: C 61.80, H 4.75, N 6.01; found: C 61.80, H 4.90, N 5.94.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid ethyl ester (1b)

Colorless oil (66\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) 1.77(\mathrm{~s}, 3 \mathrm{H}), 4.20-4.30(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, 2 \mathrm{H}, J$ $=7.3,8.2 \mathrm{~Hz}), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,20.4,63.0,72.9,125.3,128.2$ (2C), 128.8 (2C), 133.3, 163.1, 165.9, 175.1.

Elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 63.15, H 5.30, N 5.67; found: C 63.18, H 5.33, N 5.69.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid propyl ester (1c)

White solid (66\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 1.65 (qdd, $2 \mathrm{H}, J=7.3,7.1,7.1 \mathrm{~Hz}$), 1.77 (s, 3 H), 4.10-4.21 (m, 2H), 7.50 (dd, 2H, $J=7.6,7.3 \mathrm{~Hz}$), $7.60(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=10.1,20.4,21.8,68.4,73.0,125.4,128.3$ (2C), 129.0 (2C), 133.4, 163.3, 166.1, 175.3.

Elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 64.36, H 5.79, N 5.36; found: C 64.33, H 5.86, N 5.35 .

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid allyl ester (1d)

Colorless oil (71\%).
h
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.79(\mathrm{~s}, 3 \mathrm{H}), 4.64-4.73(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.30(\mathrm{dd}$, $1 \mathrm{H}, J=17.5,0.92 \mathrm{~Hz}), 5.82-5.89(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{dd}, 2 \mathrm{H}, J=7.3,8.0 \mathrm{~Hz}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 8.03$ (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6,67.2,73.0,119.2,125.3,128.4$ (2C), 129.0 (2C), 130.8, 133.4, 163.3, 165.7, 175.1.

Elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 64.86, H 5.05, N 5.40; found: C 64.80, H 5.03, N 5.42.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid butyl ester (1e)

White solid (54\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.28-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}$, 3 H), 4.13-4.26 (m, 2H), 7.50 (dd, 2H, $J=7.3,7.6 \mathrm{~Hz}$), $7.61(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,18.9,20.4,30.4,66.9,73.0,125.4,128.3$ (2C), 129.0 (2C), 133.4, 163.2, 166.1, 175.3.

Elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 65.44, H 6.22, N 5.09; found: C 65.27, H 6.20, N 5.07.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid (2-methylpropyl) ester (1f)

Colorless oil (54\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.00(\mathrm{~m}$, 2 H), 7.49 (dd, 2H, $J=7.8,8.3 \mathrm{~Hz}$), $7.60(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=18.8$ (2C), 20.3, 27.7, 72.7, 73.1, 125.4, 128.3 (2C), 129.0 (2C), 133.4, 163.3, 166.0, 175.3.

Elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 65.44, H 6.22, N 5.09; found: C 65.56, H 6.33, N 5.02.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1g)

Colorless oil (45\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.80(\mathrm{~s}, 3 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz})$, $7.27-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.51$ (dd, 2H, $J=7.4,8.0 \mathrm{~Hz}$), $7.62(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6,68.3,73.0,125.3,127.9$ (2C), 128.4 (2C), 128.6, 128.7 (2C), 129.0 (2C), 133.4, 134.8, 163.4, 165.9, 175.1.

Eelemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 69.89, H 4.89, N 4.53; found: C 69.65, H 4.88, N 4.40.

4-Ethyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1h)

Colorless oil (54\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.21-2.39(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz})$, $5.25(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{dd}, 2 \mathrm{H}, J=7.5,8.0 \mathrm{~Hz}), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, 8.03 (d, 2H, $J=8.0 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.7,27.9,68.1,77.3,125.1,127.9$ (2C), 128.3 (2C), 128.4, 128.6 (2C), 128.8 (2C), 133.3, 134.8, 163.2, 165.6, 174.2.

Elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4}$: C 70.58, H 5.30, N 4.33; found: C 70.47, H 5.39, N 4.35.

4-Propyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1i)

Colorless oil (63\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.93(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 1.19-1.41 (m, 2H), 2.30 (ddd, $1 \mathrm{H}, J=14.1$, $11.4,5.0 \mathrm{~Hz}$), 2.18 (ddd, $1 \mathrm{H}, J=14.1,12.2,4.8 \mathrm{~Hz}$), $5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, $7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.50(\mathrm{dd}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,16.9,36.5,68.2,76.9,125.3,128.0$ (2C), 128.4 (2C), 128.6, 128.7 (2C), 129.0 (2C), 133.4, 134.9, 163.2, 165.7, 174.4.

Elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 71.20, H 5.68, N 4.15; found: C 71.16, H 5.80, N 4.23.

4-Butyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1j)

White solid (76\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 1.11-1.38 (m, 4H), 2.31 (ddd, $1 \mathrm{H}, J=13.7$, $11.4,5.0 \mathrm{~Hz}$), 2.20 (ddd, $1 \mathrm{H}, J=13.8,12.1,4.6 \mathrm{~Hz}$), $5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, 7.27-7.35 (m, 5H), 7.50 (dd, 2H, $J=7.6,6.9 \mathrm{~Hz}$), $7.60(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,22.3,25.3,34.1,68.1,76.8,125.1,127.9$ (2C), 128.3 (2C), 128.4, 128.6 (2C), 128.8 (2C), 133.2, 134.7, 163.0, 165.6, 174.3.

Elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$: C 71.78, H 6.02, N 3.99; found: C 71.66, H 6.03, N 3.98.

4-Butyl-5-oxo-2-(4-chlorophenyl)-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1k)

Colorless oil (26\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.11-1.42(\mathrm{~m}, 4 \mathrm{H}), 2.19$ (ddd, $1 \mathrm{H}, J=14.0$, $11.6,4.8 \mathrm{~Hz}$), 2.31 (ddd, $1 \mathrm{H}, J=14.0,13.6,4.8 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz})$ 7.25-7.40 (m, 5H), 7.48 (d, 2H, $J=8.3 \mathrm{~Hz}$), 7.97 (d, 2H, $J=8.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=13.7,22.3,25.4,34.2,68.2,76.8,123.6,127.9$ (2C), 128.5, 128.6 (2C), 129.3 (2C), 129.6 (2C), 134.7, 139.7, 162.2, 165.5, 173.9.

Elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{Cl}$: C 65.37, H 5.22, N 3.63; found: C 65.35, H 5.24, N 3.59.

4-Methyl-5-oxo-2-(4-methoxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid ethyl ester (11)

White solid (71\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.18-4.32(\mathrm{~m}, 2 \mathrm{H})$, 6.98 (d, 2H, $J=8.7 \mathrm{~Hz}$), 7.97 (d, 2H, $J=8.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=14.0,20.6,55.6,63.0,72.9,114.4$ (2C), 117.6, 130.3 (2C), 162.9, 163.7, 166.3, 175.5.

Elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}$: C 60.64, H 5.45, N 5.05; found: C 60.54, H 5.55, N 5.03 .

Synthesis of rac-products 2 as authentic samples

Typical procedure: synthesis of rac-2-Benzoylamino-2-methylmalonic acid methyl ester (2-methoxyethyl) ester (rac-2a)

To a mixture of $\mathbf{1 a}(23.3 \mathrm{mg}, 0.100 \mathrm{mmol})$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(4.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ in toluene $(0.50 \mathrm{~mL})$ was added 2-methoxyethanol ($80 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h . The product was isolated by silica-gel column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}=1 / 2$) to give rac-2a (24.7 $\mathrm{mg}, 80 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.85(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{t}, 2 \mathrm{H}$, $J=4.6 \mathrm{~Hz}$), $7.40(\mathrm{dd}, 2 \mathrm{H}, J=7.3,7.3 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.54(\mathrm{brs}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=7.3$ Hz).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.1,53.6,59.0,63.2,65.5,70.1,127.2$ (2C), 128.7 (2C), 132.0, 133.4, 166.0, 168.8, 169.3.

Elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{6}$: C 58.25, H 6.19, N 4.53; found: C 58.15, H 6.19, N 4.35 .
rac-2-Benzoylamino-2-methylmalonic acid ethyl ester (2-methoxyethyl) ester (rac-2b)

Colorless oil (85\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.57(\mathrm{~m}, 2 \mathrm{H})$, $4.21-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{t}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.43(\mathrm{dd}, 2 \mathrm{H}, J=7.6,7.8 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.55$ (brs, 1H), 7.80 (d, 2H, $J=7.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=14.0,21.1,59.0,62.9,63.2,65.4,70.1,127.2$ (2C), 128.7 (2C), 132.0, 133.5, 166.0, 168.8, 168.9.

Elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6}$: C 59.43, H 6.55, N 4.33; found: C 59.30, H 6.66, N 4.29.
rac-2-Benzoylamino-2-methylmalonic acid propyl ester (2-methoxyethyl) ester (rac-2c)

Colorless oil (95\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.60-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, 3.53-3.57 (m, 2H), 4.13-4.22 (m, 2H), 4.29-4.38 (m, 2H), 7.42 (dd, 2H, $J=7.2,7.6 \mathrm{~Hz}$), $7.50(\mathrm{t}, 1 \mathrm{H}, J=$ 7.2 Hz), 7.55 (brs, 1H), 7.79 (d, 2H, $J=7.6 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.3,21.1,21.9,59.0,63.2,65.4,68.3,70.1,127.2$ (2C), 128.7 (2C), 132.0, 133.5, 166.0, 168.8, 169.0.

Elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{6}$: C 60.52, H 6.87, N 4.15; found: C 60.50, H 6.87, N 3.92.
rac-2-Benzoylamino-2-methylmalonic acid allyl ester (2-methoxyethyl) ester (rac-2d)

Colorless oil (89\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.88(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.35(\mathrm{~m}, 2 \mathrm{H})$, 4.67-4.69 (m, 2H), 5.20-5.23 (m, 1H), 5.27-5.32 (m, 1H), 5.81-5.91 (m, 1H), 7.41 (dd, 2H, J = 7.6, 7.4 $\mathrm{Hz}), 7.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.54(\mathrm{brs}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.1,59.0,63.3,65.5,67.1,70.1,118.9,127.2$ (2C), 128.7 (2C), 131.2, 132.0, 133.4, 166.1, 168.5, 168.7.

Elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}$: C 60.89, H 6.31, N 4.18; found: C 60.92, H 6.34, N 3.99. rac-2-Benzoylamino-2-methylmalonic acid butyl ester (2-methoxyethyl) ester (rac-2e)

Colorless oil (79\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.34(\mathrm{qt}, 2 \mathrm{H}, J=7.6,7.0 \mathrm{~Hz}), 1.63(\mathrm{tt}, 2 \mathrm{H}, J=$ $7.0,7.0 \mathrm{~Hz}$), 1.88 (s, 3H), 3.30 (s, 3H), 3.52-3.61 (m, 2H), 4.17-4.27 (m, 2H), 4.30-4.40 (m, 2H), 7.44 (dd, 2H, $J=7.3,6.8 \mathrm{~Hz}$), 7.52 (t, 1H, $J=7.3 \mathrm{~Hz}$), 7.56 (brs, 1 H), 7.81 (d, 2H, $J=6.8 \mathrm{~Hz}$)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,19.0,21.1,30.4,59.0,63.2,65.4,66.6,70.1,127.2$ (2C), 128.7 (2C), 132.0, 133.5, 166.0, 168.7, 169.0.

Elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}$: C 61.52, H 7.17, N 3.99; found: C 61.31, H 7.16, N 3.91.
rac-2-Benzoylamino-2-methylmalonic acid (2-Methylpropyl) ester (2-methoxyethyl) ester (rac-2f)

Colorless oil (87\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.02(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 3.53-3.59 (m, 2H), 3.96-4.06 (m, 2H), 4.31-4.41 (m, 2H), 7.45 (dd, 2H, $J=7.6,7.3 \mathrm{~Hz}$), 7.53 (t, 1H, $J=$ 7.3 Hz), 7.57 (brs, 1H), 7.82 (d, 2H, $J=7.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=18.9$ (2C), 21.1, 27.7, 59.0, 63.3, 65.4, 70.1, 72.7, 127.2 (2C), 128.7 (2C), 132.0, 133.5, 166.1, 168.7, 169.0.
Elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}$: C 61.52, H 7.17, N 3.99; found: C 61.51, H 7.14, N 3.91.
rac-2-Benzoylamino-2-methylmalonic acid benzyl ester (2-methoxyethyl) ester (rac-2g)

Colorless oil (85\%)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.90(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.53(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz})$, 5.25 (s, 2H), 7.29-7.36 (m, 5H), 7.44 (dd, 2H, $J=7.6,7.3 \mathrm{~Hz}$), 7.53 (t, 1H, $J=7.3 \mathrm{~Hz}$), 7.56 (brs, 1H), 7.81 (d, 2H, $J=7.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.1,59.0,63.3,65.5,68.2,69.9,127.2$ (2C), 128.2 (2C), 128.56, 128.64 (2C), 128.7 (2C), 132.0, 133.4, 135.1, 166.1, 168.6, 168.7.

Elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}$: C 65.44, H 6.02, N 3.63; found: C 65.33, H 6.10, N 3.52.
rac-2-Benzoylamino-2-ethylmalonic acid benzyl ester (2-methoxyethyl) ester (rac-2h)

Colorless oil (90\%)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.53(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, 3.42-3.52 (m, 2H), 4.24-4.35 (m, 2H), $5.22(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 7.26-7.35(\mathrm{~m}$, $5 \mathrm{H}), 7.44$ (dd, 2H, $J=7.6,7.3 \mathrm{~Hz}$), 7.50 (brs, 1 H), 7.52 (t, 1H, $J=7.3 \mathrm{~Hz}$), 7.82 (d, 2H, $J=7.3 \mathrm{~Hz}$)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.9,25.7,58.9,65.4,67.5,68.1,70.0,127.2$ (2C), 128.3 (2C), 128.57, 128.63 (2C), 128.7 (2C), 132.0, 133.5, 135.1, 166.1, 168.1, 168.2.

Elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$: C 66.15, H 6.31, N 3.51; found: C 66.06, H 6.41, N 3.36.
rac-2-Benzoylamino-2-propylmalonic acid benzyl ester (2-methoxyethyl) ester (rac-2i)

Colorless oil (95\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.10-1.30(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $3.24(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.52(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.35(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz})$, $7.29-7.33$ (m, 5H), 7.44 (dd, 2H, $J=7.3,8.2 \mathrm{~Hz}$), 7.50 (brs, 1 H), 7.52 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $7.80(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}$).
${ }^{13}{ }^{1}$ NMR (100 MHz, CDCl_{3}): $\delta=13.9,17.1,34.4,58.9,65.4,67.0,68.1,70.0,127.2$ (2C), 128.3 (2C), 128.56, 128.62 (2C), 128.7 (2C), 132.0, 133.5, 135.1, 166.0, 168.15, 168.23.

Elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{6}$: C 66.81, H 6.58, N 3.39; found: C 66.89, H 6.72, N 3.07.
rac-2-Benzoylamino-2-butylmalonic acid benzyl ester (2-methoxyethyl) ester (rac-2j)

Colorless oil (89\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.01-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{tt}, 2 \mathrm{H}, J=7.3,8.7$ Hz), $2.47(\mathrm{t}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}$), $3.25(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.52(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=12.4$ Hz), 5.28 (d, 1H, $J=12.4 \mathrm{~Hz}$), 7.29-7.32 (m, 5H), 7.45 (dd, 2H, $J=7.3,7.8 \mathrm{~Hz}$), 7.51 (brs, 1H), 7.53 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.82(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=14.0,22.5,25.9,32.1,58.9,65.4,67.0,68.1,70.0,127.2$ (2C), 128.4 (2C), 128.58, 128.62 (2C), 128.7 (2C), 132.0, 133.5, 135.1, 166.0, 168.19, 168.23.
Elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6}$: C 67.43, H 6.84, N 3.28; found: C 67.39, H 6.81, N 3.25.
rac-2-(4-Chlorobenzoylamino)-2-butylmalonic acid ethyl ester (2-methoxyethyl) ester (rac-2k)

Colorless oil (62\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.99-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{tt}, 2 \mathrm{H}, J=7.1,8.7$ $\mathrm{Hz}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.51(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3$ $\mathrm{Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.46$ (brs, 1 H$), 7.75(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=13.8,22.4,25.7,31.9,58.8,65.3,66.9,68.1,69.8,128.3$ (2C), 128.5 (3C), 128.6 (2C), 128.9 (2C), 131.8, 134.9, 138.2, 164.9, 167.97, 168.00.
Elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{Cl}$: C 62.40, H 6.11, N 3.03; found: C 62.52, H 6.22, N 2.96.
rac-2-(4-Methoxybenzoylamino)-2-methylmalonic acid ethyl ester (2-methoxyethyl) ester (rac-2l)

Colorless oil (95\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.60(\mathrm{~m}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.35(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.45(\mathrm{brs}, 1 \mathrm{H})$, 7.77 (d, 2H, $J=8.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=14.0,21.1,55.5,58.9,62.8,63.1,65.4,70.1,113.8$ (2C), 125.8, 129.1 (2C), 162.6, 165.6, 168.9, 169.0.
elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{7}$: C 57.78, H 6.58, N 3.96; found: C 57.89, H 6.57, N 3.85.

The value of theoretical conversion was calculated by the equation, convn $=\mathrm{ee}_{s} /\left(\mathrm{ee}_{\mathrm{s}}+\mathrm{ee}_{\mathrm{p}}\right)$. The value of experimental conversion was determined as isolated yield of product $\mathbf{2}$ because $\mathbf{2}$ is quite stable under the condition of silica-gel column chromatography while small part of $\mathbf{1}$ is decomposed during the chromatographic isolation. (We confirmed rapid elution suppresses the decomposition in the least amount). The differences in the values between theoretical conversions and experimental conversions were within $\pm 2 \%$ in all cases, and the total yields of 1 and 2 were between $90-100 \%$. In Table S-1, the $k_{\text {rel }}$ values calculated from theoretical conversion and experimental conversion by using eqs (1), (2), (4), and (5) (equations in Figure 1) are listed in 3 digit number. The $k_{\text {rel }}$ values calculated from theoretical
conversion by using eq (1), (4) and the $k_{\text {rel }}$ values calculated from theoretical conversion by using eq (2), (5) became exactly same. However, the $k_{\text {rel }}$ values calculated from experimental conversion by using eq (1), (4) and the $k_{\text {rel }}$ values calculated from theoretical conversion by using eq (2), (5) were varied slightly.

Table S-1. Asymmetric alcoholysis of azlacone 1 with Cu-DTBM-SEGPHOS catalysts ${ }^{a}$ (expressed as 3-digit numbers).

entry	sub- strate	$\begin{aligned} & \text { time } \\ & \text { /h } \end{aligned}$	$\begin{aligned} & \text { e convn }{ }^{b} \\ & / \% \end{aligned}$	$\begin{aligned} & \text { \% ee } \\ & \text { of } \mathbf{1} \end{aligned}$	$\begin{aligned} & k_{\mathrm{rel}}{ }^{c, g} \\ & (0 \mathrm{th}) \end{aligned}$	$\begin{aligned} & k_{\mathrm{rel}}^{d, g} \\ & \text { (1st) } \end{aligned}$	$\begin{aligned} & \text { \% ee } \\ & \text { of } 2 \end{aligned}$	$\begin{aligned} & k_{\mathrm{rel}}{ }^{e, g} \\ & \text { (0th) } \end{aligned}$	$\begin{aligned} & k_{\mathrm{rel}}^{f, g} \\ & (1 \mathrm{st}) \end{aligned}$
1	1a	67	57.4(55.4)	99.4	6.66(9.01)	36.8(50.5)	73.9	6.66(6.66)	36.8(21.2)
2	1b	8	21.0(20.3)	21.5	9.58(11.8)	11.8(14.6)	81.1	9.58(9.58)	11.8(11.7)
3		17	31.5(30.3)	37.5	9.81(13.6)	14.1(19.5)	81.5	9.81(9.81)	14.1(13.8)
4		30	48.0(46.8)	74.0	9.05(11.6)	19.9(25.6)	80.1	9.05(9.05)	19.9(18.9)
5		52	55.8(55.3)	93.2	6.60(7.11)	22.1(23.8)	73.7	6.60(6.60)	22.1(20.6)
6	1c	37	16.6(17.6)	15.4	7.85(6.17)	9.12(7.17)	77.4	7.85(7.85)	9.12(9.22)
7		61	30.0(31.1)	33.2	7.81(6.56)	10.8(9.04)	77.3	7.81(7.81)	10.8(10.9)
8		52	33.9(33.5)	39.5	7.66(8.26)	11.2(12.1)	76.9	7.66(7.66)	11.2(11.1)
9		72	54.9(55.5)	94.1	7.77(7.15)	27.1(24.8)	77.2	7.77(7.77)	27.1(30.3)
10	1d	51	54.7(55.6)	89.2	6.69 (5.95)	19.6(17.4)	74.0	6.69(6.69)	19.6(21.9)
11^{h}	1e	76	57.1(57.3)	92.8	5.60(5.48)	18.3(17.9)	69.7	5.60(5.60)	18.3(18.8)
12	1f	8	15.4(17.4)	15.2	11.3(6.18)	13.1(7.17)	83.7	11.3(11.3)	13.1(13.4)
13		16	31.5(32.7)	39.5	13.0(9.69)	19.1(14.2)	85.7	13.0(13.0)	19.1(19.5)
14		22	38.8(39.5)	52.9	11.1(9.54)	18.8(16.1)	83.5	11.1(11.1)	18.8(19.1)
15		50	53.4(53.8)	88.8	7.93(7.42)	23.2(21.7)	77.6	7.93(7.93)	23.2(24.2)
16	1g	8	18.4(19.2)	18.5	10.2(8.03)	12.3(9.61)	82.2	10.2(10.2)	12.3(12.4)
17		18	38.8(38.9)	51.9	10.1(9.82)	16.9(16.4)	82.0	10.1(10.1)	16.9(17.0)
18		24	44.1(43.7)	64.9	10.2(11.2)	19.8(21.8)	82.1	10.2(10.2)	19.8(19.5)
19		49	53.7(53.0)	88.9	7.55(8.45)	22.1(24.8)	76.6	7.55(7.55)	22.1(20.8)
20^{h}	1h	100	56.8(58.2)	93.4	5.87(5.08)	19.7(16.9)	70.9	5.87(5.87)	19.7(28.2)
21^{h}	1i	122	48.0(48.9)	71.3	7.77(6.85)	16.4(14.4)	77.2	7.77(7.77)	16.4(17.0)
22^{h}	1j	118	47.2(47.4)	56.0	4.36(4.28)	7.54(7.40)	62.7	4.36(4.36)	7.54(7.58)
23^{h}	1k	74	54.7(54.6)	95.9	8.76(8.72)	33.5(33.4)	79.5	8.76(8.76)	33.5(33.7)
24^{h}	11	12	13.9(16.0)	13.5	11.0(5.87)	12.5(6.69)	83.3	11.0(11.0)	12.5(12.8)
25^{h}		20	25.1(25.8)	28.2	11.5(9.58)	15.1(12.6)	84.0	11.5(11.5)	15.1(15.3)
26^{h}		28	47.4(48.1)	74.2	10.4(9.03)	22.9(19.9)	82.4	10.4(10.4)	22.9(23.7)
27^{h}		48	52.6(53.8)	83.5	7.06(6.07)	18.2(15.6)	75.2	7.06(7.06)	18.2(20.0)

${ }^{a}$ Conditions: see scheme 2. ${ }^{b}$ Conversion was calculated by convn $=\mathrm{ee}_{\mathrm{s}} /\left(\mathrm{ee}_{\mathrm{s}}+\mathrm{ee}_{\mathrm{p}}\right)$, experimentally determined value is in parenthesis. ${ }^{c}$ Calculated by eq (1). ${ }^{d}$ Calculated by eq (2). ${ }^{e}$ Calculated by eq (4). ${ }^{f}$ Calculated by eq (5). ${ }^{g}$ Calculated using experimentally determined conversion value in parenthesis. ${ }^{h} 5$ $\mathrm{mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$ and $5 \mathrm{~mol} \%$ DTBM-SEGPHOS were used.

Typical procedure for $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}, 1 \mathrm{f}$, and $1 \mathrm{~g}(\mathbf{2} \mathbf{~ m o l} \%$ catalyst loading)

A dried 20 mL Schrenk flask was placed $\mathrm{Cu}(\mathrm{OAc})_{2}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$, then the solid was heated $80{ }^{\circ} \mathrm{C}$ under vacuum for 3 minutes, then the flask was filled with Ar. To this was added (S)-DTBM-SEGPHOS ($14.2 \mathrm{mg}, 0.012 \mathrm{mmol}$) and toluene $(1.0 \mathrm{~mL})$, then the mixture was stirred at $45^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to room temperature, and toluene (1.0 mL) solution of $\mathbf{1 a}$ (116.6 $\mathrm{mg}, 0.500 \mathrm{mmol})$ and 2-methoxyethanol ($80 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ in incubator. The reaction was monitored by TLC or GLC. The product $\mathbf{2 a}$ and the substrate $\mathbf{1 a}$ were isolated by silica-gel column chromatography (elution: Hexane/Et ${ }_{2} \mathrm{O} 10 / 1 \rightarrow 1 / 1 \rightarrow 1 / 2$) to afford 1 la (40.9 $\mathrm{mg}, 35.1 \%, 99.4 \% \mathrm{ee}$) and $\mathbf{2 a}$ ($85.7 \mathrm{mg}, 55.4 \%, 73.9 \%$ ee).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid methyl ester (1a)

1a (99.4% ee): GC (Chiraldex G-TA (Aztec) $120{ }^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{R}}=34.2 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=35.5 \mathrm{~min}$ (minor)), $[\alpha]_{D}{ }^{29}=-142.0^{\circ}$ (c = 1.06, benzene).
2a (73.9% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ 19.6 min (major), $\mathrm{T}_{\mathrm{R}}=21.1 \mathrm{~min}$ (minor)).

Specific optical rotation of 2a derived from 1a $(99.4 \% \mathrm{ee})$ was $[\alpha]_{D}{ }^{27}=-21.2^{\circ}(\mathrm{c}=1.12$, benzene $)$.

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid ethyl ester (1b)
1b ($52.0 \mathrm{mg}, 42.1 \%, 93.2 \%$ ee) and 2b ($89.7 \mathrm{mg}, 55.3 \%, 73.7 \%$ ee).
1b ($86.6 \mathrm{mg}, 69.7 \%, 37.5 \%$ ee) and 2b ($49.3 \mathrm{mg}, 30.3 \%$, 81.5% ee).
1b (93.2% ee): HPLC (CHIRALCEL OD (DAICEL), hexane/2-propanol $=200 / 1,0.50 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ 24.1 min (minor), $\mathrm{T}_{\mathrm{R}}=26.6 \mathrm{~min}$ (major)), $[\alpha]_{\mathrm{D}}{ }^{29}=-110.9^{\circ}$ (c $=4.53$, benzene).

2b (81.5\% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min} \mathrm{T}_{\mathrm{R}}=8.9$ \min (major), $\mathrm{T}_{\mathrm{R}}=11.5 \mathrm{~min}$ (minor)), $[\alpha]_{\mathrm{D}}{ }^{26}=+9.0^{\circ}$ (c = 1.00, benzene).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid propyl ester (1c)

1c ($52.3 \mathrm{mg}, 40.0 \%, 94.1 \%$ ee) and 2c ($93.7 \mathrm{mg}, 55.5 \%, 77.2 \%$ ee).
1c (94.1% ee): the ee was determined by HPLC analysis of 2c which was derived from 1c obtained by the kinetic resolution, conversion of 1c into 2c was carried out with $\mathrm{Sc}(\mathrm{OTf})_{3}$ as catalyst, HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=8.2 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=$ $10.8 \min$ (major), $[\alpha]_{D}{ }^{29}=-108.0^{\circ}(c=1.11$, benzene).
2c (77.2\% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=8.0$ $\min ($ major $), T_{R}=10.6 \min ($ minor $)$).
Specific optical rotation of 2c derived from 1c (94.1\% ee) was $[\alpha]_{D}{ }^{27}=-10.0^{\circ}$ (c $=0.860$, benzene).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid allyl ester (1d)

1d ($52.9 \mathrm{mg}, 40.7 \%, 89.2 \%$ ee) and 2d ($93.5 \mathrm{mg}, 55.6 \%, 74.0 \%$ ee).

1d (89.2\% ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=100 / 1,0.50 \mathrm{~mL} / \mathrm{min} \mathrm{T}_{\mathrm{R}}=$ $17.6 \min$ (minor), $\mathrm{T}_{\mathrm{R}}=20.3 \min$ (major)), $[\alpha]_{\mathrm{D}}{ }^{29}=-103.8^{\circ}(\mathrm{c}=1.20$, benzene).
2d (74.0% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=9.6$ \min (major), $\mathrm{T}_{\mathrm{R}}=12.6 \min$ (minor)), $[\alpha]_{D}{ }^{26}=+4.6^{\circ}(\mathrm{c}=1.18$, benzene).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid (2-methyl-propyl) ester (1f)

1f ($63.6 \mathrm{mg}, 46.2 \%, 88.8 \% \mathrm{ee}$) and $2 f(96.6 \mathrm{mg}, 54.9 \%, 77.6 \% \mathrm{ee}$). 1f ($91.9 \mathrm{mg}, 66.3 \%, 39.5 \%$ ee) and $2 f(57.8 \mathrm{mg}, 32.7 \%, 85.7 \%$ ee).
1f (88.8% ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=200 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=10.1$ \min (major), $\mathrm{T}_{\mathrm{R}}=11.8 \mathrm{~min}$ (minor)), $[\alpha]_{\mathrm{D}}{ }^{25}=-21.5^{\circ}$ ($\mathrm{c}=1.01$, benzene).
2f (85.7% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=7.8$ \min (major), $\mathrm{T}_{\mathrm{R}}=10.8 \min$ (minor)), $[\alpha]_{\mathrm{D}}{ }^{26}=+7.8^{\circ}(\mathrm{c}=1.04$, benzene).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1g)

$\mathbf{1 g}(76.1 \mathrm{mg}, 48.8 \%, 88.9 \%$ ee) and $\mathbf{2 g}(103.0 \mathrm{mg}, 53.0 \%, 76.6 \%$ ee).
$\mathbf{1 g}$ ($82.1 \mathrm{mg}, 53.4 \%, 64.9 \%$ ee) and $\mathbf{2 g}$ ($83.8 \mathrm{mg}, 43.7 \%, 82.1 \%$ ee).
$1 \mathrm{~g}\left(88.9 \%\right.$ ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=200 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=25.2$ \min (minor), $\mathrm{T}_{\mathrm{R}}=30.3 \min$ (major)), $[\alpha]_{\mathrm{D}}{ }^{24}=-74.1^{\circ}$ ($\mathrm{c}=1.07$, benzene).
$\mathbf{2 g}\left(82.1 \%\right.$ ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $12.6 \min$ (major), $\mathrm{T}_{\mathrm{R}}=16.1 \mathrm{~min}$ (minor)), $[\alpha]_{D}{ }^{29}=-4.9^{\circ}(\mathrm{c}=1.12$, benzene).

Typical procedure for $1 \mathrm{e}, \mathbf{1 h}, \mathbf{1 i}, \mathbf{1 j}, \mathbf{1 k}$, and $11(5 \mathrm{~mol} \%$ catalyst loading)

A dried 20 mL Schrenk flask was placed $\mathrm{Cu}(\mathrm{OAc})_{2}(3.7 \mathrm{mg}, 0.020 \mathrm{mmol})$, then the solid was heated $80{ }^{\circ} \mathrm{C}$ under vacuum for 3 minutes, then the flask was filled with Ar. To this was added (S)-DTBM-SEGPHOS ($23.6 \mathrm{mg}, 0.0200 \mathrm{mmol}$) and toluene $(1.0 \mathrm{~mL})$, then the mixture was stirred at $45^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to room temperature, and toluene (1.0 mL) solution of $\mathbf{1 e}$ (110.1 $\mathrm{mg}, 0.4000 \mathrm{mmol})$ and 2-methoxyethanol ($63.9 \mu \mathrm{~L}, 0.800 \mathrm{mmol}$) was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ in incubator. The reaction was monitored by TLC or GLC. The product 2a and the substrate 1a were isolated by silica-gel column chromatography (elution: Hexane/Et $\mathrm{t}_{2} \mathrm{O} 10 / 1 \rightarrow 1 / 1 \rightarrow 1 / 2$) to afford $\mathbf{1 e}$ ($47.1 \mathrm{mg}, 42.7 \%, 92.8 \%$ ee) and $\mathbf{2 e}(84.2 \mathrm{mg}, 59.9 \%, 69.7 \%$ ee).

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid butyl ester (1e)

$1 \mathbf{e}\left(92.8 \%\right.$ ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=800 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=25.3$ \min (major), $\mathrm{T}_{\mathrm{R}}=30.5 \min ($ minor $)$), $[\alpha]_{\mathrm{D}}{ }^{24}=-93.4^{\circ}$ ($\mathrm{c}=1.01$, benzene).
2e (69.7\% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=7.4$ \min (major), $\mathrm{T}_{\mathrm{R}}=9.0 \min ($ minor $)$), $[\alpha]_{\mathrm{D}}{ }^{26}=+6.5^{\circ}(\mathrm{c}=1.04$, benzene).

4-Ethyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1h)

1h ($49.6 \mathrm{mg}, 38.1 \%, 93.4 \%$ ee) and $\mathbf{2 h}$ ($93.5 \mathrm{mg}, 58.2 \%, 70.9 \%$ ee).
1h (93.4% ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2$-propanol $=100 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $12.9 \min$ (minor), $\mathrm{T}_{\mathrm{R}}=15.2 \min ($ major $)$), $[\alpha]_{\mathrm{D}}{ }^{26}=-72.4^{\circ}$ ($\mathrm{c}=1.03$, benzene).
2h (70.9% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $14.1 \min$ (major), $\mathrm{T}_{\mathrm{R}}=16.1 \min ($ minor $)$), $[\alpha]_{\mathrm{D}}{ }^{26}=+1.8^{\circ}(\mathrm{c}=1.05$, THF).

4-Propyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1i)

$\mathbf{1 i}(69.4 \mathrm{mg}, 51.1 \%, 71.3 \%$ ee) and $\mathbf{2 i}(88.9 \mathrm{mg}, 53.5 \%, 77.2 \%$ ee).
$\mathbf{1 i}(71.3 \%$ ee): the ee was determined by HPLC analysis of $\mathbf{2 i}$ which was derived from $\mathbf{1 i}$ obtained by the kinetic resolution, conversion of $\mathbf{1 i}$ into $\mathbf{2 i}$ was carried out with $\mathrm{Sc}(\mathrm{OTf})_{3}$ as catalyst, HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=13.8 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=$ $15.7 \min$ (major)), $[\alpha]_{D}{ }^{24}=-49.4^{\circ}(c=1.22$, benzene).
$2 \mathbf{i}\left(77.2 \%\right.$ ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=13.8$ \min (major), $\mathrm{T}_{\mathrm{R}}=15.7 \mathrm{~min}$ (minor)), $[\alpha]_{\mathrm{D}}{ }^{26}=-2.3^{\circ}$ ($\mathrm{c}=1.10$, benzene).

4-Butyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1j)

$\mathbf{1 j}$ ($70.3 \mathrm{mg}, 49.8 \%, 56.0 \%$ ee) and $\mathbf{2 j}$ ($81.5 \mathrm{mg}, 47.4 \%, 62.7 \%$ ee).
$\mathbf{1 j}\left(56.0 \%\right.$ ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=100 / 1,0.50 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $20.6 \min ($ minor $), T_{R}=22.5 \min ($ major $)$), $[\alpha]_{D}{ }^{30}=-40.6^{\circ}$ (c $=1.00$, benzene).
2j (62.7% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane/2-propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=11.8$ $\min ($ major $), T_{R}=13.4 \min ($ minor $)$), $[\alpha]_{D}{ }^{30}=-1.1^{\circ}(\mathrm{c}=1.60, \mathrm{THF})$.

4-Butyl-5-oxo-2-(4-chlorophenyl)-4,5-dihydrooxazole-4-carboxylic acid benzyl ester (1k)

$\mathbf{1 k}(72.3 \mathrm{mg}, 45.4 \%, 95.9 \%$ ee) and $\mathbf{2 k}(104.0 \mathrm{mg}, 54.6 \%, 79.5 \%$ ee).
1k (95.9\% ee): HPLC (CHIRALCEL OD (DAICEL), hexane/2-propanol $=200 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $13.9 \min$ (minor), $\mathrm{T}_{\mathrm{R}}=25.2 \mathrm{~min}$ (major)), $[\alpha]_{\mathrm{D}}{ }^{27}=-49.5^{\circ}(\mathrm{c}=1.02$, benzene).
2k (79.5% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=$ $15.4 \min$ (major), $\mathrm{T}_{\mathrm{R}}=17.8 \mathrm{~min}$ (minor)), $[\alpha]_{\mathrm{D}}{ }^{27}=+3.6^{\circ}$ (c = 1.11, benzene).

4-Methyl-5-oxo-2-(4-methoxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid ethyl ester (11)

11 ($42.9 \mathrm{mg}, 38.7 \%, 83.5 \%$ ee) and $2 \mathbf{2 l}(76.0 \mathrm{mg}, 53.8 \%, 75.2 \%$ ee).
$1 \mathbf{1}$ ($73.3 \mathrm{mg}, 66.5 \%, 28.2 \%$ ee) and $2 \mathbf{l}$ ($36.3 \mathrm{mg}, 25.8 \%$, 84.0% ee).
11 (83.5% ee): HPLC (CHIRALCEL OD (DAICEL), hexane $/ 2-$ propanol $=100 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=12,2$ \min (minor), $\mathrm{T}_{\mathrm{R}}=16.6 \mathrm{~min}$ (major)), $[\alpha]_{\mathrm{D}}{ }^{27}=-90.8^{\circ}$ (c = 1.01, benzene).
$2 \mathbf{l}$ (84.0% ee): HPLC (CHIRALPAK AD-H (DAICEL), hexane $/ 2-$ propanol $=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}_{\mathrm{R}}=17.7$ \min (major), $\mathrm{T}_{\mathrm{R}}=22.6 \min$ (minor)), $[\alpha]_{D}{ }^{26}=+9.6^{\circ}$ (c = 1.02, benzene).

Determination of absolute configuration of the azlactones and alcoholized products

The absolute configurations of 8 compounds ((-)-1a, (-)-1k, (-)-1g, (-)-1d, (-)-2a, (+)-2d, (-)-2g, and $(+)-\mathbf{2 k})$ were determined. The results suggest optically active unreacted substrates $\mathbf{1}$ obtained by the present kinetic resolution employing (S)-DTBM-SEGPHOS have S configuration. On the other hand, optically active products $\mathbf{2}$ have R configuration.

The absolute configuration of (-)-1a and (-)-1k was determined as S by comparison of the retention time of chiral GLC of $\mathbf{1 a}$ and chiral HPLC of $\mathbf{1 k}$ with that reported in the literature ${ }^{2}$.

Derivatization of (-)-1g into N-benzoyl- α-methylserine benzyl ester

4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid benzyl ester ($40.0 \mathrm{mg}, 0.129 \mathrm{mmol}$, 80% ee, $(-)-\mathbf{1 g})$ was dissolved in THF (1.0 mL), then cooled to $0{ }^{\circ} \mathrm{C}$. To this was added $\mathrm{NaBH}_{4}(3.0 \mathrm{mg}$, 0.0711 mmol) and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min . To this was added saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x 3)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel column chromatography (Hexane/Et $\mathrm{E}_{2} \mathrm{O}=1 / 2$) to give the product ($23.7 \mathrm{mg}, 59 \%,[\alpha]_{\mathrm{D}}{ }^{27}=-4.6^{\circ}(\mathrm{c}=2.37$, CHCl_{3})) as colorless oil.
Comparison of the optical rotation of the product with that reported in the literature (81\% ee, $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-4.5^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)^{2}$) confirmed that the absolute configuration is R. Consequently, (-)- $\mathbf{1 g}$ was determined as S.

Derivatization of (-)-1d into N-benzoyl- α-methylserine

$(+)-(R)-N$-benzoyl- α-methylserine
4-Methyl-5-oxo-2-phenyl-4,5-dihydrooxazole-4-carboxylic acid allyl ester ($53.1 \mathrm{mg}, 0.205 \mathrm{mmol}$, 82.7% ee, (-)-1d) was dissolved in THF (1.6 mL). Then, this solution was cooled to $0{ }^{\circ} \mathrm{C}$, $\mathrm{NaBH}_{4}(4.7$ $\mathrm{mg}, 0.113 \mathrm{mmol}$) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min , then saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x$ 3), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed by rotary evaporation. The residue was purified by silica-gel
column chromatography (Hexane/Et $\mathrm{O}_{2} \mathrm{O}=1 / 2$) to give N-benzoyl- α-methylserine allyl ester (23.3 mg , $\left.43 \%,[\alpha]_{D}{ }^{27}=-1.3^{\circ}\left(\mathrm{c}=2.33, \mathrm{CHCl}_{3}\right)\right)$ as colorless oil.
Then, 2 M solution of $\mathrm{NaOH}(44.3 \mathrm{~mL}, 0.0885 \mathrm{mmol})$ was added to a solution of this product (23.3 mg , 0.0885 mmol) in methanol (1 mL). This mixture was stirred for 3.5 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was then added, and the methanol was removed by rotary evaporation. The water layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x 3)$ and then acidified with $1 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} x \mathrm{3}$) and dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation, the crude was purified by recycling preparative HPLC to give N-benzoyl- α-methylserine ($1.1 \mathrm{mg}, 5 \%,[\alpha]_{\mathrm{D}}{ }^{27}=+5.8^{\circ}$ (c $=0.11, \mathrm{EtOH})$) as white solid.
Comparison of the optical rotation of the product with that reported in the literature $((+)-(R)-$ N-benzoyl- α-methylserine, $\left.[\alpha]_{\mathrm{D}}{ }^{20}=+1.9^{\circ}(\mathrm{c}=1.00, \mathrm{EtOH})^{3}\right)$ confirmed that the absolute configuration is R. Consequently, (-)-1d was determined as S.

Optically active (-)-1a, (-)-1d, (-)-1g, and (-)-1k ((S)-isomers) were converted to 2a, 2d, 2g, 2k by $\mathrm{Sc}(\mathrm{OTf})_{3}$ as catalyst, then retention time of chiral HPLC was compared with (-)-2a, $(+)-\mathbf{2 d},(-)-\mathbf{2 g}$, and $(+)-\mathbf{2 k}$, which were obtained by the kinetic resolution. All the charts showed opposite enantiomer is major isomer. Consequently, the absolute configuration of $(-)-\mathbf{2 a},(+)-\mathbf{2 d},(-)-\mathbf{2 g}$, and $(+)-\mathbf{2 k}$ was determined as R.

Introduction of Equations and Graphic Drawing

Equations were derived essentially the same way of Kagan. ${ }^{4}$

$$
\begin{aligned}
& \mathrm{S}_{R} \xrightarrow{k_{R}} \mathrm{P}_{R} \\
& \mathrm{~S}_{\mathrm{S}} \xrightarrow{k_{\mathrm{S}}} \mathrm{P}_{\mathrm{S}}
\end{aligned}
$$

For first order reaction, differential equation becomes as follows.

$$
\left.\begin{array}{r}
-\frac{\mathrm{d}\left[\mathrm{~S}_{R}\right]}{\mathrm{d} t}=k_{1}\left[\mathrm{~S}_{R}\right] \tag{S1}\\
-\frac{\mathrm{d}\left[\mathrm{~S}_{S}\right]}{\mathrm{d} t}=k_{2}\left[\mathrm{~S}_{S}\right]
\end{array}\right\}
$$

Integration of eqs (S1) gives eqs (S2).

$$
\left.\begin{array}{l}
{\left[\mathrm{S}_{R}\right]=\left[\mathrm{S}_{R}\right]_{0} \mathrm{e}^{-k_{1} t}} \tag{S2}\\
{\left[\mathrm{~S}_{S}\right]=\left[\mathrm{S}_{S}\right]_{0} \mathrm{e}^{-k_{2} t}}
\end{array}\right\}
$$

The combination of eqs (S2) leads to eq (S3).

$$
\begin{equation*}
\frac{k_{1}}{k_{2}}=\frac{\ln \left(\left[\mathrm{S}_{R}\right] /\left[\mathrm{S}_{R}\right]_{0}\right)}{\ln \left(\left[\mathrm{S}_{S}\right] /\left[\mathrm{S}_{S}\right]_{0}\right)} \tag{S3}
\end{equation*}
$$

For zeroth order reaction, differential equation becomes as follows.

$$
\left.\begin{array}{rl}
-\frac{\mathrm{d}\left[\mathrm{~S}_{R}\right]}{\mathrm{d} t} & =k_{1} \\
-\frac{\mathrm{d}\left[\mathrm{~S}_{S}\right]}{\mathrm{d} t} & =k_{2} \tag{S4}
\end{array}\right\}
$$

Integration of eqs (S4) gives eqs (S5).

$$
\left.\begin{array}{l}
{\left[\mathrm{S}_{R}\right]=\left[\mathrm{S}_{R}\right]_{0}-k_{1} t} \tag{S5}\\
{\left[\mathrm{~S}_{S}\right]=\left[\mathrm{S}_{S}\right]_{0}-k_{2} t}
\end{array}\right\}
$$

The combination of eqs (S5) leads to eq (S6).

$$
\begin{equation*}
\frac{k_{1}}{k_{2}}=\frac{\left[\mathrm{S}_{R}\right]_{0}-\left[\mathrm{S}_{R}\right]}{\left[\mathrm{S}_{S}\right]_{0}-\left[\mathrm{S}_{S}\right]} \tag{S6}
\end{equation*}
$$

For second order reaction, differential equation becomes as follows.

$$
\left.\begin{array}{l}
-\frac{\mathrm{d}\left[\mathrm{~S}_{R}\right]}{\mathrm{d} t}=k_{1}\left[\mathrm{~S}_{R}\right]^{2} \tag{S7}\\
-\frac{\mathrm{d}\left[\mathrm{~S}_{S}\right]}{\mathrm{d} t}=k_{2}\left[\mathrm{~S}_{S}\right]^{2}
\end{array}\right\}
$$

Integration of eqs (S7) gives eqs (S8) and (S8’).

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
k_{1} t=\frac{\left[\mathrm{S}_{R}\right]_{0}-\left[\mathrm{S}_{R}\right]}{\left[\mathrm{S}_{R}\right]\left[\mathrm{S}_{R}\right]_{0}} \\
k_{2} t=\frac{\left[\mathrm{S}_{S}\right]_{0}-\left[\mathrm{S}_{S}\right]}{\left[\mathrm{S}_{S}\right]\left[\mathrm{S}_{S}\right]_{0}}
\end{array}\right\} \\
{\left[\mathrm{S}_{R}\right]=\frac{\left[\mathrm{S}_{R}\right]_{0}}{\left[\mathrm{~S}_{R}\right]_{0} k_{1} t+1}} \\
{\left[\mathrm{~S}_{S}\right]=\frac{\left[\mathrm{S}_{S}\right]_{0}}{\left[\mathrm{~S}_{S}\right]_{0} k_{2} t+1}}
\end{array}\right\}
$$

The combination of eqs (S8) leads to eq (S9).

$$
\begin{equation*}
\frac{k_{1}}{k_{2}}=\frac{\left[\mathrm{S}_{S}\right]\left(\left[\mathrm{S}_{R}\right]_{0}-\left[\mathrm{S}_{R}\right]\right)}{\left[\mathrm{S}_{R}\right]\left(\left[\mathrm{S}_{S}\right]_{0}-\left[\mathrm{S}_{S}\right]\right)} \tag{S9}
\end{equation*}
$$

Following expressions are used for obtaining the equations.
$1-\mathrm{ee}_{\mathrm{s}}=\frac{2\left[\mathrm{~S}_{R}\right]}{\left[\mathrm{S}_{R}\right]+\left[\mathrm{S}_{S}\right]} \quad 1+\mathrm{ee}_{\mathrm{s}}=\frac{2\left[\mathrm{~S}_{S}\right]}{\left[\mathrm{S}_{R}\right]+\left[\mathrm{S}_{S}\right]}$
1- conv $=\frac{\left[\mathrm{S}_{R}\right]+\left[\mathrm{S}_{S}\right]}{\left[\mathrm{S}_{R}\right]_{0}+\left[\mathrm{S}_{S}\right]_{0}}$
$1-\mathrm{ee}_{\mathrm{p}}=\frac{2\left[\mathrm{P}_{S}\right]}{\left[\mathrm{P}_{R}\right]+\left[\mathrm{P}_{S}\right]} \quad 1+\mathrm{ee}_{\mathrm{p}}=\frac{2\left[\mathrm{P}_{R}\right]}{\left[\mathrm{P}_{R}\right]+\left[\mathrm{P}_{S}\right]} \quad$ convn $=\frac{\left[\mathrm{P}_{R}\right]+\left[\mathrm{P}_{S}\right]}{\left[\mathrm{S}_{R}\right]_{0}+\left[\mathrm{S}_{S}\right]_{0}}$

$$
\begin{equation*}
\left[\mathrm{S}_{R}\right]_{0}=\left[\mathrm{S}_{R}\right]+\left[\mathrm{P}_{R}\right] \quad\left[\mathrm{S}_{S}\right]_{0}=\left[\mathrm{S}_{S}\right]+\left[\mathrm{P}_{S}\right] \tag{S12}
\end{equation*}
$$

Introduction of Equations

From eqs (S3) and eqs (S9), eq (S13) is obtained.
$k_{\text {rel }}=\frac{\ln \left[(1-\text { convn })\left(1-\mathrm{ee}_{\mathrm{s}}\right)\right]}{\ln \left[(1-\operatorname{convn})\left(1+\mathrm{ee}_{\mathrm{s}}\right)\right]}$
\$13)
[1st order, substrate]
From eqs (S3), eqs (S10), and eqs (S11), eq (S14) is obtained.
$k_{\text {rel }}=\frac{\ln \left[1-\operatorname{convn}\left(1+e e_{p}\right)\right]}{\ln \left[1-\operatorname{convn}\left(1-e e_{p}\right)\right]}$
\$14)
[1st order, product]
From eqs (S6) and eqs (S9), eq (S15) is obtained.
$k_{\text {rel }}=\frac{1-(1-\operatorname{convn})\left(1-e_{s}\right)}{1-(1-\operatorname{convn})\left(1+e e_{s}\right)}$

From eqs (S6), eqs (S10), and eqs (S11), eq (S16) is obtained.
$k_{\text {rel }}=\frac{1+\mathrm{ee}_{\mathrm{p}}}{1-\mathrm{ee}}$
[0th order, product]
From eqs (S9) and eqs (S9), eq (S17) is obtained.
$k_{\text {rel }}=\frac{\left[1-(1-\text { convn })\left(1-e_{\mathrm{s}}\right)\right]\left(1+\mathrm{ee}_{\mathrm{s}}\right)}{\left[1-(1-\text { convn })\left(1+\mathrm{ee}_{\mathrm{s}}\right)\right]\left(1-\mathrm{ee}_{\mathrm{s}}\right)}$
[2nd order, substrate]

From eqs (S9), eqs (S10), and eqs (S11), eq (S18) is obtained.

$$
\begin{equation*}
k_{\text {rel }}=\frac{\left[1-\operatorname{convn}\left(1-e_{p}\right)\right]\left(1+e e_{p}\right)}{\left[1-\operatorname{convn}\left(1+e e_{p}\right)\right]\left(1-e_{p}\right)} \tag{S18}
\end{equation*}
$$

[2nd order, product]

Graphic Drawing

Graphic drawings were performed with Mathematica program. Using eqs (S2), eqs (S5), and eqs (S8), parametrically plots were carried out where t was used as parameter.

Figure S-1 and S-2

Figure S-1. Kinetic resolution of rac-1f: experimental values (dots), simulated lines as zeroth order reaction $(k \mathrm{rel}=11.1)$, and as first order reaction (k rel $=11.1$ and 23).

Figure S-2. Kinetic resolution of rac-11: experimental values (dots), simulated lines as zeroth order reaction $(k$ rel $=11)$, and as first order reaction (k rel $=11$ and 18).

Figure S-3

$$
t, \mathrm{~h}
$$

Figure S-3. First order plot for the Cu-catalyzed alcoholysis of rac-1b with 0.6 eq of 2-methoxyethanol.

Figure S-4

Figure S-4. First order plot of the data in Table 1: (a) 1b (entries 2-5), (b) 1c (entries 6-9), (c) $\mathbf{1 f}$ (entries 12-15), (d) $\mathbf{1 g}$ (entries 16-19), and (e) $\mathbf{1 1}$ (entries 24-27).

References

1) Liang, J. J.; Ruble, C.; Fu, G. C. J. Org. Chem. 1998, 63, 3154-3155.
2) Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532-11533.
3) Leplawy, M. T.; Olma. A. Polish J. Chem. 1979, 53, 353-357.
4) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249-331.
