Supporting Information

Stereoselective Nucleophilic Monofluoromethylation of *N*-(*tert*-Butanesulfinyl)imines Using Fluoromethyl Phenyl Sulfone

Ya Li, Chuanfa Ni, Jun Liu, Laijun Zhang, Ji Zheng, Lingui Zhu and Jinbo Hu* Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

General:

Unless otherwise mentioned, solvents and reagent were purchased from commercial sources and used as received. THF was freshly distilled over sodium. Monofluoromethyl phenyl sulfone and *N-tert*-butanesulfinyl were prepared using known procedures.^[1,2] ¹H NMR spectra were recorded on Bruker 300 or Mercury 300 spectrometers with Me₄Si as internal standard. ¹⁹H NMR spectra were recorded on Bruker 300 or Mercury 300 spectrometers with CFCl₃ as external standard. ¹³C NMR spectra were recorded on Bruker 300 and DPX-400 spectrometers. Mass spectra were taken on a HP5989A spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI, ESI or MALDI mode.

Preparation of <u>11</u> and <u>1k</u>:

Under N₂ atmosphere, into a 10-mL Schlenk flask containing 4-oxobutyl 4'-methylbenzenesulfonate (703 mg, 2.9 mmol) and (*R*)-*tert*-butanesulfinamide (274 mg, 2.3 mmol) in 10 mL THF at r.t. was added Ti(OⁱPr)₄ (1.8 mL, 6.0 mmol). The reaction mixture was then stirred at this temperature for 5h, followed by adding a saturated aqueous NaCl solution (10 mL). The resulting suspension was filtered and the solid was washed with Et₂O. The filtrate was extracted with Et₂O (15 mL x 3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents under vacuum, the crude product was further purified by silica gel column chromatography to give product **1k** as yellow oil, yield 87% (687 mg).

(*R*)-4-(2-methylpropan-2-ylsulfinamido)butyl 4-methylbenzenesulfonate (1k)

yellow oil; yield 87%; $[\alpha]^{20}$ –137.1(c = 1.12, CHCl₃); IR (film): 2962, 1625, 1361, 1177, 1082cm⁻¹; ¹H NMR: δ 8.01(t, *J* = 3.6Hz, 1H), 7.78 (d, *J* = 7.8Hz, 2H), 7.35 (d, *J* = 7.8Hz, 2H), 4.11(t, J=6.0Hz, 2H), 2.54-2.59(m, 2H), 2.45(s, 3H), 1.97-2.06(m, 2H), 1.15(s, 9H); ¹³C NMR: δ 167.42, 144.86, 132.91, 129.85, 127.79, 69.22, 56.56, 31.72, 24.41, 22.23, 21.55; EI (m/z, %) 346 (M⁺+1, 2.4), 57 (100.0); HRMS (MALDI) calcd. for C₁₅H₂₄NO₄S₂ (M⁺+H): 346.11467; Found 346.11413.

(R)-5-(2-methylpropan-2-ylsulfinamido)pentyl 4-methylbenzenesulfonate (11)

yellow oil; yield 86%; $[\alpha]^{20}$ -158.2(c = 0.72, CHCl₃); IR (film): 2959, 1623, 1360, 1189, 1176, 1082cm⁻¹; ¹H NMR: δ 8.01 (t, *J* = 4.5 Hz, 1H), 7.79 (d, *J* = 8.1Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 4.05 (t, *J* = 5.4 Hz, 2H), 2.47–2.51 (m, 2H), 2.45 (s, 3H), 1.66–1.75 (m, 4H), 1.17 (s, 9H); ¹³C NMR: δ 168.41, 144.74, 132.99, 129.80, 127.76, 69.81, 56.50, 35.10, 28.22, 22.23, 21.52, 21.21; EI (m/z, %): 359(M⁺, 4.4), 57(100.0); HRMS (MALDI): calcd. for C₁₆H₂₆NO₄S₂ (M⁺+1): 360.13032; Found 360.12978.

Typical procedure for stereoselective nucleophilic monofluoromethylation using monofluoromethyl phenyl sulfone:

Under N₂ atmosphere, into a 20-mL Schlenk flask containing *N*-(*tert*-butanesulfinyl)aldimine (**1a**) (188 mg, 0.9 mmol) and PhSO₂CFH₂ (157 mg, 0.9 mmol) in 6ml THF at -78 °C, was added a THF solution (0.94 mL) of (TMS)₂NLi (LHMDS, 1.0M, 0.95 mmol). The reaction mixture was then stirred at this temperature for 40 min, followed by adding a saturated aqueous NH₄Cl solution (10

mL) at this temperature. The solution mixture was then extracted with EtOAc (15 mL x 3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents under vacuum, the crude product was further purified by silica gel column chromatography to give product **4a** (114mg) and **4a'** (228mg) respectively, overall yield 99%.

(*R*)-*N*-[(1*S*,2*R*)-2-fluoro-1-phenyl-2-(phenylsulfonyl)ethyl]-2-methylpropane-2-sulfina -mide (**4a**)

white solid. mp 137-139°C; $[\alpha]^{20}$ –34.8(c=0.70, CHCl₃); IR (film): 3217, 2959, 1448, 1329, 1153, 1067 cm⁻¹; ¹H NMR: δ 7.85(d, *J* = 7.8 Hz, 2H), 7.64–7.69 (m, 1H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.27–7.42 (m, 5H), 5.59 (dd, *J* = 47.1, 6.3 Hz, 1H), 5.09–5.17 (m, 1H), 4.46 (d, *J* = 5.1Hz, 1H), 1.25 (s, 9H); ¹⁹F NMR: δ –180.20 (dd, *J* = 46.3, 13.5 Hz, 1F); ¹³C NMR: δ 132.08, 130.70, 130.64, 125.42, 125.31, 125.21, 124.88, 97.96 (d, *J* = 227.8 Hz), 54.54 (d, *J* = 20.3 Hz), 52.86, 18.61; EI (m/z, %) 327 (M⁺-56, 1.2), 57 (100.0); EA calcd. for C₁₈H₂₂FNO₃S₂ C, 56.37; H, 5.78; N, 3.65; Found C, 56.60; H, 6.05; N, 3.58.

(*R*)-*N*-[(1*S*, 2*S*)-2-fluoro-1-phenyl-2-(phenylsulfonyl)ethyl]-2-methylpropane-2sulfinamide (**4a**')

white solid. mp 97–99 °C; [α]²⁰–3.71(c = 0.70, CHCl₃); IR (film): 3333, 2959, 1585, 1449, 1331, 1156, 1071 cm⁻¹; ¹H NMR: δ 7.89 (d, *J* = 7.2 Hz, 2H), 7.66–7.71 (m, 1H), 7.53–7.58 (m, 2H), 7.33–7.44 (m, 5H), 5.17–5.33 (m, 2H), 4.29 (d, *J* = 7.5Hz, 1H),

1.26 (s, 9H); ¹⁹F NMR: δ –187.93 (dd, J = 45.2, 21.5 Hz, 1F); ¹³C NMR: δ 136.69, 136.36, 134.69, 129.41, 129.07, 129.01, 127.95, 127.94, 102.87 (d, J = 228.4 Hz), 58.22 (d, J = 17.2 Hz), 52.14, 22.42; EI (m/z, %): 384(M⁺+1, 1.1), 327 (3.0), 141 (100.0); HRMS (MALDI): calcd. for C₂₂H₂₃F₂NO₃S₂Na(M⁺+1): 384.11034; Found 384.10979.

Typical procedure for stereoselective nucleophilic monofluoromethylation and successive reductive desulfonylation and deprotection of the *tert*-butanesulfinyl group:

N-(*tert*-butanesulfinyl)aldimine (**1a**) (94 mg, 0.45 mmol) reacted with PhSO₂CFH₂ (78 mg, 0.45 mmol) affording the intermediate product **4** according to the procedure mentioned above without purification. Into a 10-mL flask containing **4** and Na₂HPO₄ (510mg, 3.6 mmol) in 5 mL anhydrous methanol at -20 °C, was added Na/Hg amalgam (10 wt. % Na in Hg, net sodium content 3.6 mmol). The reaction mixture was stirred at -20° C ~ -10° C for 1 h. The liquid phase was decanted, and most of the organic phase was removed under vacuum. Then 20 mL brine was added, followed by extracting with EtOAc.. The combined organic phase was dried over MgSO₄, and the solvent was removed to give the intermediate product without further purification.

The intermediate product was dissolved in 5ml anhydrous methanol. Then 0.5 mL HCl/Dioxane (4N) was added. The reaction mixture was stirred at r.t. for 30min and was then concentrated to near dryness. Diethyl ether wad added to precipitate out the amine hydrochloride. The precipitate was then filtered off and washed with diethyl ether to provide pure amine hydrochloride **5a**, overall yield 77% (61mg).

 $[\alpha]^{20}$ 29.1 (c = 0.57, CH₃OH); IR (film): 2845, 1602, 1515, 1497, 1459, 1018 cm⁻¹;

¹H NMR: δ 7.48–7.53(m, 5H), 4.70–4.91(m, 3H); ¹⁹F NMR: δ –225.04 (td, *J* = 44.0, 18.6 Hz, 1F); ¹³C NMR: δ 132.38 (d, *J* = 6.3 Hz), 129.52, 129.08, 127.28, 82.90 (d, *J* = 175.5 Hz), 54.78 (d, *J* = 18.9 Hz); ESI (m/z): 140 (M⁺-35); HRMS (EI): calcd. for C₇H₈N (M⁺-HCl-CFH₂): 106.06567; Found 106.06599.

(S)-1-(4-chlorophenyl)-2-fluoroethanamine hydrochloride (5b)

 $[\alpha]^{20} 26.3$ (c = 1.00, CH₃OH); IR(film): 2870, 2025, 1591, 1536, 1492, 1008 cm⁻¹; ¹H NMR: δ 7.45–7.52 (m, 4H), 4.68–4.88 (m, 3H); ¹⁹F NMR: δ –226.44 (tm, J = 47.1 Hz, 1F); ¹³C NMR: δ 135.50, 131.23 (d, J = 6.1 Hz), 129.15, 129.12, 82.76 (d, J= 176.1 Hz), 54.08 (d, J = 19.2 Hz); EI (m/z, %) 173 (M⁺-HCl, 0.1), 140 (100.0), 77 (53.0); HRMS (EI) calcd. for C₈H₉CIFN (M⁺-HCl): 173.04076; Found 173.0400.

(S)-2-fluoro-1-(naphthalen-2-yl) ethanamine hydrochloride (5c)

 $[\alpha]^{20}$ 33.9 (c = 0.88, CH₃OH); IR (film): 2879, 1603, 1513, 1402, 1025 cm⁻¹; ¹H NMR: δ 7.99 (d, *J* = 7.8 Hz, 2H), 7.91–7.94 (m, 2H), 7.54–7.59 (m, 3H), 4.76–4.79 (m, 3H); ¹⁹F NMR: δ –225.46 (tm, *J* = 46.2 Hz, 1F); ¹³C NMR: δ 137.72, 133.25, 129.67 (d, *J* = 6.2 Hz), 129.03, 127.84, 127.45, 127.08, 126.94, 126.68, 124.00, 83.02 (d, *J* = 176.2 Hz), 54.91 (d, *J* = 18.9 Hz); EI (m/z, %): 189 (M⁺-HCl, 5.5), 156 (100.0); HRMS(EI): calcd. for C₁₂H₁₂FN(M⁺-HCl): 189.09538; Found 189.0955.

(S)-2-fluoro-1-(4-methoxyphenyl) ethanamine hydrochloride (5d)

[α]²⁰ 31.5 (c = 0.66, CH₃OH); IR (film): 2960, 2838, 1613, 1584, 1515, 1019 cm⁻¹; ¹H NMR: δ 7.40 (dd, J = 6.9, 1.8 Hz, 2H), 7.01(dd, J = 6.9, 2.4Hz, 2H), 4.73 (dd, J = 47.7, 6.6 Hz, 2H), 4.62–4.67 (m, 1H), 3.81 (s, 3H); ¹⁹F NMR: δ –224.62 (td, J = 47.9, 16.6 Hz, 1F); ¹³C NMR: δ 160.93, 128.76, 124.07 (d, J = 5.9 Hz), 114.43, 82.98 (d, J= 175.5 Hz), 54.53, 54.34 (d, J = 18.1 Hz); ESI (m/z): 153.2 (M⁺-16); HRMS (EI) calcd. for C₈H₁₀NO(M⁺-HCl-CFH2): 136.07624; Found 136.07644

(S)-4-(1-amino-2-fluoroethyl)-N,N-dimethylbenzenamine dihydrochloride (5e)

 $[\alpha]^{20} 20.2 \text{ (c} = 0.81, \text{CH}_3\text{OH}); \text{IR (film): 3413, 2590, 1625, 1575, 1500, 1025 cm}^{-1};$ ¹H NMR: δ 7.71–7.80 (m, 4H), 4.70–4.92 (m, 3H), 3.29 (s, 6H); ¹⁹F NMR: δ –224.62 (td, J = 47.6, 17.7Hz, 1F); ¹³C NMR: δ 143.94, 134.50 (d, J = 5.0 Hz), 129.83, 121.25, 82.75 (d, J = 176.0 Hz), 53.96 (d, J = 19.1 Hz), 45.65; EI (m/z, %): 182 (M⁺-HCl, 16.3), 149 (100.0); HRMS (EI): calcd. for C₈H₁₅FN (M⁺-HCl): 182.12193; Found 182.1221.

 $[\alpha]^{20}$ 18.0 (c = 0.93, CH₃OH); ¹H NMR: δ 7.62–7.63(m, 1H), 6.64 (d, J = 3.0 Hz, 1H), 6.50–6.51(m, 1H), 4.86 (dd, J = 46.8, 5.4Hz, 2H), 4.82–4.95(m, 1H); ¹⁹F NMR

δ -228.92 (tm, *J* = 47.0 Hz, 1F); ¹³C NMR: δ 145.59 (d, *J* = 8.1 Hz), 144.14, 110.69, 110.27 (d, *J* = 1.3 Hz), 81.1 (d, *J* = 174.7 Hz), 48.40 (d, *J* = 21.4 Hz); ESI (m/z): 130.2 (M⁺-35); HRMS (EI): calcd. for C₆H₈FNO (M⁺-HCl): 129.05899; Found 129.05951.

(S)-1-fluoro-3,3-dimethylburan-2-amine hydrochloride (5g)

 $[\alpha]^{20}$ 8.0 (c = 0.56, CH₃OH); IR (film): 2969, 1601, 1522, 1306, 1152, 1085, 1024 cm⁻¹; ¹H NMR: δ 4.56–4.88 (m, 2H), 3.24–3.35(m, 1H), 1.07 (s, 9H); ¹⁹F NMR: δ –232.50 (td, *J* = 47.1, 20.3 Hz, 1F); ¹³C NMR: δ 85.00 (d, *J* = 169.7 Hz), 63.52 (d, *J* = 15.7 Hz), 35.74 (d, *J* = 4.1 Hz), 29.24; EI (m/z, %): 119 (M⁺-HCl, 0.6), 104 (3.3), 63 (100.0); HRMS (EI): calcd. for C₆H₁₁FN (M⁺-HCl-CH₃): 104.08755; Found 104.0880.

(S)-1-fluoro-3-methylbutane-2-amine hydrochloride (5h)

[α]²⁰ 3.11 (c = 0.90, CH₃OH); IR (film): 2972, 2884, 1602, 1521, 1398, 1136, 1022 cm⁻¹; ¹H NMR: δ 4.68 (dm, J = 47.1Hz, 2H), 3.27–3.32 (m, 1H), 1.98–2.07 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H); ¹⁹F NMR: δ –234.49 (td, J = 46.5, 22.2 Hz, 1F); ¹³C NMR: δ 81.30 (d, J = 170.2 Hz), 56.71 (d, J = 17.4 Hz), 27.61 (d, J = 4.5 Hz), 17.73, 17.34; EI (m/z, %) 106 (M⁺-35, 2.4), 62 (100.0); HRMS (EI): calcd. for C₅H₁₂FN (M⁺-HCl): 105.09538; Found 105.09558.

(S)-1-fluoropentan-2-amine hydrochloride(5i)

[α]²⁰ 5.90 (c = 1.01, CH₃OH); IR(film): 2968, 2880, 1602, 1515, 1471, 1023 cm⁻¹; ¹H NMR: δ 4.67 (ddd, J = 46.8, 10.8, 3.0 Hz, 1H), 4.52(ddd, J = 45.9, 10.8, 6.0 Hz, 1H), 3.41–3.55 (m, 1H), 1.61–1.72 (m, 2H), 1.39–1.52 (m, 2H), 0.99 (t, J = 6.9 Hz, 3H); ¹⁹F NMR: δ –233.53 (td, J = 48.5, 22.3 Hz, 1F); ¹³C NMR: δ 82.13 (d, J = 170.8Hz), 51.31 (d, J = 18.3 Hz), 30.23 (d, J = 5.2 Hz), 18.15, 12.65; EI (m/z, %) 106 (M⁺-35, 5.6), 62 (100.0); HRMS (EI): calcd. for C₅H₁₂FN (M⁺-HCl): 105.09538; Found 105.0956.

(S)-1-fluoro-4-methylpentan-2-amine hydrochloride (5j)

[α]²⁰ 3.72 (c = 0.88, CH₃OH); IR (film): 2966, 2875, 1599, 1516, 1471, 1029 cm⁻¹; ¹H NMR: δ 4.69 (ddd, J = 46.8, 10.5, 3.0 Hz, 1H), 4.53(ddd, J = 47.1, 11.1, 6.0 Hz, 1H), 3.51–3.61(m, 1H), 1.17–1.80 (m, 1H), 1.52–1.63 (m, 2H), 1.01 (dd, J = 6.3, 1.2 Hz, 6H); ¹⁹F NMR: δ –232.81 (td, J = 46.8, 21.7 Hz, 1F); ¹³C NMR: δ 82.30 (d, J = 171.2 Hz), 49.80 (d, J = 18.6 Hz), 36.98 (d, J = 4.8 Hz), 24.02, 21.38, 21.17; EI (m/z, %): 120 (M⁺-35, 3.5), 62 (100.0); HRMS (EI) calcd. for C₅H₁₁FN (M⁺-HCl-CH₃): 104.08755; Found 104.08782.

(S)-2-(fluoromethyl)pyrrolidine hydrochloride(5k)

 $[\alpha]^{20} 8.40(c = 0.80, CH_3OH);$ IR (film): 2889, 2737, 1606, 1333, 1158, 996 cm⁻¹; ¹H NMR: δ 4.67–4.87 (m, 2H), 3.90–4.05 (m, 1H), 3.36 (t, *J* = 6.9 Hz, 2H), 2.02–2.27 (m, 3H), 1.77–1.90 (m, 1H); ¹⁹F NMR: δ –226.16 (td, *J* = 47.4, 19.4 Hz, 1F); ¹³C NMR:

δ 85.26 (d, J = 170.8 Hz), 63.31 (d, J = 17.8 Hz), 49.62, 28.75 (d, J = 4.3 Hz), 27.35; EI (m/z, %): 104 (M⁺-35, 44.8), 70 (100.0); HRMS (EI): calcd. for C₅H₁₀FN (M⁺-HCl): 103.07973; Found 103.0800.

(S)-2-(fluoromethyl)piperidine hydrochloride (51)

[α]²⁰ 16.59 (c = 0.84, CH₃OH); IR (film): 2735, 2529, 1587, 1454, 1090, 1015 cm⁻¹; ¹H NMR: δ 4.34–4.69 (m, 2H), 3.35–3.40 (m, 2H), 2.90–2.98 (t, *J* = 12.0 Hz, 1H), 1.80–1.84 (m, 3H), 1.44–1.59 (m, 3H); ¹⁹F NMR: δ –229.27 (td, *J* = 45.9, 18.4 Hz, 1F); ¹³C NMR: δ 82.79 (d, *J* = 170.4 Hz), 56.21 (d, *J* = 18.7 Hz), 44.39, 23.41 (d, *J* = 5.6 Hz), 21.81, 21.27; EI (m/z, %): 117 (M⁺-HCl, 1.9), 84 (100.0); HRMS (EI): calcd. for C₆H₁₂FN (M⁺-HCl): 117.09538; Found 117.0952.

Procedure for Benzoylation of 5:

Under N₂ atmosphere, a mixture of amine chloride (**5a**) (0.2 mmol, 35 mg), PhCOCl (0.6 mmol, 84 mg), Et₃N (0.6 mmol, 61 mg) and K₂CO₃ (0.2 mmol, 28 mg) in 3mL dioxane was stirred at 55 °C for 7h. Removal of the solvents under reduced pressure and flash chromatography afforded **6a** as a white solid, yield 92% (45mg).

(S)-N-(2-fluoro-1-phenylethyl)benzamide (6a)

yield 92%; HPLC (Chiralpak AD-H column, 80:20 hexane/2-propanol; 0.7ml/min; 254nm; (*S*)-**6a**, $t_r = 9.6$ min, (*R*)-**6a**, $t_r = 17.5$ min); [α]²⁰: -9.82 (c = 0.72, CHCl₃); white solid. Mp 132–134 °C. IR (film): 3331, 1637, 1532, 1292, 1012, 700 cm⁻¹; ¹H NMR: δ 7.80 (d, *J* = 7.2 Hz, 2H), 7.28–7.53 (m, 8H), 6.80 (d, *J* = 7.2 Hz, 1H), 5.46 (t,

J = 25.8 Hz, 1H), 4.78 (dd, J = 48.0, 3.9 Hz, 2H); ¹⁹F NMR: δ –227.28 (td, J = 46.6, 24.8 Hz, 1F); ¹³C NMR: δ 167.24, 137.88, 134.06, 131.83, 128.93, 128.67, 128.16, 127.09, 127.07, 84.8 (d, J = 174.8 Hz), 53.35 (d, J = 19.5 Hz); EI (m/z, %): 244 (M⁺+1, 0.8), 223 (17.6), 105 (100.0); EA calcd. for C₁₅H₁₄FNO: C, 74.06; H, 5.80; N, 5.76; Found C, 73.97; H, 5.76; N, 5.76.

(S)-N-(1-fluoro-3,3-dimethylbutan-2-yl)benzamide (6g)

yield 89%; HPLC (Chiralpak OD column, 80:10 hexane/2-propanol; 0.7ml/min; 254nm; (*R*)-**6g**, t_r = 12.0 min, (*S*)-**6g**, t_r = 13.7 min); [α]²⁰: -46.15 (c = 0.54, CHCl₃); white solid. Mp 97–98 °C. IR (film): 3327, 2966, 1638, 1544, 1352, 696 cm⁻¹; ¹H NMR: δ 7.72 (dm, *J* = 8.1 Hz, 2H), 7.35–7.45 (m, 3H), 6.32 (d, *J* = 8.1 Hz, 1H), 4.38–4.77 (m, 2H), 4.10 (dm, *J* = 32.7 Hz, 1H), 1.00 (s, 9H); ¹⁹F NMR: δ –230.43 (td, *J* = 47.7, 32.1 Hz, 1F); ¹³C NMR: δ 167.57, 134.62, 131.64, 128.69, 126.95, 83.44 (d, *J* = 170.2 Hz), 56.66 (d, *J* = 16.5 Hz), 34.30 (d, *J* = 20.9 Hz), 27.19 (d, *J* = 1.9 Hz); EI (m/z, %): 223(M⁺,40.8), 41(100.0); HRMS (EI): calcd. for C₁₃H₁₈FNO (M⁺): 223.13724; Found 223.1376.

^[1] Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984–995, and the references cited therein.

^[2] Matthews, D. P.; Persichetti, R. A.; McCarthy, J. R. Org. Prep. Proced. Int. 1994, 26, 605–608; Org. Syn. 1995, 72, 209–215.

Determination of the absolute configuration of **4a** by X-ray analysis

Example of determination of facial selectivity ratio and yield of 4 (the organic phase of the reaction mixture after saturated NH_4Cl water solution was added) by ¹⁹F NMR:

Determination of optical purity of 6 by chiral HPLC

6a

VB

BV VV VV VV VV VV EB BB

BE

EB

3.09

100.00

4.753 0.030

44. 499 45. 236 3. 085

1e+02

6.446 7.054 7.902

8.264 9.249 10.069

11.050

12.089 13.700

14.479

10 11 12

13

14 15

16

43300. 25 31594. 63 6035. 33 12409. 49 9927. 50 563926. 62 3567. 92 5279627. 22 5367079. 04

5367079.04

366069.40

11864718.79 477297.46

861, 62 358, 37 587, 28 383, 71 28080, 08 183, 04 225774, 07 196742, 16 13466, 43

67

