Supporting Information for ol060115t

Part 1

Synthesis of the 17-Norjatrophane Diterpene (-)-15-Acetyl-3-propionyl-17-norcharaciol
Hannes Helmboldt, Daniel Köhler ${ }^{\ominus}$, Martin Hiersemann* ${ }^{\ominus}$
Fachrichtung Chemie, Technische Universität Dresden, D-01062 Dresden, Germany.
martin.hiersemann@chemie.tu-dresden.de
${ }^{\ominus}$ New adress: Universität Dortmund, Fachbereich 3, Organische Chemie, Otto-Hahn-Straße 6, D-44221 Dortmund

Table of Contents

1. Methods and Materials S1-2
2. Chart of all synthesized compounds in order of their appearance S1-4
3. Experimental procedures and product characterization data S1-6

1. Methods and Materials

Unless otherwise stated, commercially available reagents were used as purchased without further purification. Before use, solvents were refluxed in the presence the appropriate drying agent and distilled under nitrogen: tetrahydrofuran (THF) from potassium, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1,2$ dichloroethane and diethylether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ from CaH_{2}. Diisopropylamine and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from CaH_{2} and stored over $3 \AA$ molecular sieves. Ethanol was distilled from sodium and stored over activated $3 \AA$ molecular sieves. Methanol was distilled from magnesium and stored over activated $3 \AA$ molecular sieves. Decane $(99+\%$, ACROS) was used as purchased. $n-\mathrm{Bu}_{2} \mathrm{BOTf}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was purchased from FLUKA. Lithium chloride was dried for 12 h at $150{ }^{\circ} \mathrm{C}$ and 0.05 mbar . The concentration of $n-\mathrm{BuLi}$ in hexane was determined employing 4biphenylmethanol as indicator ${ }^{1}$. All moisture-sensitive reactions were performed in flame-dried septum-sealed glassware under an atmosphere of argon. Reagents were transferred by means of syringe or cannula. Glass pressure tubes with a screw-cap were purchased from SIGMAALDRICH (Ace pressure tube, 35 ml , PTFE bushing, FETFE O-ring, type A). Analytical TLC was performed using pre-coated silica gel foils $60 \mathrm{~F}_{254}$ (Merck, 4 cm). Visualization was achieved using 365 nm ultraviolet irradiation followed by staining with an anisaldehyde reagent (p-anisaldehyde $2.53 \mathrm{vol} \%$, acetic acid $0.096 \mathrm{vol} \%$, ethanol $93.06 \mathrm{vol} \%$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4} 0.034$ vol\%) or with a potassium permanganate reagent ($3 \mathrm{~g} \mathrm{KMnO}_{4}, 20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 5 \mathrm{~mL} 5 \%$ aqueous $\mathrm{NaOH}, 300 \mathrm{~mL}$ water).

Flash chromatography was performed using silica gel Merck (particle size $0.032-0.063 \mathrm{~mm}$) supplied by Merck and mixtures of heptane and ethyl acetate or hexane and ethyl acetate as eluent.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on an ASP-300 (Bruker) at 300.13 MHz or on a DRX-500 (Bruker) spectrometer at 500.13 MHz . Chemical shifts are reported in ppm relative to tetramethylsilane ($\delta 0 \mathrm{ppm}$). Signal splitting pattern are labeled by the following abbreviations: s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br} . \mathrm{s}=$ broad singlet, $\mathrm{sept}=$ septet, $\mathrm{m}=$ multiplet or overlap of non equivalent resonances. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an ASP-300 (Bruker) at 75.48 MHz or on a DRX-500 (Bruker) spectrometer at 125.77 MHz . Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$. The assignment of $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ is based on DEPT (distortionless enhancement by polarization transfer) experiments. The terms "major" and "minor" are used to distinguish between diastereomers. The assignments of atom connectivity and

[^0]spatial relationships are based on 2D NMR correlation $\left({ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}\right.$-NOESY, ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$-ROESY, ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}-$ COSY, ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-HMBC and ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-HSQC). Infrared spectra were recorded as a thin film on a KBr disk ("in substance") on a NICOLET 205 spectrometer. Molecular formula assignment was confirmed by combustion elemental analysis using an Elemental Analyzer EA 1108 (CARLO ERBA INSTRUMENTS). Melting points were measured with a 3306C MELT PT-Electrothermal capillary melting point apparatus.

2. Chart of all Synthesized Compounds in Order of their Appearance

$\mathrm{R}=\mathrm{Me} 15 \mathrm{a}$
R=Me S15a $R=H \quad$ S15b $R=H \quad$ S14b

3. Experimental Procedures and Product Characterization Data

Aldol adduct S1: (R)-4-Isopropyl-3-propionyl-oxazolidin-2-one 8 ($9.26 \mathrm{~g}, 50 \mathrm{mmol}, 1 \mathrm{eq}$. was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}, 1.2 \mathrm{~mL} / \mathrm{mmol} 8)$ in a septum-sealed 500 mL round bottom flask under an atmosphere of argon. The solution was cooled to $0{ }^{\circ} \mathrm{C}$. $n-\mathrm{Bu}_{2} \mathrm{BOTf}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 55$ $\mathrm{mL}, 55 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added dropwise followed by the addition of \mathrm{Et}_{3} \mathrm{~N}(9.41 \mathrm{~mL}, 67.5$ mmol, 1.35 eq.). After 10 min the solution was cooled to $-78^{\circ} \mathrm{C}$ and a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of freshly destilled croton aldehyde ($6.25 \mathrm{~mL}, 75 \mathrm{mmol}, 1.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.21 \mathrm{~mL} / \mathrm{mmol}$ aldehyde) was added. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and 30 min at $0^{\circ} \mathrm{C}$. The reaction was then quenched at $0^{\circ} \mathrm{C}$ by slowly adding 55 mL pH 7 -buffer, 130 mL MeOH and 55 mL $\mathrm{H}_{2} \mathrm{O}_{2}$ (exothermic reaction). The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash chromatography (heptane/ethyl acetate $10 / 1$) to afford $\mathbf{S} \mathbf{(1 1 . 9 8} \mathrm{g}, 94 \%, \mathrm{dr}>95: 5)$ as a colorless oil: $\mathrm{R}_{f} 0.2$ (heptane/ethyl acetate $1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.69\left(\mathrm{ddd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, J_{3}=0.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.25-2.41(\mathrm{~m}, 1$ H), 2.88 (br. s, 1 H), 3.84 (dq, $J_{1}=7.2 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17-4.31 (m, 2 H), 4.36-4.48 (m, 2 H), 5.42-5.53 (m, 1 H), $5.73\left(\mathrm{dqd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, J_{3}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.5\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 28.4(\mathrm{CH}), 42.8(\mathrm{CH}), 58.3$ $(\mathrm{CH}), 63.4\left(\mathrm{CH}_{2}\right), 72.5(\mathrm{CH}), 128.1(\mathrm{CH}=), 130.1(\mathrm{CH}=), 153.6(\mathrm{C}=\mathrm{O}), 177.0(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1200,1700,1770,2960,3500 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 61.16; H, 8.29; N, 5.49, Found: C, $60.95 ; \mathrm{H}, 8.40 ; \mathrm{N}, 5.45 ;[\alpha]^{25}{ }_{\mathrm{D}}-74.1\left(\mathrm{c} 2.26, \mathrm{CHCl}_{3}\right)$.

β-Hydroxyester 9: $\mathbf{S 1}\left(18.18 \mathrm{~g}, 71.2 \mathrm{mmol}\right.$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(285 \mathrm{~mL}, 4 \mathrm{~mL} / \mathrm{mmol}$ S1) was cooled to $-78{ }^{\circ} \mathrm{C}$. Separately was prepared a solution of sodium ($1.64 \mathrm{~g}, 71.2 \mathrm{mmol}, 1 \mathrm{eq}$.) in methanol ($72 \mathrm{~mL}, 1.5 \mathrm{~mL} / \mathrm{mmol}$ sodium). The alcoholate was slowly added at $-78{ }^{\circ} \mathrm{C}$ to the solution of $\mathbf{S 1}$, followed by warming to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. The crude product was dissolved in hexane followed by filtration to remove most of the crystalline oxazolidinone. Concentration under reduced pressure and flash chromatography (hexane/ethyl acetate $10 / 1$ to ethyl acetate) afforded $9(10.1 \mathrm{~g}, 90 \%)$ as a colorless oil and (R)-4-isopropyloxazolidin-2-one ($8.88 \mathrm{~g}, 97 \%$) as white crystals. 9: $\mathrm{R}_{f} 0.55$ (hexane/ethyl acetate $1 / 2$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.61$ (ddd, J_{1} $\left.=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, J_{3}=0.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.40(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.53\left(\mathrm{qd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 4.21$ (br. s, 1 H), $5.38\left(\mathrm{qdd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.64(\mathrm{dqd}$, $\left.J_{1}=15.4 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, J_{3}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.5\left(\mathrm{CH}_{3}\right), 17.6$ $\left(\mathrm{CH}_{3}\right), 45.0\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 73.2(\mathrm{CH}), 128.3(\mathrm{CH}=), 130.4(\mathrm{CH}=), 175.6$ $(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1740,2940-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 60.74 ; \mathrm{H}, 8.92$, Found: C, 60.76; H, 9.05; $[\alpha]^{30}{ }_{\mathrm{D}}-9.5$ (c 1.33, CHCl_{3}).

9

TBSCI, imidazole $\xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text { to } \mathrm{rt}}$

S2 (99\%)

Silyl ether S2: To a solution of $\mathbf{9}\left(5.2 \mathrm{~g}, 32.9 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol} 9)$ was added imidazole ($4.03 \mathrm{~g}, 59.22 \mathrm{mmol}, 1.8 \mathrm{eq}$.$) and \operatorname{TBSCl}(5.46 \mathrm{~g}, 36.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) at 0$ ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature and quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (heptane/ethyl acetate 20/1) afforded S2 (8.95 g, 32.9 mmol , 99%) as a colorless oil: $\mathrm{R}_{f} 0.7$ (heptane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.02$ (s, 3 H), $0.00(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, ~ J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.66\left(\mathrm{dd}, J_{1}=5.8 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 3\right.$ H), $2.48\left(\mathrm{qd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.29\left(\mathrm{dd}, J_{1}=J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.36-$ $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.64(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right), 11.7$
$\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 25.7\left(3 \times \mathrm{CH}_{3}\right), 47.1\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 51.2\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 74.9(\mathrm{CH})$, $126.7(\mathrm{CH}=)$, $132.5\left(\mathrm{CH}=\right.$), $174.9(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1740,2860-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: C, 61.72; H 10.36, Found: C, 61.97; H, 10.72; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}-7.3$ (c 1.31, CHCl_{3}).

Alcohol S3: To a solution of S2 ($8.9 \mathrm{~g}, 32.7 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(105 \mathrm{~mL}, 3.2 \mathrm{~mL} / \mathrm{mmol}$ S2) was added DIBAH ($75.2 \mathrm{~mL}, 75.2 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.3$ eq.) at $-78{ }^{\circ} \mathrm{C}$. After 30 min the reaction was carefully quenched by the addition of 135 mL methanol and 170 mL sat. aqueous Rochelle salt solution and stirred for 1 h at room temperature. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. The crude product can be used for the next step without further purification. Flash chromatography (heptane/ethyl acetate $50 / 1$ to $10 / 1)$ afforded $\mathbf{S 3}(7.95 \mathrm{~g}, 32.5 \mathrm{mmol}, 99 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.4$ (heptane/ethyl acetate $3 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9$ H), $1.65(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.41\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=\right.$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=10.7 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 5.39-5.61 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right), 17.5$ $\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 25.8\left(3 \times \mathrm{CH}_{3}\right), 41.1(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 77.5(\mathrm{CH}), 127.2(\mathrm{CH}=), 130.7(\mathrm{CH}=)$; IR (in substance) v $1360,1370,2860-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 63.87$; H 11.55, Found: C, 63.95; H 11.65; $[\alpha]^{25}{ }_{\mathrm{D}}+3.9$ (c 1.45, CHCl_{3}).

Aldehyde 10: To a solution of $\mathbf{S 3}(6.07 \mathrm{~g}, 24.8 \mathrm{mmol}, 1 \mathrm{eq}$.) in a mixture of DMSO ($24 \mathrm{~mL}, 1$ $\mathrm{mL} / \mathrm{mmol} \mathrm{S3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(96 \mathrm{~mL}, 4 \mathrm{~mL} / \mathrm{mmol} \mathrm{S3})$ was added NEt_{3} ($13.8 \mathrm{~mL}, 99.3 \mathrm{mmol}, 4 \mathrm{eq}$.) and the $\mathrm{Py} \cdot \mathrm{SO}_{3}$ complex ($7.9 \mathrm{~g}, 49.7 \mathrm{mmol}, 2$ eq.) at $0{ }^{\circ} \mathrm{C}$. After 10 min , the ice bath was removed and the mixture was stirred at room temperature until TLC indicated complete
consumption of the starting material ($1-4 \mathrm{~h}$). The reaction mixture was then diluted with 200 mL water. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $50 / 1$ to $10 / 1$) afforded 10 ($5.53 \mathrm{~g}, 22.8 \mathrm{mmol}, 92 \%$) as a colorless liquid: $\mathrm{R}_{f} 0.66$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.03$ (s, 3 H), $0.00(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=0.3 \mathrm{~Hz}, 3 \mathrm{H}\right)$, 2.36-2.46 (m, 1 H), 4.39 (dd, $\left.J_{1}=7.0 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.34-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.67(\mathrm{~m}, 1$ H), $9.72(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right), 8.6\left(\mathrm{CH}_{3}\right)$, $17.4\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 25.7\left(3 \times \mathrm{CH}_{3}\right), 52.9(\mathrm{CH}), 73.8(\mathrm{CH}), 127.4(\mathrm{CH}=), 131.4(\mathrm{CH}=), 204.8$ $(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1250, 1730, 2860-2960 cm^{-1}; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 64.41$; H 10.81, Found: C, 64.33; H, 10.99; $[\alpha]^{25}{ }_{\mathrm{D}}-48.1$ (c 1.52, CHCl_{3}).
$(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}$

Acetoxy phosphonate 11: Diethyl phosphite ($18.7 \mathrm{~mL}, 145 \mathrm{mmol}, 1$ eq.) was dissolved in toluene ($34 \mathrm{~mL}, 0.23 \mathrm{~mL} / \mathrm{mmol}$). Triethylamine ($60.5 \mathrm{~mL}, 435 \mathrm{mmol}, 3$ eq.) was added at $0{ }^{\circ} \mathrm{C}$ over a period of 5 min . A commercially available solution of ethyl glyoxalate in toluene (28.7 $\mathrm{mL}, 50 \%$ in toluene, $145 \mathrm{mmol}, 1 \mathrm{eq}$.) was then added. The orange-red mixture was stirred for 1 h at room temperature. Freshly distilled acetic anhydride ($13.7 \mathrm{~mL}, 145 \mathrm{mmol}, 1 \mathrm{eq}$.$) was$ subsequently added at $0^{\circ} \mathrm{C}$. The ice bath was then removed and the solution stirred for 12 h at room temperature. The reaction was quenched by the addition of aqueous $2 \mathrm{~N} \mathrm{HCl}(100-140 \mathrm{~mL})$ until pH 6 was reached. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $1 / 1$ to ethyl acetate) afforded $11(39.96 \mathrm{~g}, 142 \mathrm{mmol}, 98 \%)$ as a yellow oil: $\mathrm{R}_{f} 0.7$ (acetone, KMnO_{4} staining); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.18-1.30 (m, 9 H), 2.12 ($\mathrm{s}, 3 \mathrm{H}$), 4.08-4.25 (m, 6 H), 5.32 (d, J = 16.8 Hz, 1 H).

Enol acetate 12: To dry lithium chloride ($2.58 \mathrm{~g}, 60.8 \mathrm{~mol}, 1.5 \mathrm{eq}$.) was added a solution of the phosphonate 11 ($17.15 \mathrm{~g}, 60.8 \mathrm{~mol}, 1.5 \mathrm{eq}$.$) in THF (45.6 \mathrm{~mL}, 0.75 \mathrm{~mL} / \mathrm{mmol} 11$). The mixture was stirred until a clear yellow solution had appeared. The mixture was then cooled to $0^{\circ} \mathrm{C}$ and 1,1,3,3-tetramethylguanidine ($7.7 \mathrm{~mL}, 60.77 \mathrm{mmol}, 1.5$ eq.) was added dropwise to give a pale yellow slurry. After 20 min , a solution of the aldehyde 10 ($9.82 \mathrm{~g}, 40.51 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF $(40.5 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol} 10)$ was added. After 10 min , the ice bath was removed and the slurry was stirred until TLC indicated complete consumption of the starting material (about 1 h). The reaction was then quenched by adding sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $100 / 1$) afforded $12(13.68 \mathrm{~g}, 36.9 \mathrm{mmol}, 91 \%$, mixture of double bond isomers, $E: Z=4: 1$) as a colorless oil: $\mathrm{R}_{f}(E)$-12: 0.60 (hexane/ethyl acetate $\left.5 / 1\right) ; \mathrm{R}_{f}(Z) \mathbf{- 1 2 :} 0.58$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $4 / 1$ mixture of double bond isomers $\delta-0.2\left(\mathrm{~s}, 3 \mathrm{H}^{\text {major }}\right),-0.01\left(\mathrm{~s}, 3 \mathrm{H}^{\text {minor }}\right), 0.00\left(\mathrm{~s}, 3 \mathrm{H}^{\text {major }}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}^{\text {minor }}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}^{\text {major }}\right), 0.90$ $\left(\mathrm{s}, 9 \mathrm{H}^{\text {minor }}\right), 1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}^{\text {minor }}\right), 1.03\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}^{\text {major }}\right), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3+3$ H), $1.68(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3+3 \mathrm{H}), 2.17\left(\mathrm{~s}, 3 \mathrm{H}^{\text {major }}\right)$, $2.23\left(\mathrm{~s}, 3 \mathrm{H}^{\text {minor }}\right), 2.45-2.60\left(\mathrm{~m}, 1 \mathrm{H}^{\text {minor }}\right), 3.33$ $\left(\mathrm{m}, 1 \mathrm{H}^{\text {major }}\right), 3.93-3.98\left(\mathrm{~m}, 1 \mathrm{H}^{\text {minor }}\right), 4.01\left(\mathrm{dd}, J_{1}=J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}^{\text {major }}\right), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2+$ $2 \mathrm{H}), 5.36-5.47(\mathrm{~m}, 1+1 \mathrm{H}), 5.50-5.64(\mathrm{~m}, 1+1 \mathrm{H}), 5.81\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}^{\text {major }}\right), 6.47(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}^{\text {minor }}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $4 / 1$ mixture double bond isomers $\delta-5.0(1$ $\left.+1 \mathrm{CH}_{3}\right),-4.2\left(1+1 \mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}{ }^{\text {major }}\right), 14.1\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right), 14.8\left(1+1 \mathrm{CH}_{3}\right), 17.5\left(1+1 \mathrm{CH}_{3}\right)$, $18.1(1+1 \mathrm{C}), 20.3\left(1+1 \mathrm{CH}_{3}\right), 25.8\left(3+3 \mathrm{CH}_{3}\right), 38.2\left(\mathrm{CH}^{\text {major }}\right), 38.3\left(\mathrm{CH}^{\text {minor }}\right), 61.0\left(\mathrm{CH}_{2}^{\text {major }}\right)$, $61.3\left(\mathrm{CH}_{2}{ }^{\text {minor }}\right), 75.9\left(\mathrm{CH}^{\text {minor }}\right), 76.5\left(\mathrm{CH}^{\text {major }}\right), 126.5\left(\mathrm{CH}={ }^{\text {major }}\right), 126.7\left(\mathrm{CH}={ }^{\text {minor }}\right), 132.2(1+1$ $\mathrm{CH}=)$, $134.2\left(\mathrm{CH}={ }^{\text {minor }}\right), 136.6\left(\mathrm{CH}={ }^{\text {major }}\right), 136.9\left(\mathrm{C}={ }^{\text {major }}\right)$, $137.4\left(\mathrm{C}={ }^{\text {minor }}\right), 161.9(1+1 \mathrm{C}=\mathrm{O})$, $169.4\left(1+1 \mathrm{C}=\mathrm{O}\right.$); IR (in substance) v $1205,1225,1730,1770,2860-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}$: C, 61.58; H 9.25, Found: C, 61.75; H, 9.36.

α-Keto ester 7: To a solution of (E)- and (Z)-12 (7.05 g, $19.13 \mathrm{mmol}, 1$ eq.) in MeOH (76.5 $\mathrm{mL}, 4 \mathrm{~mL} / \mathrm{mmol} 12$) was added potassium carbonate ($264 \mathrm{mg}, 1.91 \mathrm{mmol}, 0.1$ eq.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until TLC indicated complete consumption of $(E)-\mathbf{1 2} .^{2}$

The reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were then separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 10/1) afforded $7(4.46 \mathrm{~g}, 14.18$ $\mathrm{mmol}, 74 \%$) as a colorless oil: $\mathrm{R}_{f} 0.63$ (heptane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.21-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.51\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.03\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=16.7 \mathrm{~Hz}, J_{2}=6.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), $3.96\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $5.34-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.64(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C})$, $25.8\left(3 \times \mathrm{CH}_{3}\right), 36.4(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{CH}_{3}\right), 76.9(\mathrm{CH}), 127.4(\mathrm{CH}=), 131.3(\mathrm{CH}=), 161.7$ (C=O), $194.0(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1730, 1740, 1755, 2860-2960 cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$: C, 61.11; H 9.61, Found: C, 61.09; H, 9.79; $[\alpha]^{25}{ }_{\mathrm{D}}-1.2\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right)$.

[^1]Cyclopentanes 6 and 13: Four pressure tubes ${ }^{3}$ were each charged with a solution of 1.5 g keto ester $7(6 \mathrm{~g}, 19.08 \mathrm{mmol})$ in decane ($25 \mathrm{~mL}, 5.2 \mathrm{~mL} / \mathrm{mmol} 7$) and sealed. The tubes were heated with an oil bath for 5 days to $180-190^{\circ} \mathrm{C}$ (bath temperature). All batches were then combined and the decane was evaporated under reduced pressure. The crude product was purified by flash chromatography (heptane to heptane/ethyl acetate $50 / 1$) to afford $6(3.96 \mathrm{~g}, 12.59 \mathrm{mmol}, 66 \%)$ and 13 ($864 \mathrm{mg}, 2.75 \mathrm{mmol}, 14 \%$) as colorless oils: $\mathbf{6}$: $\mathrm{R}_{f} 0.45$ (heptane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.01$ ($\mathrm{s}, \mathrm{TBS}-\mathrm{CH}_{3}, 3 \mathrm{H}$), 0.04 ($\mathrm{s}, \mathrm{TBS}-\mathrm{CH}_{3}, 3 \mathrm{H}$), $0.85(\mathrm{~s}, 3 \times$ TBS$\left.\mathrm{CH}_{3}, 9 \mathrm{H}\right), 1.09\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 16-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.42\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1\right.$ $\left.\mathrm{H}^{R e}\right), 1.92-2.04(\mathrm{~m}, 2-\mathrm{CH}, 1 \mathrm{H}), 2.54\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{S i}\right), 2.63\left(\mathrm{dd}, J_{1}\right.$ $=J_{2}=9.5 \mathrm{~Hz}, 4-\mathrm{CH}, 1 \mathrm{H}$), 3.06 (br. s, $15-\mathrm{OH}, 1 \mathrm{H}$), $3.72\left(\mathrm{dd}, J_{1}=J_{2}=8.8 \mathrm{~Hz}, 3-\mathrm{CH}, 1 \mathrm{H}\right), 3.76$ $\left(\mathrm{s},-\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 5.04\left(\mathrm{dd}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 6-\mathrm{CH}_{2}=, 1 \mathrm{H}\right), 5.15\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 6-\mathrm{CH}_{2}=, 1 \mathrm{H}$), 5.76 (ddd, $\left.J_{1}=17.2 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, J_{3}=9.6 \mathrm{~Hz}, 5-\mathrm{CH}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.1\left(\mathrm{TBS}-\mathrm{CH}_{3}\right),-3.5\left(\mathrm{TBS}-\mathrm{CH}_{3}\right), 18.0(\mathrm{TBS}-\mathrm{C}), 18.6\left(16-\mathrm{CH}_{3}\right), 25.9(3 \times$ TBS- CH_{3}), $40.0(2-\mathrm{CH}), 42.9\left(1-\mathrm{CH}_{2}\right), 52.8(4-\mathrm{CH}), 61.5\left(-\mathrm{OCH}_{3}\right), 80.3(15-\mathrm{C}), 82.7(3-\mathrm{CH})$, $119.7\left(6-\mathrm{CH}_{2}=\right), 134.4(5-\mathrm{CH}=), 176.5(14-\mathrm{C}=\mathrm{O})$; IR (in substance) v 830, 1120, 1250, 1730, $2860-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4}$ Si: C, 61.11; H 9.61, Found: C, 61.29; H, 9.86; $[\alpha]^{25}{ }_{\mathrm{D}}$ -9.6 (c 1.04, CHCl_{3});

Table S1. NOESY $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ studies on 6 .

entry	NOE observed between		conclusion
1	$1-\mathrm{H}^{R e}(1.42 \mathrm{ppm})$	$3-\mathrm{H}(3.72 \mathrm{ppm})$	$1-\mathrm{H}^{R e}$ and $3-\mathrm{H}$ are cis
2	$1-\mathrm{H}^{R e}(1.42 \mathrm{ppm})$	$5-\mathrm{H}(5.76 \mathrm{ppm})$	$1-\mathrm{H}^{R e}$ and $\mathrm{CH}=\mathrm{CH}_{2}$ are cis
3	$2-\mathrm{H}(1.92-2.04 \mathrm{ppm})$	$4-\mathrm{H}(2.63 \mathrm{ppm})$	$2-\mathrm{H}$ and $4-\mathrm{H}$ are cis
4	$15-\mathrm{OH}(3.06 \mathrm{ppm})$	$5-\mathrm{H}(5.76 \mathrm{ppm})$	$15-\mathrm{OH}$ and $\mathrm{CH}=\mathrm{CH}_{2}$ are cis
5	$3-\mathrm{H}(3.72 \mathrm{ppm})$	$5-\mathrm{H}(5.76 \mathrm{ppm})$	$3-\mathrm{H}$ and $\mathrm{CH}=\mathrm{CH}_{2}$ are cis

13: $\mathrm{R}_{f} 0.42$ (heptane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03$ (s, $\mathrm{TBS}^{2} \mathrm{CH}_{3}, 3 \mathrm{H}$), $0.6\left(\mathrm{~s}, \mathrm{TBS}-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 0.87(\mathrm{~s}, 3 \times$ TBS-CH $3,9 \mathrm{H}), 1.05\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 16-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.84$

[^2]$\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{\mathrm{Re}}\right), 2.25-2.37(\mathrm{~m}, 2-\mathrm{CH}, 1 \mathrm{H}), 2.36\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.4\right.$ $\left.\mathrm{Hz}, J_{2}=8.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{S i}\right), 2.87\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 4-\mathrm{CH}, 1 \mathrm{H}\right), 3.74\left(\mathrm{~s},-\mathrm{OCH}_{3}, 3\right.$ H), 3.88 (dd, $J_{1}=4.7 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 3-\mathrm{CH}, 1 \mathrm{H}$), 4.03 (br. s, $15-\mathrm{OH}, 1 \mathrm{H}$), $5.12\left(\mathrm{dd}, J_{1}=17.4\right.$ $\mathrm{Hz}, J_{2}=1.7 \mathrm{~Hz}, 6-\mathrm{CH}_{2}=, 1 \mathrm{H}$), $5.17\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 6-\mathrm{CH}_{2}=, 1 \mathrm{H}\right), 5.99\left(\mathrm{ddd}, J_{1}=\right.$ $\left.17.3 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=9.0 \mathrm{~Hz}, 5-\mathrm{CH}=, 1 \mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0$ (TBS-$\left.\mathrm{CH}_{3}\right),-4.8\left(\mathrm{TBS}-\mathrm{CH}_{3}\right), 17.9(\mathrm{TBS}-\mathrm{C}), 19.7\left(16-\mathrm{CH}_{3}\right), 25.7\left(3 \times \mathrm{TBS}-\mathrm{CH}_{3}\right), 41.4(2-\mathrm{CH}), 46.9(1-$ $\left.\mathrm{CH}_{2}\right), 52.4\left(-\mathrm{OCH}_{3}\right), 55.7(4-\mathrm{CH}), 84.4(3-\mathrm{CH}), 85.5(15-\mathrm{C}), 118.7\left(6-\mathrm{CH}_{2}=\right)$, $132.3(5-\mathrm{CH}=)$, 174.2 (14-C=O); IR v (in substance) $840,1250,1730,2860-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 61.11$; H 9.61, Found: C, 61.27; H, 9.87; $[\alpha]^{25}{ }_{\mathrm{D}}-18.3$ (c 1.03, CHCl_{3}).
Table S2. NOESY $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ studies on 13.

Silyl ether S4: To a solution of 6 ($2 \mathrm{~g}, 6.36 \mathrm{mmol}, 1 \mathrm{eq}$.) in DMF ($6.4 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol} \mathbf{6}$) was added imidazole ($1.08 \mathrm{~g}, 15.9 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and $\mathrm{TMSCl}\left(1 \mathrm{~mL}, 12.72 \mathrm{mmol}, 2\right.$ eq.) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 2 h at room temperature. The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate

20/1) afforded S4 ($2.45 \mathrm{~g}, 6.32 \mathrm{mmol}, 99 \%$) as a colorless oil: $\mathrm{R}_{f} 0.75$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.12(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.8 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.56(\mathrm{~m}, 2$ H), $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.58\left(\mathrm{dd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.86-4.97(\mathrm{~m}, 2 \mathrm{H}), 5.65\left(\mathrm{ddd}, J_{1}=17.1\right.$ $\left.\mathrm{Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.1\left(\mathrm{CH}_{3}\right),-3.5\left(\mathrm{CH}_{3}\right), 1.9$ $\left(3 \times \mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 19.5\left(\mathrm{CH}_{3}\right), 25.9\left(3 \times \mathrm{CH}_{3}\right), 39.9(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 62.8(\mathrm{CH})$, $83.4(\mathrm{CH}), 83.8(\mathrm{C}), 118.3\left(\mathrm{CH}_{2}=\right), 135.3(\mathrm{CH}=), 175.1(\mathrm{C}=\mathrm{O})$; IR (in substance) v 840, 1250, 1750, 2860-2960 cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 59.02; H, 9.91, Found: C, 59.01; H, 9.71; $[\alpha]^{25}{ }_{\mathrm{D}}-11.9\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$.

Phosphonate 4: Diethyl ethylphosphonate ($6.7 \mathrm{~mL}, 41.2 \mathrm{mmol}, 4 \mathrm{eq}$.) was dissolved in dry THF ($120 \mathrm{~mL}, 2.9 \mathrm{~mL} / \mathrm{mmol} \mathrm{S4}$) and treated with $n-\mathrm{BuLi}(19.1 \mathrm{~mL}, 2.05 \mathrm{M}$ in hexane, 39.14 mmol, 3.8 eq.) at $-78^{\circ} \mathrm{C}$. Silyl ether $\mathbf{S} 4(3.99 \mathrm{~g}, 10.3 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in THF (20 mL , $1.9 \mathrm{~mL} / \mathrm{mmol}$ S4) and cooled to $0^{\circ} \mathrm{C}$. The solution of the lithiated phosphonate was then added to the solution of the ester S4 dropwise via cannula. After TLC-control indicated complete consumption of the starting material $(0.5-1 \mathrm{~h})$, the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $5 / 1$) afforded $4(5.36 \mathrm{~g}, 10.3$ $\mathrm{mmol}, 99 \%, 2 / 1$ mixture of diastereomers) as a colorless oil: $\mathrm{R}_{f} 0.6$ (hexane/ethyl acetate $2 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $2 / 1$ mixture of diastereomers $\delta-0.05\left(\mathrm{~s}, 3 \mathrm{H}^{\text {minor }}\right),-0.04(\mathrm{~s}, 3$ $\left.\mathrm{H}^{\text {major }}\right), 0.00\left(\mathrm{~s}, 3 \mathrm{H}^{\text {minor }}\right), 0.01\left(\mathrm{~s}, 3 \mathrm{H}^{\text {major }}\right) 0.10(\mathrm{~s}, 6+6 \mathrm{H}), 0.18(\mathrm{~s}, 3+3 \mathrm{H}), 0.82\left(\mathrm{~s}, 9 \mathrm{H}^{\text {minor }}\right)$, $0.83\left(\mathrm{~s}, 9 \mathrm{H}^{\text {major }}\right), 1.02\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}^{\text {minor }}\right), 1.07\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}^{\text {major }}\right), 1.24-1.34(\mathrm{~m}, 10+9$ H), $1.40\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}, 1 \mathrm{H}^{\text {minor }}\right), 1.80-1.96(\mathrm{~m}, 1+1 \mathrm{H}), 2.48\left(\mathrm{dd}, J_{1}=J_{2}=\right.$ $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}^{\text {major }}\right), 2.50\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}^{\text {minor }}\right), 2.55\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1\right.$ $\left.H^{\text {minor }}\right), 2.89\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}^{\text {major }}\right), 3.49\left(\mathrm{dq}, J_{1}=18.7 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}^{\text {major }}\right), 3.55\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}^{\text {minor }}\right), 3.63\left(\mathrm{dd}, J_{1}=J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}^{\text {major }}\right), 3.82\left(\mathrm{dq}, J_{1}=\right.$ $\left.19.5 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}^{\text {minor }}\right)$, 4.02-4.19 (m, $\left.4+4 \mathrm{H}\right), 4.96-5.09(\mathrm{~m}, 2+2 \mathrm{H}), 5.65-5.75(\mathrm{~m}, 1+$
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $2 / 1$ mixture of diasteromers $\delta-4.1\left(\mathrm{CH}_{3}{ }^{\text {major }}\right),-4.0$ $\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right),-3.4\left(\mathrm{CH}_{3}{ }^{\text {major }}\right),-3.3\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right), 2.3\left(3 \times \mathrm{CH}_{3}{ }^{\text {major }}\right), 2.4\left(3 \times \mathrm{CH}_{3}{ }^{\text {minor }}\right), 13.5\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right)$, $13.6\left(\mathrm{CH}_{3}^{\text {major }}\right), 16.4\left(\mathrm{CH}_{3}{ }^{\text {major }}\right), 16.4\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right), 17.7\left(\mathrm{CH}_{3}{ }^{\text {minor }}\right), 18.0(1+1 \mathrm{C}), 19.0\left(\mathrm{CH}_{3}{ }^{\text {major }}\right)$, $25.9\left(3+3 \mathrm{CH}_{3}\right), 38.5\left(\mathrm{CH}^{\text {minor }}\right.$ or $\left.\mathrm{CH}_{3}^{\text {minor }}\right)$, $39.2\left(\mathrm{CH}^{\text {major }}\right.$ or $\left.\mathrm{CH}_{3}^{\text {major }}\right)$, $39.6\left(\mathrm{CH}^{\text {minor }}\right.$ or $\left.\mathrm{CH}_{3}{ }^{\text {minor }}\right)$, $40.3\left(\mathrm{CH}^{\text {major }}\right.$ or $\left.\mathrm{CH}_{3}{ }^{\text {major }}\right), 40.6\left(\mathrm{CH}^{\text {major }}\right.$ or $\left.\mathrm{CH}_{3}{ }^{\text {major }}\right), 40.8\left(\mathrm{CH}^{\text {minor }}\right.$ or $\left.\mathrm{CH}_{3}{ }^{\text {minor }}\right), 42.0$ $\left(\mathrm{CH}_{2}^{\text {major }}\right), 42.9\left(\mathrm{CH}_{2}^{\text {minor }}\right), 60.8\left(\mathrm{CH}^{\text {major }}\right), 61.5\left(\mathrm{CH}^{\text {minor }}\right), 62.1\left(\mathrm{CH}_{2}^{\text {minor }}\right), 62.2\left(\mathrm{CH}_{2}^{\text {major }}\right), 62.4$ $\left(\mathrm{CH}_{2}{ }^{\text {minor }}\right), 62.8\left(\mathrm{CH}_{2}^{\text {major }}\right), 82.3\left(\mathrm{CH}^{\text {minor }}\right), 83.2\left(\mathrm{CH}^{\text {major }}\right), 87.9\left(\mathrm{C}^{\text {minor }}\right), 89.1\left(\mathrm{C}^{\text {major }}\right), 118.7$ $\left(\mathrm{CH}_{2}={ }^{\text {minor }}\right)$, $119.0\left(\mathrm{CH}_{2}={ }^{\text {major }}\right)$, $135.3\left(\mathrm{CH}={ }^{\text {major }}\right)$, $135.4\left(\mathrm{CH}={ }^{\text {minor }}\right)$, $206.5\left(\mathrm{C}=\mathrm{O}^{\text {major }}\right), 210.6$ $\left(\mathrm{C}=\mathrm{O}^{\text {minor }}\right.$); IR (in substance) $v 835,1025,1250,1715,2850-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{O}_{6} \mathrm{PSi}_{2}$: C, 55.35 ; H, 9.48, Found: C, 55.41; H, 9.47.

Synthesis of the crystalline Diol S6

TBSȮ
6

Silyl ether S5: To a solution of $\mathbf{6}(1.77 \mathrm{~g}, 5.65 \mathrm{mmol}, 1 \mathrm{eq}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL}, 2 \mathrm{~mL} / \mathrm{mmol} \mathbf{6})$ was added 2,6-lutidine ($1.45 \mathrm{~mL}, 12.43 \mathrm{mmol}, 2.2$ eq.) and TBSOTf ($1.56 \mathrm{~mL}, 6.78 \mathrm{mmol}, 1.2$ eq.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at room temperature. The reaction then was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (heptane to heptane/ethyl acetate $100 / 1)$ afforded $\mathbf{S 5}(2.34 \mathrm{~g}, 5.45 \mathrm{mmol}, 96 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.70$ (heptane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.11(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.9\right.$ $\left.\mathrm{Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.78-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.57(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.63\left(\mathrm{dd}, J_{1}=J_{2}=\right.$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91\left(\mathrm{dd}, J_{1}=22.2 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.68\left(\mathrm{ddd}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, J_{3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.1$ $\left(\mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right),-3.3\left(\mathrm{CH}_{3}\right),-3.1\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 18.4\left(\mathrm{CH}_{3}\right), 18.7(\mathrm{C}), 25.9\left(3 \times \mathrm{CH}_{3}\right), 26.1$ $\left(3 \times \mathrm{CH}_{3}\right), 40.0(\mathrm{CH}), 44.7\left(\mathrm{CH}_{2}\right), 51.8(\mathrm{CH}), 62.8\left(\mathrm{CH}_{3}\right), 82.5(\mathrm{CH}), 83.0(\mathrm{C}), 118.5\left(\mathrm{CH}_{2}=\right)$, $135.3(\mathrm{CH}=)$, $175.2(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1750,2850-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 61.63; H, 10.34, Found: C, 61.34; H, 10.53; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}-7.0\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$.

Diol S6: To a solution of S5 ($2.63 \mathrm{~g}, 6.13 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ($30 \mathrm{~mL}, 5 \mathrm{~mL} / \mathrm{mmol}$ S5) was added $\mathrm{LiAlH}_{4}\left(512 \mathrm{mg}, 13.49 \mathrm{mmol}, 2.2\right.$ eq.) at $0{ }^{\circ} \mathrm{C}$. The ice bath was removed and the solution was stirred for 30 min at room temperature. The reaction was then quenched by the slow addition of sat. aqueous $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (heptane/ethyl acetate $3 / 1$) afforded S6 ($849 \mathrm{mg}, 2.11 \mathrm{mmol}, 35 \%$) as white crystals: $\mathrm{R}_{f} 0.40$ (heptane/ethyl acetate $1 / 2$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.03$ (s, 3 H), $0.00(\mathrm{~s}, 3 \mathrm{H}), 0.76$ (s, 9 H), 1.01 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.27 $\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60-1.68(\mathrm{~m}, 3 \mathrm{H}), 2.05\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.12\left(\mathrm{dd}, J_{1}=J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.33\left(\mathrm{~d}^{\mathrm{AB}}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.38\left(\mathrm{~d}^{\mathrm{AB}}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.48\left(\mathrm{dd}, J_{1}=J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.99-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.89(\mathrm{~m}, 1 \mathrm{H})$). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-2.3\left(\mathrm{CH}_{3}\right),-2.2\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 25.9\left(3 \times \mathrm{CH}_{3}\right), 39.3(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right)$, $60.4(\mathrm{CH}), 69.8\left(\mathrm{CH}_{2}\right), 81.5(\mathrm{CH}), 82.1(\mathrm{C}), 117.8\left(\mathrm{CH}_{2}=\right), 136.9(\mathrm{CH}=)$; IR (in substance) v 770 , 830, 1050, $1260 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 62.89$; H 10.55, Found: C, 62.69; H, $10.80 ;[\alpha]^{25}-24.7$ (c $1.44, \mathrm{CHCl}_{3}$); mp: $115.5^{\circ} \mathrm{C}$.

Figure S1. Crystal structure of S6. See the enclosed cif-file for details. The following crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 295284.

Iodide S7 ${ }^{4}$: To a solution of 2-iodo ethanol ($8.6 \mathrm{~g}, 50 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{~mL}, 1$ $\mathrm{mL} / \mathrm{mmol}$) was added imidazole ($4.1 \mathrm{~g}, 60 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and \mathrm{TESCl}(8.9 \mathrm{~mL}, 52.5 \mathrm{mmol}, 1.05$ eq.) at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h at room temperature. The reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Filtration through silica gel (hexane/ethyl acetate 20/1) afforded $\mathbf{S 7}$ ($14.3 \mathrm{~g}, 50 \mathrm{mmol}, 99 \%$) as a colorless oil: $\mathrm{R}_{f} 0.85$ (hexane/ethyl acetate $10 / 1$, KMnO_{4} staining); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.41(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.76(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9$ H), $3.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Ester S8: To a stirred solution of LDA [prepared in situ from diisopropylamine ($10 \mathrm{~mL}, 70$ mmol, 1.4 eq.) and $n-\operatorname{BuLi}(25 \mathrm{~mL}, 2.18 \mathrm{M}$ in hexane, $55 \mathrm{~mol}, 1.1 \mathrm{eq})$.$] in THF (100 \mathrm{~mL}, 2$ $\mathrm{mL} / \mathrm{mmol}$ S7) was added ethyl isobutyrate ($9.4 \mathrm{~mL}, 70 \mathrm{mmol}, 1.4 \mathrm{eq}$.) at $-78^{\circ} \mathrm{C}$. After 20 min , a solution of S7 (14.3 g, $50 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ($20 \mathrm{~mL}, 0.4 \mathrm{~mL} / \mathrm{mmol}$ S7) was added dropwise.

[^3]The dry ice bath was removed and the reaction mixture was stirred until TLC-control indicated complete consumption of the starting material (the iodide is UV active). The reaction was then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $100 / 1$) afforded $\mathbf{S 8}(13.72 \mathrm{~g}, 50 \mathrm{mmol}, 99 \%)$ as a colorless liquid: $\mathrm{R}_{f} 0.75$ (hexane/ethyl acetate $10 / 1, \mathrm{KMnO}_{4}$ staining); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.46(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}$ $=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.3\left(3 \times \mathrm{CH}_{2}\right), 6.7\left(3 \times \mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right), 25.4\left(2 \times \mathrm{CH}_{3}\right), 40.5(\mathrm{C}), 42.9\left(\mathrm{CH}_{2}\right), 59.6\left(\mathrm{CH}_{2}\right), 60.2\left(\mathrm{CH}_{2}\right), 177.6(\mathrm{C}=\mathrm{O})$; IR (in substance) $\vee 725,1100,1150,1750,2880,2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 61.26 ; \mathrm{H}$, 11.02, Found: C, 61.43; H, 11.14 .

Aldehyde S9: To a solution of $\mathbf{S 8}\left(1.5 \mathrm{~g}, 5.47 \mathrm{mmol}, 1\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol}$ S8) was added DIBAH ($12 \mathrm{~mL}, 12 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.2$ eq.) at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction was carefully quenched by the addition of 30 mL methanol and 60 mL sat. aqueous Rochelle salt solution and then stirred for 1 h at room temperature. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. The crude alcohol was used for the next step without purification.

To a solution of the crude alcohol ($5.47 \mathrm{mmol}, 1 \mathrm{eq}$.) in a mixture of DMSO ($3 \mathrm{~mL}, 0.55$ $\mathrm{mL} / \mathrm{mmol} \mathrm{S8})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}, 1.1 \mathrm{~mL} / \mathrm{mmol} \mathrm{S8})$ was added $\mathrm{NEt}_{3}(3.05 \mathrm{~mL}, 21.88 \mathrm{mmol}, 4$ eq.) and the $\mathrm{Py} \cdot \mathrm{SO}_{3}$ complex ($1.74 \mathrm{~g}, 10.94 \mathrm{mmol}, 2 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. After 10 min , the ice bath was removed and the mixture was stirred at room temperature. When TLC indicated complete consumption of the starting material ($1-4 \mathrm{~h}$), the reaction mixture was diluted with water. The layers were then separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $100 / 1$ to $20 / 1$) afforded $\mathbf{S 9}(1.01 \mathrm{~g}, 4.38 \mathrm{mmol}, 80 \%$ two
steps) as a colorless liquid: $\mathrm{R}_{f} 0.63$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.46$ (q, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.2\left(3 \times \mathrm{CH}_{2}\right), 6.7\left(3 \times \mathrm{CH}_{3}\right), 21.5(2$ $\left.\times \mathrm{CH}_{3}\right), 41.0\left(\mathrm{CH}_{2}\right), 44.4(\mathrm{C}), 58.8\left(\mathrm{CH}_{2}\right), 205.3(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1100, 1730, 2880$2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 62.55 ; \mathrm{H}, 11.37$; Found: C, 62.71, H, 11.48.

Iodide S10a: ${ }^{5}$ To a solution of $\mathrm{PPh}_{3}(22.03 \mathrm{~g}, 84 \mathrm{mmol}, 1.05 \mathrm{eq}$.$) and imidazole (5.72 \mathrm{~g}, 84$ mmol, 1.05 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($200 \mathrm{~mL}, 2.5 \mathrm{~mL} / \mathrm{mmol}$ alcohol) was carefully added iodine (21.32 g , $84 \mathrm{mmol}, 1.05 \mathrm{eq}$.$) at 0^{\circ} \mathrm{C}$ (exothermic reaction). After $15 \mathrm{~min}, 3$-methyl-3-buten-1ol (8.11 mL , $80 \mathrm{mmol}, 1 \mathrm{eq}$.$) was added dropwise (exothermic reaction). The ice bath was removed and the$ suspension was stirred for 4 h at room temperature. $\mathrm{The}^{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { was almost completely removed }}$ under reduced pressure (880 mbar, $40^{\circ} \mathrm{C}$) to provide an orange slurry which was then diluted with 400 mL pentane and filtered through a pad of celite. The solvents were removed under reduced pressure ($880 \mathrm{mbar}, 40^{\circ} \mathrm{C}$). Distillation ($45^{\circ} \mathrm{C}, 15-30 \mathrm{mbar}$, bath temperature $75^{\circ} \mathrm{C}$) afforded S10a ($12.78 \mathrm{~g}, 75.6 \mathrm{mmol}, 95 \%$) as a colorless liquid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.73(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$.

Iodide S10b: ${ }^{6}$ To a solution of $\mathrm{PPh}_{3}(11.01 \mathrm{~g}, 42 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and imidazole ($2.86 \mathrm{~g}, 42$ mmol, 1.05 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($100 \mathrm{~mL}, 2.5 \mathrm{~mL} / \mathrm{mmol}$ alcohol) was carefully added iodine (10.66 g , $42 \mathrm{mmol}, 1.05$ eq.) at $0{ }^{\circ} \mathrm{C}$ (exothermic reaction). After $15 \mathrm{~min}, 3$-buten- $1 \mathrm{ol}(3.48 \mathrm{~mL}, 40 \mathrm{mmol}$, 1 eq.) was added dropwise (exothermic reaction). The ice bath was removed and the suspension stirred for 4 h at room temperature. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was almost completely removed under reduced pressure ($880 \mathrm{mbar}, 40^{\circ} \mathrm{C}, \mathbf{S 1 0 b}$ is extremely volatile!) to provide an orange slurry which was diluted with 200 mL pentane and filtered through a pad of celite. The solvents were then removed under reduced pressure (880 mbar, $40^{\circ} \mathrm{C}$). Distillation $\left(25^{\circ} \mathrm{C}, 15-30 \mathrm{mbar}\right.$, bath temperature 50

[^4]${ }^{\circ}$ C) afforded iodide S10b ($4.6 \mathrm{~g}, 25.3 \mathrm{mmol}, 63 \%$) as a colorless liquid: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.61(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.82(\mathrm{~m}, 1$ H).

Alcohol S11a: A flask equipped with a reflux condenser was charged with a solution of S10a $\left(6.8 \mathrm{~g}, 34.69 \mathrm{mmol}, 5.8 \mathrm{eq}\right.$.) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 0.9 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 0 a})$. Magnesium turnings (656 mg , $27 \mathrm{mmol}, 4.5$ eq.) were added and the mixture was stirred until the exothermic reaction had subsided. Meanwhile, aldehyde $\mathbf{S 9}$ ($1.39 \mathrm{~g}, 6 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 5$ $\mathrm{mL} / \mathrm{mmol} \mathbf{S 9}$) in a separate flask. The solution of S9 was then treated with the Grignard reagent of S10a at $-78^{\circ} \mathrm{C}$. The reaction was then allowed to warm to room temperature and quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 5/1) afforded alcohol S11a ($1.44 \mathrm{~g}, 4.79 \mathrm{mmol}, 80 \%$) as a colorless oil: $\mathrm{R}_{f} 0.58$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.29\left(\mathrm{ddd}^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, J_{3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.38-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.32\left(\mathrm{ddd}^{\mathrm{AB}}, J_{1}=\right.$ $\left.14.6 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, J_{3}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.24\left(\mathrm{ddd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, J_{3}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.53-3.78 (m, 3 H), $4.70(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.2\left(3 \times \mathrm{CH}_{2}\right), 6.7\left(3 \times \mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{C}), 42.3\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{CH}_{2}\right)$, $76.9(\mathrm{CH}), 109.7\left(\mathrm{CH}_{2}=\right), 146.5(\mathrm{C}=)$; IR (in substance) v 1100, 2880-2960 cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.94 ; \mathrm{H}, 12.07$, Found: C, 67.70; H, 12.16.

Alcohol S11b: A flask equipped with a reflux condenser was charged with $\mathbf{S 1 0 b}(4.59 \mathrm{~g}, 25.23$ mmol., 1.7 eq.) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 1.2 \mathrm{~mL} / \mathrm{mmol} \mathbf{~ S 1 0 b})$. Magnesium turnings ($816 \mathrm{mg}, 33.6 \mathrm{mmol}$, 2 eq.) were added and the mixture was stirred until the exothermic reaction had subsided. Meanwhile, aldehyde $\mathbf{S 9}$ ($3.42 \mathrm{~g}, 14.84 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 2 \mathrm{~mL} / \mathrm{mmol}$

S9) in a separate flask. The solution of $\mathbf{S 9}$ was then treated with the Grignard reagent of S10b at $-78{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 5/1) afforded S11b ($3.03 \mathrm{~g}, 10.56 \mathrm{mmol}, 71 \%$) as a colorless oil: $\mathrm{R}_{f} 0.56$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.28\left(\mathrm{ddd}^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, J_{3}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.35-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 2.07\left(\mathrm{dq}^{\mathrm{AB}}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.28-2.43(\mathrm{~m}, 1 \mathrm{H}), 3.25\left(\mathrm{ddd}, J_{1}=\right.$ $\left.10.1 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.56-3.77(\mathrm{~m}, 3 \mathrm{H}), 4.90-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.92(\mathrm{~m}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.2\left(3 \times \mathrm{CH}_{2}\right), 6.7\left(3 \times \mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 37.5(\mathrm{C}), 42.4\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 114.3\left(\mathrm{CH}_{2}=\right), 139.3(\mathrm{CH}=)$; IR (in substance) $\vee 1100,2900,2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.07 ; \mathrm{H}, 11.96$, Found: C, 67.12; H, 12.03.

Silyl ether S12a: To a solution of S11a ($1.44 \mathrm{~g}, 4.79 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 1$ $\mathrm{mL} / \mathrm{mmol}$ S11a) was added imidazole ($652 \mathrm{mg}, 9.58 \mathrm{mmol}, 2$ eq.) and TESCl ($0.89 \mathrm{~mL}, 5.27$ mmol, 1.1 eq.) at $0{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 h at room temperature, the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 20/1) afforded S12a ($1.94 \mathrm{~g}, 4.68 \mathrm{mmol}, 98 \%$) as a colorless oil: $\mathrm{R}_{f} 0.88$ (hexane/ethyl acetate $10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}$), $0.86(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.34-$ $1.74(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.25(\mathrm{~m}, 1 \mathrm{H}), 3.27\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=\right.$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.77(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.4$ $\left(3 \times \mathrm{CH}_{2}\right), 5.7\left(3 \times \mathrm{CH}_{2}\right), 6.8\left(3 \times \mathrm{CH}_{3}\right), 7.1\left(3 \times \mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 31.1$ $\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 37.7(\mathrm{C}), 40.9\left(\mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right), 81.0(\mathrm{CH}), 109.5\left(\mathrm{CH}_{2}=\right), 146.4(\mathrm{C})$; IR (in
substance) v $1100,2880-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{Si}_{2}$: C, $66.60 ; \mathrm{H}, 12.15$, Found: C, 66.82; H, 12.24 .

Silyl ether S12b: To a solution of S11b ($1.01 \mathrm{~g}, 3.52 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL}, 1$ $\mathrm{mL} / \mathrm{mmol}$ S11b) was added imidazole ($480 \mathrm{mg}, 7.04 \mathrm{mmol}, 2$ eq.) and TESCl ($0.72 \mathrm{~mL}, 4.22$ mmol, 1.2 eq.) at $0{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 h at room temperature, the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 20/1) afforded S12b ($1.33 \mathrm{~g}, 3.33 \mathrm{mmol}, 95 \%$) as a colorless oil: $\mathrm{R}_{f} 0.88$ (hexane/ethyl acetate $10 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.61(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}$), $0.85(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.35-$ 1.49 (m, 2 H), 1.56-1.65 (m, 2 H), 1.92-2.01 (m, 1 H), 2.18-2.27 (m, 1 H), $3.27\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}\right.$, $\left.J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.94\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00\left(\mathrm{ddd}, J_{1}=\right.$ $\left.17.1 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.4\left(3 \times \mathrm{CH}_{2}\right), 5.7\left(3 \times \mathrm{CH}_{2}\right), 6.8\left(3 \times \mathrm{CH}_{3}\right), 7.1\left(3 \times \mathrm{CH}_{3}\right), 23.8$ $\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{C}), 41.0\left(\mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right), 80.5(\mathrm{CH}), 114.3$ $\left(\mathrm{CH}_{2}=\right), 139.0(\mathrm{CH}=)$; IR (in substance) v $1100,2880-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si}_{2}$: C, 65.93; H, 12.07, Found: C, 65.75; H, 12.15.

Aldehyde 5a: Oxalyl chloride ($1.25 \mathrm{~mL}, 14.32 \mathrm{mmol}, 4$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$, $1.4 \mathrm{~mL} / \mathrm{mmol}$ oxalyl chloride) and cooled to $-78{ }^{\circ} \mathrm{C}$. A mixture of DMSO ($2.03 \mathrm{~mL}, 28.64$ mmol, 8 eq.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 0.1 \mathrm{~mL} / \mathrm{mmol}$ DMSO) was then added dropwise. After 15 min at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathbf{S 1 2 a}(1.49 \mathrm{~g}, 3.58 \mathrm{mmol}, 1 \mathrm{eq}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol} \mathbf{~ S 1 2 a})$ was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over a period of 10 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. Triethylamine ($7.5 \mathrm{~mL}, 53.7 \mathrm{mmol}, 15$ eq.) was added at $-78^{\circ} \mathrm{C}$. The cooling
bath was removed and the mixture was allowed to warm to room temperature. Sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the layers were separated. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/triethylamine 50/1) afforded $5 \mathbf{5 a}(1.04 \mathrm{~g}$, $3.50 \mathrm{mmol}, 98 \%$) as a yellow oil: $\mathrm{R}_{f} 0.47$ (hexane/ethyl acetate $10 / 1$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.62(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.39-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.88-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.41$ $\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.71$ $(\mathrm{s}, 1 \mathrm{H}), 9.84(\mathrm{t}, \mathrm{J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.6\left(3 \times \mathrm{CH}_{2}\right), 7.1\left(3 \times \mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 31.3\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{C}), 51.7\left(\mathrm{CH}_{2}\right), 80.6(\mathrm{CH})$, $109.9\left(\mathrm{CH}_{2}=\right.$), $145.8(\mathrm{C}=), 203.5(\mathrm{C})$; IR (in substance) v 1720, $2850-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.39 ; \mathrm{H}, 11.48$, Found: C, $68.45 ; \mathrm{H}, 11.51$.
$\mathrm{ClC}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}, \mathrm{DMSO}$

S12b

5b (95\%)

Aldehyde 5b: Oxalyl chloride ($2.04 \mathrm{~mL}, 23.36 \mathrm{mmol}, 4$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$, $0.85 \mathrm{~mL} / \mathrm{mmol}$ oxalyl chloride) and cooled to $-78^{\circ} \mathrm{C}$. A mixture of DMSO ($3.32 \mathrm{~mL}, 46.73$ $\mathrm{mmol}, 8$ eq.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4.6 \mathrm{~mL}, 0.1 \mathrm{~mL} / \mathrm{mmol}$ DMSO) was added dropwise. After 15 min at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathbf{S 1 2 b}\left(2.34 \mathrm{~g}, 5.84 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.8 \mathrm{~mL}, 1 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 2 b})$ was added at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ over a period of 10 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. Triethylamine ($12.2 \mathrm{~mL}, 87.6 \mathrm{mmol}, 15$ eq.) was added at $-78^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture allowed warming to room temperature. Sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was then added and the layers were separated. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/triethylamine 50/1) afforded $\mathbf{5 b}(1.58 \mathrm{~g}$, $5.54 \mathrm{mmol}, 95 \%$) as a yellow oil: $\mathrm{R}_{f} 0.47$ (hexane/ethyl acetate $10 / 1$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.32-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.85-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.10\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1\right.$ H), 2.13-2.23 (m, 1 H), $2.35\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.33\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=2.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.88-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 9.78(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 5.4\left(3 \times \mathrm{CH}_{2}\right), 6.9\left(3 \times \mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 39.5(\mathrm{C})$, $51.7\left(\mathrm{CH}_{2}\right), 80.1(\mathrm{CH}), 114.6\left(\mathrm{CH}_{2}=\right), 138.4(\mathrm{CH}=), 203.0(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1720, 2880-2950 cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, $67.54 ; \mathrm{H}, 11.34$, Found: C, 67.67 ; H, 11.44.

Triene 14a: Phosphonate $4(1.47 \mathrm{~g}, 2.83 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was dissolved in THF ($14 \mathrm{~mL}, 5$ $\mathrm{mL} / \mathrm{mmol} 4)$ and placed in a pressure tube ${ }^{3}$. The solution was cooled to $0^{\circ} \mathrm{C}$ and n-BuLi (1.26 $\mathrm{mL}, 2.1 \mathrm{M}$ in hexane, 1.4 eq.) was added dropwise to give a light yellow reaction mixture. After 5 min of stirring, a solution of $\mathbf{5 a}(563 \mathrm{mg}, 1.89 \mathrm{mmol}, 1 \mathrm{eq}$.$) in THF (3.8 \mathrm{~mL}, 2 \mathrm{~mL} / \mathrm{mmol} 5 \mathrm{a}$) was added at $0{ }^{\circ} \mathrm{C}$. The pressure tube ${ }^{3}$ was sealed and heated to $70^{\circ} \mathrm{C}$ (bath temperature) for 12 h. Sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was then added and the layers were separated. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate $1 / 1$) afforded 14a ($885 \mathrm{mg}, 1.33 \mathrm{mmol}, 70 \%, 1 / 1$ mixture of C9-diastereomers) as a yellow oil: R_{f} 0.88 (hexane/ethyl acetate $10 / 1$) and recovered $4(656 \mathrm{mg}, 1.26 \mathrm{mmol}, 45 \%$ based on the initial amount of 4). 14a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-0.07$ (s, $3+$ $3 \mathrm{H}),-0.02(\mathrm{~s}, 3+3 \mathrm{H}), 0.00(\mathrm{~s}, 9+9 \mathrm{H}), 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$, $0.78(\mathrm{~s}, 3+3 \mathrm{H}), 0.80(\mathrm{~s}, 9+9 \mathrm{H}), 0.84(\mathrm{~s}, 3+3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9+9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3+3 \mathrm{H}), 1.23-1.34(\mathrm{~m}, 1+1 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 1+1 \mathrm{H}), 1.55-1.68(\mathrm{~m}, 1+1 \mathrm{H}), 1.69(\mathrm{~s}, 3+$ $3 \mathrm{H}), 1.72(\mathrm{~s}, 3+3 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 2+2 \mathrm{H}), 2.00-2.23(\mathrm{~m}, 3+3 \mathrm{H}), 2.44\left(\mathrm{dd}, J_{1}=J_{2}=8.8 \mathrm{~Hz}\right.$, $1+1 \mathrm{H}), 2.69\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=12.7 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 3.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45\left(\mathrm{dd}, J_{1}=J_{2}=8.5 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 4.64(\mathrm{~s}, 1+1 \mathrm{H}), 4.67(\mathrm{~s}, 1+1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}, 1+1 \mathrm{H}), 5.10\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 5.77-5.92(\mathrm{~m}, 1+1 \mathrm{H}), 6.80(\mathrm{dd}$, $\left.J_{1}=J_{2}=7.5 \mathrm{~Hz}, 1+1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-4.0$ $\left(1+1 \mathrm{CH}_{3}\right),-3.3\left(1+1 \mathrm{CH}_{3}\right), 1.9\left(3+3 \mathrm{CH}_{3}\right), 5.7\left(3+3 \mathrm{CH}_{2}\right), 7.2\left(3+3 \mathrm{CH}_{3}\right), 13.0(1+1$ $\left.\mathrm{CH}_{3}\right), 17.9(1+1 \mathrm{C}), 18.0\left(1+1 \mathrm{CH}_{3}\right), 22.6\left(1+1 \mathrm{CH}_{3}\right), 22.8\left(1+1 \mathrm{CH}_{3}\right), 23.8\left(1+1 \mathrm{CH}_{3}\right)$, $25.9\left(3+3 \mathrm{CH}_{3}\right), 31.1\left(1+1 \mathrm{CH}_{2}\right), 35.9\left(1+1 \mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 39.6(1+1 \mathrm{C})$, $40.6(1+1 \mathrm{CH}), 45.4\left(1+1 \mathrm{CH}_{2}\right), 62.5(1+1 \mathrm{CH}), 81.1(\mathrm{CH}), 81.2(\mathrm{CH}), 83.8(1+1 \mathrm{CH}), 86.9$ $(1+1 \mathrm{C}), 109.7\left(1+1 \mathrm{CH}_{2}=\right), 118.6\left(1+1 \mathrm{CH}_{2}=\right), 134.3(1+1 \mathrm{C}=), 136.3(1+1 \mathrm{CH}=), 142.3(1$
$+1 \mathrm{CH}=$), $146.2(1+1 \mathrm{C}=$), $204.7(1+1 \mathrm{C}=\mathrm{O})$; IR (in substance) $v 840,1250,1660,2880-2950$ cm^{-1}; Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{Si}_{3}$: C, 66.80; H, 10.91, Found: C, $66.88 ; \mathrm{H}, 10.83$.

Triene 14b: Phosphonate 4 ($918 \mathrm{mg}, 1.76 \mathrm{mmol}, 2$ eq.) was dissolved in THF ($5 \mathrm{~mL}, 2.8$ $\mathrm{mL} / \mathrm{mmol} 4)$ and placed in a pressure tube ${ }^{3}$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and n-BuLi (0.74 $\mathrm{mL}, 2.1 \mathrm{M}$ in hexane, 1.75 eq.) was added dropwise to afford a light yellow reaction mixture. After stirring for 5 min , a solution of $\mathbf{5 b}(251 \mathrm{mg}, 0.88 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ($1.8 \mathrm{~mL}, 2 \mathrm{~mL} / \mathrm{mmol}$ 5b) was added at $0{ }^{\circ} \mathrm{C}$. The pressure tube ${ }^{3}$ was then sealed and heated to $70{ }^{\circ} \mathrm{C}$ (bath temperature) for 12 h . Sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the layers were separated. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate $1 / 1$) afforded $\mathbf{1 4 b}(335 \mathrm{mg}, 0.51 \mathrm{mmol}, 58 \%, 1 / 1$ mixture of C9-diastereomers) as a yellow oil: $\mathrm{R}_{f} 0.89$ (hexane/ethyl acetate $10 / 1$) and recovered $4(583 \mathrm{mg}, 1.12 \mathrm{mmol}, 63 \%$ based on the initial amount of 4). 14b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers δ -0.04 (s, $3+3 \mathrm{H}$), 0.01 (s, $3+3 \mathrm{H}$), 0.02 (s, 9 H), 0.03 ($\mathrm{s}, 9 \mathrm{H}$), 0.62 ($\mathrm{q}, ~ J=7.9 \mathrm{~Hz}, 6 \mathrm{H}$), 0.63 (q, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 3+3 \mathrm{H}), 0.83(\mathrm{~s}, 9+9 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3+3 \mathrm{H}), 1.32\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=J_{2}=12.2 \mathrm{~Hz}, 1\right.$ $+1 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 1+1 \mathrm{H}), 1.56-1.65(\mathrm{~m}, 1+1 \mathrm{H}), 1.74(\mathrm{~s}, 3+3 \mathrm{H}), 1.85-2.03(\mathrm{~m}, 2+2 \mathrm{H})$, 2.08-2.28 (m, $3+3 \mathrm{H}$), $2.47\left(\mathrm{dd}, J_{1}=J_{2}=8.6 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 2.71\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=12.7 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}\right.$, $1+1 \mathrm{H}), 3.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48\left(\mathrm{dd}, J_{1}=J_{2}=8.5 \mathrm{~Hz}, 1+1 \mathrm{H}\right)$, 4.93-5.04 (m, $3+3 \mathrm{H}$), $5.13\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 5.76-5.91(\mathrm{~m}, 2+2 \mathrm{H})$, 6.80-6.85 (m, 1+1 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-4.0(1$ $\left.+1 \mathrm{CH}_{3}\right),-3.3\left(1+1 \mathrm{CH}_{3}\right), 1.9\left(3+3 \mathrm{CH}_{3}\right), 5.7\left(3+3 \mathrm{CH}_{2}\right), 7.2\left(3+3 \mathrm{CH}_{3}\right), 13.0\left(1+1 \mathrm{CH}_{3}\right)$, $17.9(1+1 \mathrm{C}), 18.0\left(1+1 \mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 23.8\left(1+1 \mathrm{CH}_{3}\right), 25.9\left(3+3 \mathrm{CH}_{3}\right)$, $31.7\left(1+1 \mathrm{CH}_{2}\right), 32.1\left(1+1 \mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 39.6(1+1 \mathrm{C}), 40.6(1+1 \mathrm{CH}), 45.4$ $\left(1+1 \mathrm{CH}_{2}\right), 62.5(1+1 \mathrm{CH}), 80.7(\mathrm{CH}), 80.8(\mathrm{CH}), 83.8(1+1 \mathrm{CH}), 86.9(1+1 \mathrm{C}), 114.5(1+1$ $\mathrm{CH}_{2}=$), 118.6 ($1+1 \mathrm{CH}_{2}=$), 134.3 ($1+1 \mathrm{C}=$), $136.3(1+1 \mathrm{CH}=), 138.9(1+1 \mathrm{CH}=), 142.3(1+$
$1 \mathrm{CH}=$), $204.7(1+1 \mathrm{C}=\mathrm{O})$; IR (in substance) v 1100, 1250, 1660, 2880-2950 cm^{-1}; Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{70} \mathrm{O}_{4} \mathrm{Si}_{3}$: C, 66.40; H, 10.83, Found: C, 66.54; H, 10.86 .

Alcohol S13a: To a solution of 14a ($72.9 \mathrm{mg}, 0.109 \mathrm{mmol}, 1 \mathrm{eq}$.$) in THF (2 \mathrm{~mL}, 18 \mathrm{~mL} / \mathrm{mmol}$ 14a) was slowly added a solution of TBAF in THF ($0.11 \mathrm{~mL}, 0.11 \mathrm{mmol}, 1 \mathrm{M}$ in THF, 1 eq.) at 0 ${ }^{\circ} \mathrm{C}$. Stirring for 5 min followed. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 20/1) afforded S13a (62.9 mg , $0.106 \mathrm{mmol}, 97 \%, 1 / 1$ mixture of C9-diastereomers) as a yellow oil: $\mathrm{R}_{f} 0.48$ (hexane/ethyl acetate 20/1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-0.02(\mathrm{~s}, 3+3 \mathrm{H}), 0.05$ $(\mathrm{s}, 3+3 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6+6 \mathrm{H}), 0.85(\mathrm{~s}, 9+9 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3$ H), $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9+9 \mathrm{H}), 1.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3+3 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 1+1$ H), $1.58\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 1.65-1.72(\mathrm{~m}, 1+1 \mathrm{H}), 1.72(\mathrm{~s}, 3+3 \mathrm{H}), 1.82$ $(\mathrm{s}, 3+3 \mathrm{H}), 1.88-1.97(\mathrm{~m}, 1+1 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 1+1 \mathrm{H}), 2.16-2.33(\mathrm{~m}, 3+3 \mathrm{H}), 2.70\left(\mathrm{dd}^{\mathrm{AB}}\right.$, $\left.J_{1}=14.6 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 2.84\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 3.36\left(\mathrm{dd}, J_{1}=6.3 \mathrm{~Hz}, J_{2}\right.$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38\left(\mathrm{dd}, J_{1}=6.2 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 4.20$ (br. s, 1 H), 4.21 (br. s, 1 H), $4.68(\mathrm{~s}, 1+1 \mathrm{H}), 4.71(\mathrm{~s}, 1+1 \mathrm{H}), 4.90\left(\mathrm{ddd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}=J_{3}=\right.$ $1.9 \mathrm{~Hz}, 1+1 \mathrm{H}), 5.07\left(\mathrm{ddd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=J_{3}=1.3 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 5.68-5.78(\mathrm{~m}, 1+1 \mathrm{H})$, 6.79-6.84 (m, 1+1 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-4.0(1$ $\left.+1 \mathrm{CH}_{3}\right),-3.4\left(1+1 \mathrm{CH}_{3}\right), 5.7\left(3+3 \mathrm{CH}_{2}\right), 7.2\left(3+3 \mathrm{CH}_{3}\right), 13.1\left(1+1 \mathrm{CH}_{3}\right), 17.9(1+1 \mathrm{C})$, $18.4\left(1+1 \mathrm{CH}_{3}\right), 22.6\left(1+1 \mathrm{CH}_{3}\right), 23.4\left(1+1 \mathrm{CH}_{3}\right), 23.9\left(1+1 \mathrm{CH}_{3}\right), 25.9\left(3+3 \mathrm{CH}_{3}\right), 31.2(1$ $\left.+1 \mathrm{CH}_{2}\right), 35.9\left(1+1 \mathrm{CH}_{2}\right), 37.5\left(1+1 \mathrm{CH}_{2}\right), 39.9(1+1 \mathrm{C}), 40.5(1+1 \mathrm{CH}), 45.3\left(1+1 \mathrm{CH}_{2}\right)$, $63.6(1+1 \mathrm{CH}), 80.5(\mathrm{CH}), 80.6(\mathrm{CH}), 82.5(1+1 \mathrm{CH}), 84.2(1+1 \mathrm{C}), 109.8\left(1+1 \mathrm{CH}_{2}=\right)$, $119.3\left(1+1 \mathrm{CH}_{2}=\right), 133.7(1+1 \mathrm{C}=), 134.8(1+1 \mathrm{CH}=), 141.9(\mathrm{CH}=), 142.0(\mathrm{CH}=), 146.0(1+$ $1 \mathrm{C}=$), $203.5\left(1+1 \mathrm{C}=\mathrm{O}\right.$); IR (in substance) $v 1100,1250,1650,2880-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{Si}_{2}$: C, 68.86; H, 10.88, Found: C, 69.00; H, 10.99.

Alcohol S13b: To a solution of $\mathbf{1 4 b}(1.696 \mathrm{~g}, 2.60 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ($13 \mathrm{~mL}, 5 \mathrm{~mL} / \mathrm{mmol}$ 14b) was slowly a solution of TBAF in THF ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1 \mathrm{M}$ in THF, 1 eq.). After stirring the reaction mixture for 5 min , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 20/1) afforded S13b ($1.367 \mathrm{~g}, 2.36 \mathrm{mmol}, 91 \%, 1 / 1$ mixture of C 9 -diastereomers) as a yellow oil: $\mathrm{R}_{f} 0.50$ (hexane/ethyl acetate $20 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers δ $-0.02(\mathrm{~s}, 3+3 \mathrm{H}), 0.05(\mathrm{~s}, 3+3 \mathrm{H}), 0.63(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6+6 \mathrm{H}), 0.85(\mathrm{~s}, 9+9 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9+9 \mathrm{H}), 1.14(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3+3$ H), 1.40-1.49 (m, $1+1 \mathrm{H}), 1.57\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 1.60-1.67(\mathrm{~m}, 1+1$ H), $1.81(\mathrm{~s}, 3+3 \mathrm{H}), 1.95-2.09(\mathrm{~m}, 2+2 \mathrm{H}), 2.20-2.32(\mathrm{~m}, 3+3 \mathrm{H}), 2.70\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}, J_{2}\right.$ $=10.1 \mathrm{~Hz}, 1+1 \mathrm{H}), 2.84\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 3.38\left(\mathrm{dd}, J_{1}=J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39$ $\left(\mathrm{dd}, J_{1}=J_{2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 4.21(\mathrm{br} . \mathrm{s}, 1+1 \mathrm{H}), 4.87-5.08$ $(\mathrm{m}, 4+4 \mathrm{H}), 5.67-5.84(\mathrm{~m}, 2+2 \mathrm{H}), 6.78-6.83(\mathrm{~m}, 1+1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of a $1 / 1$ mixture of diastereomers $\delta-4.0\left(1+1 \mathrm{CH}_{3}\right),-3.4\left(1+1 \mathrm{CH}_{3}\right), 5.7\left(3+3 \mathrm{CH}_{2}\right), 7.1(3+3$ $\left.\mathrm{CH}_{3}\right), 13.0\left(1+1 \mathrm{CH}_{3}\right), 17.9(1+1 \mathrm{C}), 18.4\left(1+1 \mathrm{CH}_{3}\right), 23.4\left(1+1 \mathrm{CH}_{3}\right), 23.9\left(1+1 \mathrm{CH}_{3}\right)$, $25.8\left(3+3 \mathrm{CH}_{3}\right), 31.7\left(1+1 \mathrm{CH}_{2}\right), 32.3\left(1+1 \mathrm{CH}_{2}\right), 37.5\left(1+1 \mathrm{CH}_{2}\right), 39.9(1+1 \mathrm{C}), 40.5(1+$ $1 \mathrm{CH}), 45.3\left(1+1 \mathrm{CH}_{2}\right), 63.6(1+1 \mathrm{CH}), 80.1(\mathrm{CH}), 80.2(\mathrm{CH}), 82.5(1+1 \mathrm{CH}), 84.2(1+1 \mathrm{C})$, $114.6\left(1+1 \mathrm{CH}_{2}=\right), 119.2\left(1+1 \mathrm{CH}_{2}=\right), 133.6(\mathrm{C}=), 133.7(\mathrm{C}=), 134.8(1+1 \mathrm{CH}=), 138.6(1+1$ $\mathrm{CH}=), 141.9(1+1 \mathrm{CH}=), 203.5(1+1 \mathrm{C}=\mathrm{O})$; IR (in substance) $v 1100,1650,2880-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2}: \mathrm{C}, 68.45 ; \mathrm{H}, 10.79$, Found: C, $68.59 ; \mathrm{H}, 10.84$.

Diol S14a: To a solution of S13a ($715 \mathrm{mg}, 1.2 \mathrm{mmol}, 1$ eq.) in EtOH ($20 \mathrm{~mL}, 16.6 \mathrm{~mL} / \mathrm{mmol}$ S13a) was added pyridinium p-toluenesulfonate ($\operatorname{PPTS}, 1.51 \mathrm{~g}, 6.03 \mathrm{mmol}, 5$ eq.) at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was stirred at room temperature until TLC indicated the consumption of almost the entire starting material (about 5 h). The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 5/1) afforded S14a ($388 \mathrm{mg}, 0.81 \mathrm{mmol}, 68 \%, 1 / 1 \mathrm{mixture}$ of C9-diastereomeres) as a clear oil: R_{f} 0.43 (hexane/ethyl acetate 5/1). A small amount of S13a that was contaminated with an inseparable impurity of unknown structure was also isolated. S14a: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of a $1 / 1$ mixture of diastereomers $\delta-0.03(\mathrm{~s}, 3+3 \mathrm{H}), 0.04(\mathrm{~s}, 3+3 \mathrm{H}), 0.84(\mathrm{~s}, 9+9 \mathrm{H}), 0.95(\mathrm{~s}$, $6+6 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3+3 \mathrm{H}), 1.44\left(\mathrm{dtdd}, J_{1}=16.3 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, J_{3}=5.6 \mathrm{~Hz}, J_{4}=2.5\right.$ $\mathrm{Hz}, 1+1 \mathrm{H}), 1.55\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 1.65-1.72(\mathrm{~m}, 2+2 \mathrm{H}), 1.72(\mathrm{~s}, 3+$ 3 H), $1.81(\mathrm{~s}, 3+3 \mathrm{H}), 2.01-2.12(\mathrm{~m}, 2+2 \mathrm{H}), 2.16-2.29(\mathrm{~m}, 2+2 \mathrm{H}), 2.31-2.42(\mathrm{~m}, 1+1 \mathrm{H})$, $2.69\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 2.86\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 3.29(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.22$ (s, 1 H), 4.73 (br. s, $2+2 \mathrm{H}$), $4.89\left(\mathrm{dd}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1+1 \mathrm{H}\right.$), $5.05\left(\mathrm{dd}, J_{1}=10.2\right.$ $\mathrm{Hz}, J_{2}=2.0 \mathrm{~Hz}, 1+1 \mathrm{H}$), $5.71\left(\mathrm{ddd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, J_{3}=9.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 6.85(\mathrm{dd}$, $\left.J_{1}=J_{2}=7.6 \mathrm{~Hz}, 1+1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-4.0$ $\left(1+1 \mathrm{CH}_{3}\right),-3.4\left(1+1 \mathrm{CH}_{3}\right), 13.0\left(1+1 \mathrm{CH}_{3}\right), 17.9(1+1 \mathrm{C}), 18.4\left(1+1 \mathrm{CH}_{3}\right), 22.4(1+1$ $\left.\mathrm{CH}_{3}\right), 23.0\left(1+1 \mathrm{CH}_{3}\right), 23.9\left(1+1 \mathrm{CH}_{3}\right), 25.8\left(3+3 \mathrm{CH}_{3}\right), 29.1\left(1+1 \mathrm{CH}_{2}\right), 35.2\left(1+1 \mathrm{CH}_{2}\right)$, $38.0\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 39.1(1+1 \mathrm{C}), 40.4(1+1 \mathrm{CH}), 45.3\left(1+1 \mathrm{CH}_{2}\right), 63.4(1+1 \mathrm{CH}), 78.5$ $(1+1 \mathrm{CH}), 82.5(1+1 \mathrm{CH}), 84.2(1+1 \mathrm{C}), 110.6\left(1+1 \mathrm{CH}_{2}=\right), 119.2\left(1+1 \mathrm{CH}_{2}=\right), 133.4(1+$ $1 \mathrm{C}=$), $134.8(1+1 \mathrm{CH}=), 141.6(1+1 \mathrm{CH}=)$, $145.7(1+1 \mathrm{C}=)$, $203.7(1+1 \mathrm{C}=\mathrm{O})$; IR (in substance) v $1100,1650,2860-2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 70.24 ; \mathrm{H}, 10.53$, Found: C, 69.88; H, 10.68.

Diol S14b: To a solution of S13b ($1.35 \mathrm{~g}, 2.33 \mathrm{mmol}, 1 \mathrm{eq}$.$) in EtOH (12 \mathrm{~mL}, 5 \mathrm{~mL} / \mathrm{mmol}$ S13b) was added pyridinium p-toluenesulfonate (PPTS, $1.76 \mathrm{~g}, 7.0 \mathrm{mmol}, 3$ eq.) at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture stirred at room temperature until TLC indicated the consumption of almost the entire starting material (about 5 h). The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 5/1) afforded S14b ($736 \mathrm{mg}, 1.58 \mathrm{mmol}, 68 \%, 1 / 1$ mixture of C9-diastereomers) as a clear oil: $\mathrm{R}_{f} 0.41$ (hexane/ethyl acetate $5 / 1$). A small amount of S13a that was contaminated with an inseparable impurity of unknown structure was also isolated. S14b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers $\delta-0.02(\mathrm{~s}, 3+3 \mathrm{H}$), $0.05(\mathrm{~s}, 3+3 \mathrm{H}$), $0.85(\mathrm{~s}, 9+9 \mathrm{H}), 0.94(\mathrm{~s}, 3+3$ H), $0.95(\mathrm{~s}, 3+3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3+3 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 1+1 \mathrm{H}), 1.56\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.8\right.$ $\left.\mathrm{Hz}, J_{2}=9.7 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 1.58-1.68(\mathrm{~m}, 2+2 \mathrm{H}), 1.82(\mathrm{~s}, 3+3 \mathrm{H}), 2.01-2.43(\mathrm{~m}, 5+5 \mathrm{H}), 2.70$ $\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 2.86\left(\mathrm{ddd}, J_{1}=2.3 \mathrm{~Hz}, J_{2}=J_{3}=9.4 \mathrm{~Hz}, 1+1 \mathrm{H}\right)$, $3.32(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 4.21$ (br. s, 1 H), 4.22 (br. s, 1 H), $4.90(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1+1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1+1 \mathrm{H}), 5.04-$ $5.10(\mathrm{~m}, 2+2 \mathrm{H}), 5.72\left(\mathrm{ddd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, J_{3}=9.3 \mathrm{~Hz}, 1+1 \mathrm{H}\right), 5.78-5.88(\mathrm{~m}, 1+$ $1 \mathrm{H})$, 6.83-6.88 (m, $1+1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a $1 / 1$ mixture of diastereomers δ $-4.0\left(1+1 \mathrm{CH}_{3}\right),-3.4\left(1+1 \mathrm{CH}_{3}\right), 13.0\left(1+1 \mathrm{CH}_{3}\right), 17.9(1+1 \mathrm{C}), 18.4\left(1+1 \mathrm{CH}_{3}\right), 23.0(1+$ $\left.1 \mathrm{CH}_{3}\right), 23.9\left(1+1 \mathrm{CH}_{3}\right), 25.8\left(3+3 \mathrm{CH}_{3}\right), 30.6\left(1+1 \mathrm{CH}_{2}\right), 31.2\left(1+1 \mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.2$ $\left(\mathrm{CH}_{2}\right), 39.1(1+1 \mathrm{C}), 40.4(1+1 \mathrm{CH}), 45.3\left(1+1 \mathrm{CH}_{2}\right), 63.4(1+1 \mathrm{CH}), 78.3(1+1 \mathrm{CH}), 82.5$ $(1+1 \mathrm{CH}), 84.3(1+1 \mathrm{C}), 115.2\left(1+1 \mathrm{CH}_{2}=\right), 119.2\left(1+1 \mathrm{CH}_{2}=\right), 133.5(1+1 \mathrm{C}=), 134.8(1+$ $1 \mathrm{CH}=$), $138.4(1+1 \mathrm{CH}=), 141.5(1+1 \mathrm{CH}=)$, $203.7(1+1 \mathrm{C}=\mathrm{O})$; IR (in substance) $v 1050$, 1120, 1250, 1650, $2950 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.78 ; \mathrm{H}, 10.41$, Found: C, 68.82; H, 10.62.

Ketone S15a: To a solution of S14a ($263.8 \mathrm{mg}, 0.55 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL}, 29$ $\mathrm{mL} / \mathrm{mmol}$ S14a) and pyridine ($8 \mathrm{~mL}, 14.5 \mathrm{~mL} / \mathrm{mmol}$ S14a) was added the Dess-Martin periodinane ${ }^{7}$ ($486 \mathrm{mg}, 1.1 \mathrm{mmol}, 2$ eq.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred until TLC control indicated complete consumption of the starting material ($\sim 40 \mathrm{~min}$). The reaction was then quenched by the addition of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 10/1) afforded S15a ($203.7 \mathrm{mg}, 0.427 \mathrm{mmol}$, 78%) as a clear oil: $\mathrm{R}_{f} 0.44$ (hexane/ethyl acetate $10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.03$ (s, 3 H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.53\left(\mathrm{dd}^{\mathrm{AB}}\right.$, $\left.J_{1}=14.8 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-2.03(\mathrm{~m}, 1 \mathrm{H})$, 2.21$2.26(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.76\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79$ $\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.89\left(\mathrm{dd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}\right.$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06\left(\mathrm{dd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.70\left(\mathrm{ddd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}\right.$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.0\left(\mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right), 13.1$ $\left(\mathrm{CH}_{3}\right)$, $17.9(\mathrm{C}), 18.4\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 25.9\left(3 \times \mathrm{CH}_{3}\right), 31.4\left(\mathrm{CH}_{2}\right)$, $35.3\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 40.4(\mathrm{CH}), 45.1\left(\mathrm{CH}_{2}\right), 47.9(\mathrm{C}), 63.3(\mathrm{CH}), 82.4(\mathrm{CH}), 84.3(\mathrm{C}), 110.1$ $\left(\mathrm{CH}_{2}=\right), 119.3\left(\mathrm{CH}_{2}=\right)$, $134.2(\mathrm{C}=), 134.7(\mathrm{CH}=), 139.6\left(\mathrm{CH}_{2}=\right), 144.7(\mathrm{C}=), 203.7(\mathrm{C}=\mathrm{O}), 213.5$ $(\mathrm{C}=\mathrm{O})$; IR (in substance) v $1120,1650,1700,2930-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}$: C, 70.54; H, 10.15, Found: C, 70.82; H, 10.27; [$\alpha]^{25}{ }_{\mathrm{D}}+6.1$ (c 2.05, CHCl_{3}).

Ketone S15b: To a solution of S14b ($726.7 \mathrm{mg}, 1.56 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}, 5$ $\mathrm{mL} / \mathrm{mmol}$ S14b) and pyridine ($4 \mathrm{~mL}, 2.56 \mathrm{~mL} / \mathrm{mmol}$ S14b) was added the Dess-Martin periodinane ${ }^{7}\left(1.33 \mathrm{~g}, 3.13 \mathrm{mmol}, 2 \mathrm{eq}\right.$.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred until TLC control indicated complete consumption of the starting material ($\sim 40 \mathrm{~min}$). The reaction was then quenched by the addition of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers

[^5]were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate 10/1) afforded S15b ($599.3 \mathrm{mg}, 1.295 \mathrm{mmol}$, 83%) as a clear oil: $\mathrm{R}_{f} 0.63$ (hexane/ethyl acetate $5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.07$ (s, 3 H), $0.00(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.49\left(\mathrm{dd}^{\mathrm{AB}}\right.$, $\left.J_{1}=14.7 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.84-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53\left(\mathrm{dd}, J_{1}=J_{2}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.59\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71$ $\left(\mathrm{dd}, J_{1}=J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75\left(\mathrm{dd}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.81-5.05(\mathrm{~m}, 4 \mathrm{H})$, 5.59-5.81 (m, 2 H), 6.50-6.57 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.0\left(\mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right)$, $13.1\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 24.4\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 25.9\left(3 \times \mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 36.3$ $\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 40.4(\mathrm{CH}), 45.1\left(\mathrm{CH}_{2}\right), 47.8(\mathrm{C}), 63.3(\mathrm{CH}), 82.4(\mathrm{CH}), 84.3(\mathrm{C}), 115.3$ $\left(\mathrm{CH}_{2}=\right), 119.3\left(\mathrm{CH}_{2}=\right), 134.1(\mathrm{C}=), 134.7(\mathrm{CH}=), 137.2(\mathrm{CH}=), 139.6(\mathrm{CH}=), 203.7(\mathrm{C}=\mathrm{O}), 213.3$ $(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1120,1250,1640,1700,2930-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 70.08 ; \mathrm{H}, 10.02$, Found: C, $70.14 ; \mathrm{H}, 10.00 ;[\alpha]^{25}+7.0\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$.

S15a

15a (99\%)

Diol 15a: Ketone S15a ($53 \mathrm{mg}, 0.111 \mathrm{mmol}, 1$ eq.) was dissolved in THF ($3 \mathrm{~mL}, 27 \mathrm{~mL} / \mathrm{mmol}$ S15a) in a polyethylene vial. After cooling to $0^{\circ} \mathrm{C}$, hydrogen fluoride pyridine (1 mL , SIGMAALDRICH) was added. The cooling bath was then removed and the solution was stirred at room temperature for 75 min . The reaction was carefully quenched by the addition of sat. aqueous NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate 10/1) afforded 15a ($40 \mathrm{mg}, 0.11 \mathrm{mmol}, 99 \%$) as a clear oil: $\mathrm{R}_{f} 0.26$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.58\left(\mathrm{dd}{ }^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}, J_{2}\right.$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.24\left(\mathrm{dd}, J_{1}=J_{2}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $2.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.80\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76\left(\mathrm{dd}, J_{1}\right.$ $=J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (br. s, 1 H), $4.64(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 5.04-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.18\left(\mathrm{dd}, J_{1}\right.$ $\left.=10.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{ddd}, J_{1}=17.8 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}, J_{3}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.58-6.62$
$(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.0\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 24.7$ $\left(\mathrm{CH}_{3}\right), 31.4\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{CH}_{2}\right), 39.6(\mathrm{CH}), 45.4\left(\mathrm{CH}_{2}\right), 48.0(\mathrm{C}), 62.2(\mathrm{CH}), 81.2$ $(\mathrm{CH}), 83.9(\mathrm{C}), 110.1\left(\mathrm{CH}_{2}=\right), 119.6\left(\mathrm{CH}_{2}=\right), 133.9(\mathrm{CH}=), 134.1(\mathrm{C}=), 139.9(\mathrm{CH}=), 144.7(\mathrm{C}=)$, $203.4(\mathrm{C}=\mathrm{O}), 213.8(\mathrm{C}=\mathrm{O})$; IR (in substance) v $1100,1650,1700,2930-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}$: C, $72.89 ; \mathrm{H}, 9.45$, Found: C, $72.88 ; \mathrm{H}, 9.54 ;[\alpha]^{25}{ }_{\mathrm{D}}+3.1\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$.

Diol 15b: Ketone S15b ($45 \mathrm{mg}, 0.097 \mathrm{mmol}, 1$ eq.) was dissolved in THF ($3 \mathrm{~mL}, 30 \mathrm{~mL} / \mathrm{mmol}$ $\mathbf{S 1 5 b}$) in a polyethylene vial. After cooling to $0{ }^{\circ} \mathrm{C}$, hydrogen fluoride-pyridine $(0.75 \mathrm{~mL}$, SIGMA-ALDRICH) was added. The cooling bath was then removed and the solution was stirred at room temperature for 75 min . The reaction was carefully quenched by the addition of sat. aqueous NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $10 / 1)$ afforded $\mathbf{1 5 b}\left(33.2 \mathrm{mg}, 0.095 \mathrm{mmol}, 98 \%\right.$) as a clear oil: $\mathrm{R}_{f} 0.20$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.57\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.8 \mathrm{~Hz}\right.$, $\left.J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.64\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.9 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76\left(\mathrm{dd}, J_{1}=J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.94(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.93-5.21(\mathrm{~m}, 4 \mathrm{H})$, 5.71-5.85 (m, 2 H$), ~ 6.56-6.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.0\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right)$, $24.5\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 39.6(\mathrm{CH}), 45.4\left(\mathrm{CH}_{2}\right), 47.8(\mathrm{C})$, $62.1(\mathrm{CH}), 81.1(\mathrm{CH}), 83.9(\mathrm{C}), 115.3\left(\mathrm{CH}_{2}=\right), 119.5\left(\mathrm{CH}_{2}=\right), 133.9(\mathrm{CH}=), 134.1(\mathrm{C}=), 137.1$ ($\mathrm{CH}=$), $139.8(\mathrm{CH}=)$, $203.3(\mathrm{C}=\mathrm{O})$, $213.7(\mathrm{C}=\mathrm{O})$; IR (in substance) v 915, 1050, 1640, 1700, $2860-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$: C, 72.38 ; H, 9.26, Found: C, $72.30 ; \mathrm{H}, 9.34 ;[\alpha]^{25}{ }_{\mathrm{D}}$ +3.6 (c $3.3, \mathrm{CHCl}_{3}$).

Benzoate S16a: To a solution of 15a ($140.6 \mathrm{mg}, 0.388 \mathrm{mmol}, 1$ eq.) in THF ($2 \mathrm{~mL}, 5.2$ $\mathrm{mL} / \mathrm{mmol}$ 15a) was added $\mathrm{PPh}_{3}\left(203.4 \mathrm{mg}, 0.776 \mathrm{mmol}, 2\right.$ eq.), $p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(156 \mathrm{mg}, 0.776$ $\mathrm{mmol}, 2$ eq.) and diisopropyl azodicarboxylate (DIAD, $0.154 \mathrm{~mL}, 0.776 \mathrm{mmol}, 2$ eq.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2.5 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and subsequently diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate 20/1) afforded S16a ($201 \mathrm{mg}, 0.368 \mathrm{mmol}, 95 \%$) as a clear oil: $\mathrm{R}_{f} 0.57$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.91\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23\left(\mathrm{dd}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.33-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62\left(\mathrm{dd}, J_{1}\right.$ $=J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.35\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $3.50(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.70$ (s, 1 H), 4.98-5.10 (m, 2 H), $5.63\left(\mathrm{dd}, J_{1}=J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71\left(\mathrm{ddd}, J_{1}=17.4 \mathrm{~Hz}, J_{2}=10.5\right.$ $\left.\mathrm{Hz}, J_{3}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.59-6.66(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.1\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 38.1(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 48.0\left(\mathrm{CH}_{2}\right.$ and C), $57.0(\mathrm{CH}), 81.0(\mathrm{CH}), 87.6(\mathrm{C})$, $110.0\left(\mathrm{CH}_{2}=\right), 119.7\left(\mathrm{CH}_{2}=\right), 128.2(\mathrm{C}=), 129.0(\mathrm{C}=), 131.3(3 \times \mathrm{CH}=), 131.8(2 \times \mathrm{CH}=), 134.7$ $(\mathrm{C}=), 139.5(\mathrm{CH}=), 144.7(\mathrm{C}=), 165.4(\mathrm{C}=\mathrm{O}), 203.6(\mathrm{C}=\mathrm{O}), 213.8(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1270, 1590, 1650, 1700, $1720 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{BrO}_{5}$: C, 63.85; H 6.84, Found: C, $63.65 ; \mathrm{H}, 6.72 ;[\alpha]^{25}{ }_{\mathrm{D}}+64\left(\mathrm{c} 1.29, \mathrm{CHCl}_{3}\right)$.

Benzoate S16b: To a solution of $\mathbf{1 5 b}$ ($395 \mathrm{mg}, 1.13 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF ($5 \mathrm{~mL}, 5 \mathrm{~mL} / \mathrm{mmol}$ 15b) was added PPh_{3} ($595 \mathrm{mg}, 2.27 \mathrm{mmol}, 2$ eq.), $p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(456 \mathrm{mg}, 2.27 \mathrm{mmol}, 2 \mathrm{eq}$.) and diisopropyl azodicarboxylate (DIAD, $0.45 \mathrm{~mL}, 2.27 \mathrm{mmol}, 2$ eq.) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and subsequently diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate 20/1) afforded S16b ($580 \mathrm{mg}, 1.09 \mathrm{mmol}, 96 \%$) as a clear oil: $\mathrm{R}_{f} 0.48$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$, $1.91\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.36-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.45\left(\mathrm{dd}, J_{1}=3.8 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.57\left(\mathrm{dd}, J_{1}=J_{2}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.61\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}\right.$ $\left.=14.2 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.35\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.49(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.97(\mathrm{~m}$, $1 \mathrm{H}), 4.99-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.63\left(\mathrm{dd}, J_{1}=J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 5.67-5.82 (m, 2 H$), 6.60-6.65(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.1\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 36.4$ $\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 47.8(\mathrm{C}), 48.0\left(\mathrm{CH}_{2}\right), 57.0(\mathrm{CH}), 81.0(\mathrm{CH}), 87.6(\mathrm{C}), 115.4$ $\left(\mathrm{CH}_{2}=\right), 119.8\left(\mathrm{CH}_{2}=\right), 128.2(\mathrm{C}=), 129.0(\mathrm{C}=), 129.7(\mathrm{CH}=), 131.3(2 \times \mathrm{CH}=), 131.9(2 \times \mathrm{CH}=)$, $134.7(\mathrm{C}=), 137.2(\mathrm{CH}=), 139.5(\mathrm{CH}=), 165.4(\mathrm{C}=\mathrm{O})$, $203.7(\mathrm{C}=\mathrm{O})$, $213.6(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1270, 1590, 1640, 1700, $1720 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{BrO}_{5}$: C, 63.28; H 6.64, Found: C, 63.54; $\mathrm{H}, 6.60 ;[\alpha]^{30}{ }_{\mathrm{D}}+68.2$ (c 1.97, CHCl_{3}).

Ester 3a: To a solution of S16a ($108 \mathrm{mg}, 0.199 \mathrm{mmol}, 1 \mathrm{eq}$.$) in MeOH (2 \mathrm{~mL}, 20 \mathrm{~mL} / \mathrm{mol}$ S16a) was added potassium carbonate ($15.5 \mathrm{mg}, 0.112 \mathrm{mmol}, 0.56 \mathrm{eq}$.) at room temperature. After being stirred for 20 h at room temperature, the reaction mixture was diluted by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate 10/1)
afforded 56.7 mg of the desired diol contaminated with an inseparable byproduct of unknown constitution: $\mathrm{R}_{f} 0.30$ (hexane/ethyl acetate $3 / 1$).

To a solution of N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDC, 442.6 $\mathrm{mg}, 2.3 \mathrm{mmol}, 11.6$ eq. based on S16a) and DMAP $(9.4 \mathrm{mg}, 0.077 \mathrm{mmol}, 0.38$ eq. based on $\mathbf{S 1 6 a})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 10 \mathrm{~mL} / \mathrm{mmol}$ based on $\mathbf{S 1 6 a})$ was added propionic acid ($0.16 \mathrm{~mL}, 2.16$ mmol, 10.8 eq. based on $\mathbf{S 1 6 a}$) at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 min at $0^{\circ} \mathrm{C}$, a solution of the contaminated diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 15 \mathrm{~mL} / \mathrm{mmol}$ based on $\mathbf{S 1 6 a})$ was added and the cooling bath was removed. The reaction mixture was stirred for 14 h at room temperature. The reaction was then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate $5 / 1$) afforded $\mathbf{3 a}(38.8 \mathrm{mg}, 0.093 \mathrm{mmol}, 46 \%$ two steps) as a light yellow oil: $\mathrm{R}_{f} 0.60$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.75\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.6 \mathrm{~Hz}\right.$, $\left.J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.23\left(\mathrm{dd}, J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.22-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.61\left(\mathrm{dd}, J_{1}=\right.$ $J_{2}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.15 (br. s, 1 H), $3.31\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45\left(\mathrm{dd}, J_{1}=J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.69$ (ddd, $\left.J_{1}=17.9 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.64-6.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ § $9.4\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 47.9(\mathrm{C}), 48.4\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{CH}), 80.2(\mathrm{CH}), 88.0$ (C), $110.0\left(\mathrm{CH}_{2}=\right), 119.4\left(\mathrm{CH}_{2}=\right), 131.3(\mathrm{CH}=), 135.0(\mathrm{C}=), 139.7(\mathrm{CH}=), 144.7(\mathrm{C}=), 173.7$ $(\mathrm{C}=\mathrm{O}), 203.1(\mathrm{C}=\mathrm{O}), 213.9(\mathrm{C}=\mathrm{O})$; IR (in substance) v 1180, 1650, 1700, 1735, 2870-2970 cm^{-1}; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5}$: C, 71.74; H, 9.15, Found: C, 71.95 ; H, 9.25; $[\alpha]^{22}{ }_{\mathrm{D}}+26.4$ (c 1.9, CHCl_{3}).

S16b

3b (50\% two steps)

Ester 3b: To a solution of S16b ($73.9 \mathrm{mg}, 0.139 \mathrm{mmol}, 1$ eq.) in $\mathrm{MeOH}(5 \mathrm{~mL}, 36 \mathrm{~mL} / \mathrm{mol}$ S16b) was added potassium carbonate ($19.2 \mathrm{mg}, 0.139 \mathrm{mmol}, 1 \mathrm{eq}$.$) at room temperature. After$
stirring the reaction mixture for 24 h at room temperature, the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $10 / 1$) afforded 38.3 mg of the desired diol contaminated with an inseparable byproduct of unknown constitution: $\mathrm{R}_{f} 0.35$ (hexane/ethyl acetate $3 / 1$).

To a solution of N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDC, 189 $\mathrm{mg}, 0.985 \mathrm{mmol}, 7$ eq. based on S16b) and DMAP ($8 \mathrm{mg}, 0.065 \mathrm{mmol}, 0.47$ eq. based on S16b) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 14 \mathrm{~mL} / \mathrm{mmol}$ based on $\mathbf{S 1 6 b})$ was added propionic acid ($0.071 \mathrm{~mL}, 0.82 \mathrm{mmol}$, 6 eq. based on $\mathbf{S 1 6 b}$) at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 min at $0^{\circ} \mathrm{C}$, a solution of the contaminated diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 21 \mathrm{~mL} / \mathrm{mmol}$ based on $\mathbf{S 1 6 b})$ was added and the cooling bath was removed. The reaction mixture was stirred for 48 h at room temperature. The reaction was then quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane to hexane/ethyl acetate $5 / 1$) afforded $\mathbf{3 b}(28.2 \mathrm{mg}, 0.07 \mathrm{mmol}, 50 \%$ two steps) as a light yellow oil: $\mathrm{R}_{f} 0.40$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.75\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.22-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.37-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.49-$ $2.58(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 3.32\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.92-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.98-$ $5.07(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.45\left(\mathrm{dd}, J_{1}=J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.82$ $(\mathrm{m}, 1 \mathrm{H}), 6.64-6.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.4\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$, $24.4\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{CH}), 38.6\left(\mathrm{CH}_{2}\right), 47.8(\mathrm{C})$, $48.4\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{CH}), 80.2(\mathrm{CH}), 88.0(\mathrm{C}), 115.3\left(\mathrm{CH}_{2}=\right), 119.4\left(\mathrm{CH}_{2}=\right), 131.3(\mathrm{CH}=), 135.0$ $(\mathrm{C}=), 137.3(\mathrm{CH}=), 139.7(\mathrm{CH}=), 173.7(\mathrm{C}=\mathrm{O})$, $203.1(\mathrm{C}=\mathrm{O}), 213.7(\mathrm{C}=\mathrm{O})$; IR (in substance) $v 1180,1640,1660,1700,1730,2880-2960 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}$: C, 71.26; H 8.97, Found: C, $71.47 ; \mathrm{H}, 9.11 ;[\alpha]^{30}{ }_{\mathrm{D}}+28\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.

17-Norjatrophane 17: To a solution of $\mathbf{3 b}$ ($81.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ eq.) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(75 \mathrm{~mL}$, $375 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{3 b}, 0.0026 \mathrm{M}$) was added the second generation Grubbs catalyst 16 (4 mg , $0.0047 \mathrm{mmol}, 0.025 \mathrm{eq}$.) and the solution was heated to $60^{\circ} \mathrm{C}$. The catalyst $\mathbf{1 6}(4 \mathrm{mg}, 0.0047$ mmol, 0.025 eq.) was added portionwise every 1 h for another four times. After the complete consumption of the starting material (6 h), the solvent was removed under reduced pressure. Flash chromatography (hexane/ethyl acetate $20 / 1$ to $5 / 1$) afforded 17 ($56.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$) as a yellowish brown foam: $\mathrm{R}_{f} 0.33$ (hexane/ethyl acetate $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.93 (d, $\left.J=6.8 \mathrm{~Hz}, 16-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.11\left(\mathrm{~s}, 18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.18\left(\mathrm{~s}, 18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}, 3 \mathrm{H}\right)$, $1.19\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 23-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.41\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=12.2 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{R e}\right), 1.71(\mathrm{~s}$, $\left.20-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.07-2.20\left(\mathrm{~m}, 2-\mathrm{CH}, 1 \mathrm{H}\right.$ and $7-\mathrm{CH}_{2}, 1 \mathrm{H}$ and $\left.8-\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.29\left(\mathrm{dd}, J_{1}=9.9 \mathrm{~Hz}, J_{2}\right.$ $=3.9 \mathrm{~Hz}, 4-\mathrm{CH}, 1 \mathrm{H}), 2.39-2.46\left(\mathrm{~m}, 11-\mathrm{CH}_{2}, 1 \mathrm{H}\right.$ and $\left.22-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.53\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=17.6 \mathrm{~Hz}, J_{2}\right.$ $\left.=6.6 \mathrm{~Hz}, 11-\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.62-2.71\left(\mathrm{~m}, 7-\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.73-2.81\left(\mathrm{~m}, 8-\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.08\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=\right.$ $\left.13.6 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{S i}\right), 5.14\left(\mathrm{ddd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=10.6 \mathrm{~Hz}, J_{3}=4.0 \mathrm{~Hz}, 6-\mathrm{CH}=, 1\right.$ H), $5.29\left(\mathrm{dd}, J_{1}=J_{2}=3.5 \mathrm{~Hz}, 3-\mathrm{CH}, 1 \mathrm{H}\right), 5.42\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 5-\mathrm{CH}=, 1 \mathrm{H}\right)$, 6.85-6.89 (m, 12-CH=, 1 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.4\left(23-\mathrm{CH}_{3}\right), 12.8\left(20-\mathrm{CH}_{3}\right), 14.0$ $\left(16-\mathrm{CH}_{3}\right), 24.4\left(18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}\right), 25.0\left(18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}\right), 27.6\left(7-\mathrm{CH}_{2}\right.$ or $\left.22-\mathrm{CH}_{2}\right)$, $27.6(7-$ CH_{2} or $\left.22-\mathrm{CH}_{2}\right), 35.3\left(8-\mathrm{CH}_{2}\right), 38.3(2-\mathrm{CH}), 40.2\left(11-\mathrm{CH}_{2}\right), 48.0(10-\mathrm{C}), 48.5\left(1-\mathrm{CH}_{2}\right), 57.8(4-$ $\mathrm{CH}), 82.0(3-\mathrm{CH}), 90.5(15-\mathrm{C}), 125.7(5-\mathrm{CH}=), 135.5(6-\mathrm{CH}=), 135.9(13-\mathrm{C}=), 145.2(12-\mathrm{CH}=)$, 173.6 ($21-C=O$), 201.4 (14-C=O), 215.2 ($9-C=O$); IR (in substance) v 1060, 1080, 1140, 1185, 1650, 1700, 1730, 2930, $2970 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 70.18; H 8.57, Found: C, $70.04 ; \mathrm{H}, 8.23 ;[\alpha]^{25}{ }_{\mathrm{D}}+36\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Table S3. NOESY $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ studies on 17.

17

entry	NOE observed between	conclusion	
1	$20-\mathrm{CH}_{3}(1.71 \mathrm{ppm})$	$11-\mathrm{CH}_{2}(2.53 \mathrm{ppm})$	$(12 E)$
2	$4-\mathrm{H}(2.29 \mathrm{ppm})$	$6-\mathrm{H}(5.14 \mathrm{ppm})$	$(5 E)$
3	$5-\mathrm{H}(5.42 \mathrm{ppm})$	$7-J^{5,6=15 \mathrm{~Hz})}$	
	no NOE observed between	$(5 E)$	
4	$5-\mathrm{H}(5.42 \mathrm{ppm})$ and $6-\mathrm{H}(5.14 \mathrm{ppm})$		

17

2b (99\%)
(-)-15-Acetyl-3-propionyl-17-norcharaciol 2b: To a solution of $\mathbf{1 7}$ ($30 \mathrm{mg}, 0.079 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL}, 15 \mathrm{~mL} / \mathrm{mmol} 17)$ was added acetic anhydride ($0.1 \mathrm{~mL}, 1.058 \mathrm{mmol}, 13.4$ eq.) at room temperature. A micro drop of $\operatorname{TMSOTf}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was then added at the same temperature. The color of the solution changed from colorless to slightly yellow. After 10 min , the reaction was quenched by the addition of MeOH and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and subsequently diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and concentrated under reduced pressure. Flash chromatography (hexane/ethyl acetate $10 / 1$ to $5 / 1$) afforded $\mathbf{2 b}$ ($32.8 \mathrm{mg}, 0.078 \mathrm{mmol}, 99 \%$) as a yellow thick oil: $\mathrm{R}_{f} 0.33$ (hexane/ethyl acetate $3 / 1$, substrate and product with identical R_{f} values); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91$ (d, $J=6.7$ $\left.\mathrm{Hz}, 16-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.03\left(\mathrm{~s}, 18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.18\left(\mathrm{~s}, 18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.19(\mathrm{t}, \mathrm{J}=$ $\left.7.6 \mathrm{~Hz}, 23-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.47\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=J_{2}=13.2 \mathrm{~Hz}, 1-\mathrm{CH}_{2}, 1 \mathrm{H}^{R e}\right), 1.69\left(\mathrm{~s}, 20-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.06$ (s, $\left.25-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.10-2.22\left(\mathrm{~m}, 2-\mathrm{CH}, 1 \mathrm{H}\right.$ and $7-\mathrm{CH}_{2}, 1 \mathrm{H}$ and $\left.8-\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.36\left(\mathrm{dd}, J_{1}=9.9 \mathrm{~Hz}\right.$,
$\left.J_{2}=4.2 \mathrm{~Hz}, 4-\mathrm{CH}, 1 \mathrm{H}\right), 2.41\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 22-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.43\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 11-\mathrm{CH}_{2}, 2 \mathrm{H}\right)$, 2.66-2.74 (m, 7-CH2, 1 H), 2.80-2.87 (m, 8-CH2, 1 H), $3.21\left(\mathrm{dd}^{\mathrm{AB}}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1-\right.$ $\left.\mathrm{CH}_{2}, 1 \mathrm{H}^{S i}\right), 5.16\left(\mathrm{ddd}, J_{1}=15.2 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, J_{3}=3.8 \mathrm{~Hz}, 6-\mathrm{CH}=, 1 \mathrm{H}\right), 5.25\left(\mathrm{dd}, J_{1}=J_{2}=\right.$ $3.7 \mathrm{~Hz}, 3-\mathrm{CH}, 1 \mathrm{H}$), $5.54\left(\mathrm{dd}, J_{1}=15.4 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 5-\mathrm{CH}=, 1 \mathrm{H}\right), 6.26-6.31(\mathrm{~m}, 12-\mathrm{CH}=, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.4\left(23-\mathrm{CH}_{3}\right)$, $12.1\left(20-\mathrm{CH}_{3}\right)$, $13.4\left(16-\mathrm{CH}_{3}\right)$, $21.4\left(25-\mathrm{CH}_{3}\right)$, $24.5\left(18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}\right), 24.8\left(18-\mathrm{CH}_{3}\right.$ or $\left.19-\mathrm{CH}_{3}\right)$, $27.7\left(22-\mathrm{CH}_{2}\right), 28.0\left(7-\mathrm{CH}_{2}\right), 35.2\left(8-\mathrm{CH}_{2}\right)$, $38.5(2-\mathrm{CH}), 39.7\left(11-\mathrm{CH}_{2}\right), 46.3\left(1-\mathrm{CH}_{2}\right), 47.7(10-\mathrm{C}), 56.7(4-\mathrm{CH}), 80.7(3-\mathrm{CH}), 92.7(15-\mathrm{C})$, $126.0\left(5-\mathrm{CH}_{2}=\right), 135.4(13-\mathrm{C}=), 135.9(6-\mathrm{CH}=), 140.4(12-\mathrm{CH}=), 170.3(24-\mathrm{C}=\mathrm{O})$, 173.8 (21$C=O), 198.8(14-C=O), 215.1(9-C=O)$; IR (in substance) v 1183, 1246, 1660, 1703, $1734 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{6}$: C, 68.87; H 8.19, Found: C, 68.60 ; H, 8.10; $[\alpha]^{25}{ }_{\mathrm{D}}-51.9$ (c 1.35, CHCl_{3}).
Table S4. NOESY $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ studies on $\mathbf{2 b}$.

entry	NOE observed between		conclusion
1	$20-\mathrm{CH}_{3}(1.69 \mathrm{ppm})$	$11-\mathrm{CH}_{2}(2.43 \mathrm{ppm})$	$(12 E)$
2	$25-\mathrm{CH}_{3}(2.06 \mathrm{ppm})$	$5-\mathrm{H}(5.54 \mathrm{ppm})$	$15-\mathrm{OAc}$ and $5-\mathrm{CH}$ are $c i s$
3	$1-\mathrm{H}^{R e}(1.47 \mathrm{ppm})$	$25-\mathrm{CH}_{3}(2.06 \mathrm{ppm})$	$15-\mathrm{OAc}$ and $1-\mathrm{H}^{R e}$ are $c i s$
4	$5-\mathrm{H}(5.54 \mathrm{ppm})$	$7-\mathrm{H}^{(2.66-2.74) \mathrm{ppm}}$	$(5 E)$
5	$4-\mathrm{H}(2.36 \mathrm{ppm})$	$1-\mathrm{H}^{S}(3.21 \mathrm{ppm})$	$4-\mathrm{CH}$ and $1-\mathrm{H}^{S i}$ are $c i s$
6	$4-\mathrm{H}(2.36 \mathrm{ppm})$	$6-\mathrm{H}(5.16 \mathrm{ppm})$	$(5 E)$

Figure S2. ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}\right)$ of natural $\mathbf{2 a}{ }^{8}$

Figure S3. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}\right)$ of non-natural $\mathbf{2 b}$

[^6]Table S5. Comparison of ${ }^{1} \mathrm{H}$ NMR data of natural $2 \mathbf{a}$ and non-natural $\mathbf{2 b}$.

entry	proton	2a chemical shift δ in ppm $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{8}$	$\mathbf{2 b}$ chemical shift δ in ppm $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
1	$12-\mathrm{H}$	6.36	$6.26-6.31$
2	$3-\mathrm{H}$	5.23	5.25
3	$5-\mathrm{H}$	5.41	5.54
4	$1-\mathrm{H}^{S i}$	3.28	3.21
5	$11-\mathrm{CH}_{2}$	2.43	2.43
6	$20-\mathrm{CH}_{3}$	1.70	1.69

[^0]: ${ }^{1}$ Juaristi, E.; Martinez-Richa, A.; Garcia-Rivera, A.; Cruz-Sanchez, J. S. J. Org. Chem. 1983, 48, 2603-2606.

[^1]: ${ }^{2}$ Careful TLC control is required to prevent extensive decomposition. The Z-configured enol acetate (Z)-12 reacts very slowly under the applied conditions. We recommend terminating the reaction once the E-configured enol acetate (E) - $\mathbf{1 2}$ is completely consumed.

[^2]: ${ }^{3}$ See Methods and Materials for a description.

[^3]: ${ }^{4}$ Aungst, R. A.; Funk R. L. J. Am. Chem. Soc. 2001, 123, 9455-9456.

[^4]: ${ }^{5}$ Yong, K. H.; Lotoski, J. A.; Chong, J. M. J. Org. Chem. 2001, 66, 8248-8251.
 ${ }^{6}$ Fields, L. J.; Heathcock C. H. J. Org. Chem. 1999, 64, 8263-8266.

[^5]: ${ }^{7}$ prepared according to: Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.

[^6]: ${ }^{8}$ Seip, E. in "Neue Diterpenester aus Euphorbia Esula L. sowie Euphorbia Characias L. und ihre biologische Wirkung"; Dissertation, Heidelberg, Ruprecht-Karls-Universität, 1980.

