Operationally Simple, Efficient and Diastereoselective Synthesis of *Cis*-2,6disubstituted-4-methylene Tetrahydropyrans by Triflic Acid

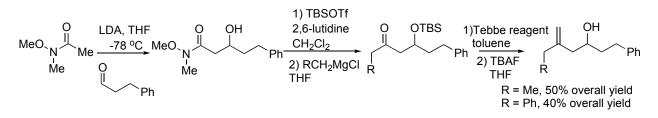
Alessandra Puglisi,[‡] Ai-Lan Lee,[‡] Richard R. Schrock,[†] and Amir H. Hoveyda*^{,‡}

[‡]Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

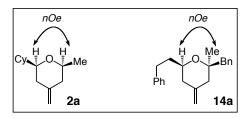
[†]Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Supporting Information

General. All reactions were carried out in oven-dried (135 °C) glassware under an inert atmosphere of dry N₂ unless otherwise stated. Infrared (IR) spectra were recorded on a Nicolet 210 spectrophometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m) or weak (w). ¹H-NMR spectra were recorded on a Varian Gemini 2000 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuteration as the internal reference (CDCl₃: δ 7.26, C₆D₆: δ 7.16). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were recorded on a Varian Gemini 2000 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal reference (CDCl₃: δ 77.16, C₆D₆: δ 128.06). High-resolution mass spectrometry was performed at the University of Illinois Mass Spectrometry Laboratory. Silica gel chromatography was carried out on AgNO₃ 5% w/w on silica gel.¹


The enol ether substrates were prepared from the corresponding alcohols using known literature methods. Substrates 1, 5, 7, 9, and 11 were synthesized through Pd-catalyzed transfer vinylation method reported by Bosch and Schlaf.² Enol ether 13 was prepared by Tebbe

⁽¹⁾ Williams, C.M.; Mander, L. N. Tetrahedron 2001, 57, 425–447.


⁽²⁾ Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225-5227.

olefination of the corresponding phenylacetate.³ Substrate **15** was accessed through a conjugate addition method recently described by Hart.⁴

The homoallylic alcohol precursors were also synthesized based on known literature methods. Homoallylic alcohol precursors to enol ethers **1**, **5**, **13**, and **15** were obtained by addition of methallyl Grignard reagents to the corresponding aldehydes.⁵ The alcohol precursor to **11** was obtained by reaction of excess methallyl Grignard reagent with ethyl formate.⁶ Alcohol precursors to enol ethers **7** and **9** were prepared by the sequence of reactions reported below, partially described by Evans.⁷

Proof of relative stereochemistry. In general, NOE experiments indicate that the major compound formed is the *cis*-2,6-disubstituted diastereomer (e.g., enhancement of the carbinol methine protons in **2a**; see below). Comparison of ¹H NMR spectrum of pyran product **6a** with values reported in the literature further supports these assignments.⁸ For compound **14a**, bearing a tertiary ether site, as illustrated below, the appropriate NOE between the Me group and the carbinol proton was observed (NOESY).

⁽³⁾ Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 3270–3272.

⁽⁴⁾ Hart, D. J.; Bennett, C. E.; Org. Lett. 2003, 5, 1499–1502.

⁽⁵⁾ Uchiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Chem. Pharm. Bull. 1985, 33, 989-997.

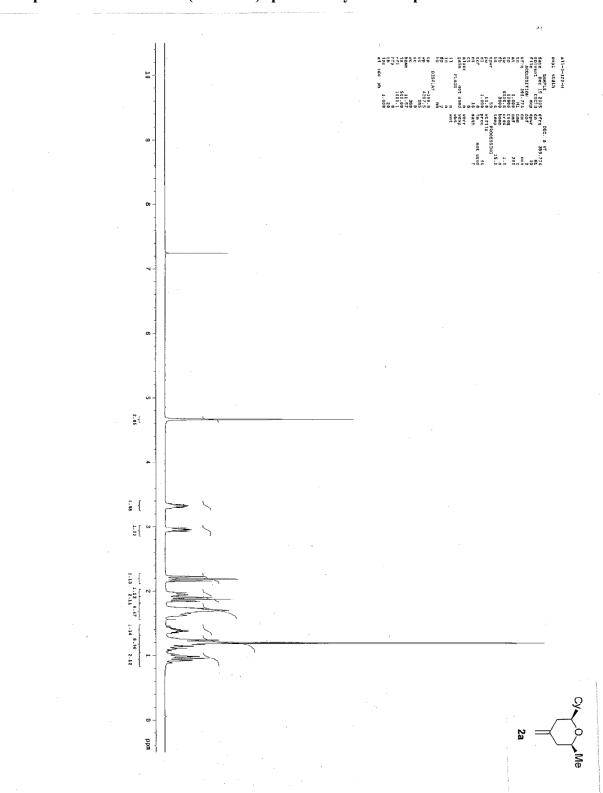
⁽⁶⁾ Breit, B.; Breuninger, D.; J. Am. Chem. Soc., 2004, 126, 10244-10245.

⁽⁷⁾ Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G.; J. Am. Chem. Soc. 1996, 118, 4322–4343.

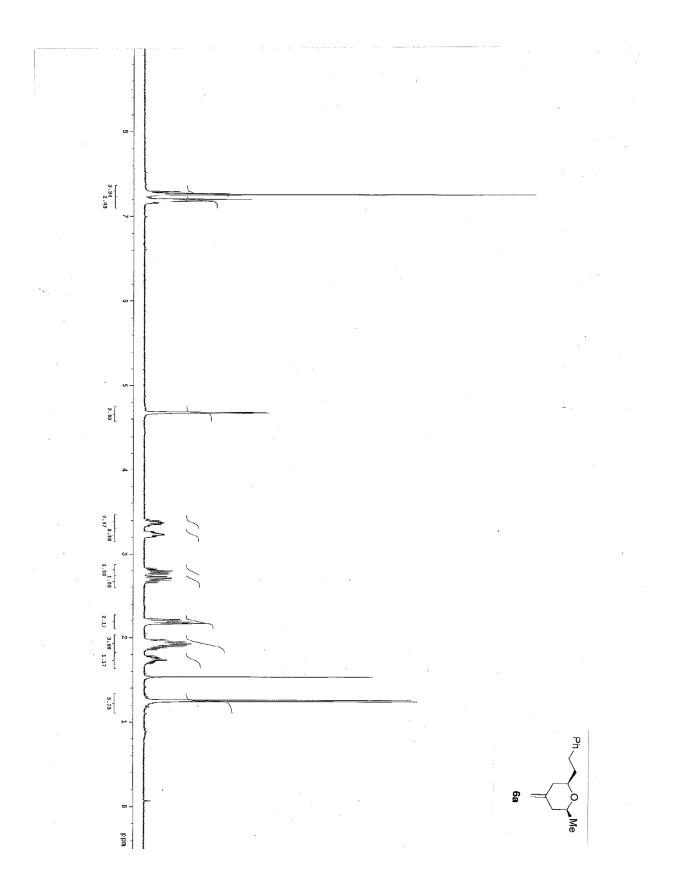
⁽⁸⁾ Kopecky, D. J.; Rychnovsky, S.D. J. Am. Chem. Soc. 2001, 123, 8420-8421.

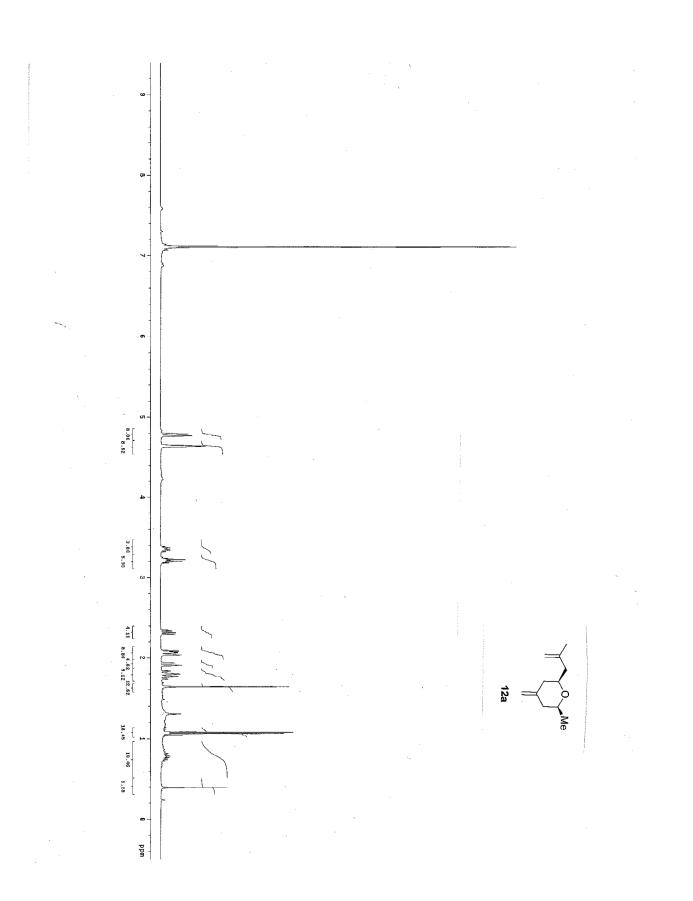
Representative procedure for the triflic acid catalysed synthesis of cis-2,6disubstituted-4-methylene tetrahydropyrans. Cis-2-cyclohexyl-6-methyl-4methylenetetrahydro-2*H*-pyran (2a). To a benzene solution of enol ether 1 (20 mg, 0.10 mmol) was added a solution of triflic acid in benzene (10 μ L, 10⁻⁴ mmol). After stirring for 10 minutes at 22 °C the reaction was guenched by addition of a saturated solution of NaHCO₃ (aq.). The aqueous phase was extracted with pentane and the organic phase was dried over MgSO₄. Isomer ratio was determined by ¹H-NMR of the crude mixture. Purification through AgNO₃ on silica gel chromatography using pentane as the eluent afforded the desired product as a colorless oil (11 mg, 0.055 mmol, 55% yield). IR (neat): 3075(w), 2930 (s), 2855 (s), 1659 (m), 1451 (m), 1376 (w), 1350 (w), 1325 (w), 1193 (w), 1117 (m), 1067 (m), 891 (s), 847 (w), 664 (w) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δ 4.67 (s, 2H, C=CH₂), 3.36-3.28 (m, 1H, OCH), 2.98-2.93 (m, 1H, OCH), 2.20-2.15 (m, 2H, CH₂C=C), 1.97-1.84 (m, 3H, CH₂C=C and Cy-H), 1.74-1.60 (m, 4H, Cv-H), 1.43-1.34 (m, 1H, Cv-H), 1.28-1.08 (m, 3H, Cv-H), 1.19 (d, J = 5.9 Hz, 3H, CH₃), 1.02-0.88 (m, 2H, Cy-H). ¹³C NMR (100 MHz, CDCl₃): δ 146.0, 108.1, 83.0, 74.7, 43.3, 43.0, 37.7, 29.6, 28.7, 26.8, 26.4, 26.3, 22.1. HRMS calcd for C₁₃H₂₂O: 194.1671. Found: 194.1667.

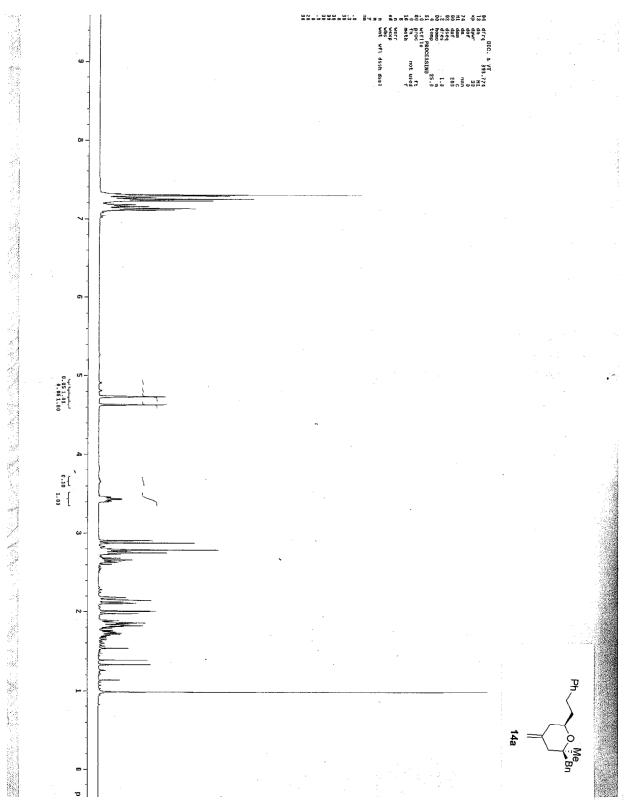
Cis-2-methyl-4-methylene-6-phenethyltetrahydro-2*H*-pyran (6a). IR (neat): 3069 (w), 3024 (w), 2974 (w), 2930 (s), 2886 (w), 2862 (w), 1652 (w), 1602 (w), 1495 (w), 1462 (w), 1375 (w), 1325 (m), 1096 (m), 746 (w), 702 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 2H, Ar-*H*), 7.20-7.16 (m, 3H, Ar-*H*), 4.68 (s, 2H, C=C*H*₂), 3.42-34 (m, 1H, OC*H*), 3.28-3.20 (m, 1H, OC*H*), 2.80 (ddd, *J* = 13.5, 9.8, 5.6 Hz, 1H, PhC*H*HCH₂), 2.71 (ddd, *J* = 13.5, 9.3, 7.2 Hz, 1H, PhCH*H*CH₂), 2.23-2.15 (m, 2H, C*H*₂), 1.99-1.86 (m, 3H, CH₂), 1.78-1.71 (m, 1H, CH₂), 1.27 (d, *J* = 6.1 Hz, 3H, C*H*₃). ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 142.4, 128.7, 128.5, 125.9, 108.3, 77.4, 74.7, 42.7, 40.8, 38.1, 32.0, 22.1. HRMS calcd for C₁₅H₂₂O: 216.1514. Found: 216.1512.

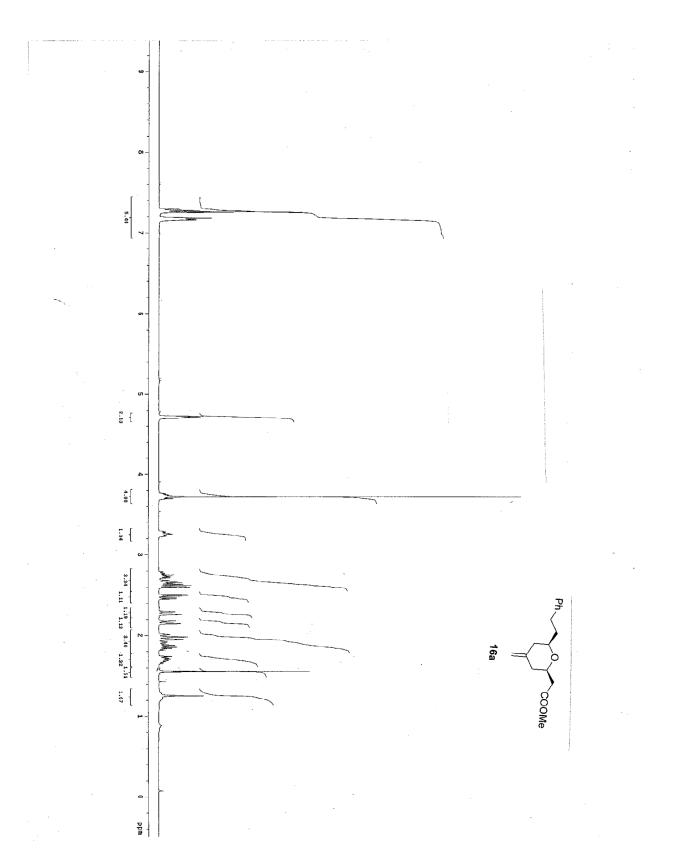

Cis-4-ethylidene-2-methyl-6-phenethyltetrahydro-2*H*-pyran (8a). This cyclization product was isolated as a 1.6:1 inseparable mixture of *E* and *Z* olefin isomers. ¹H NMR (400 MHz, C₆D₆): δ 7.13-6.99 (m, 5H x 2, Ar-*H*), 5.16-5.08 (m, 1H x 2, C=C*H*CH₃), 3.30-3.08 (m, 2H x 2, OC*H*), 2.84-2.74 (m, 2H x 2, PhC*H*HCH₂), 2.69-2.61 (m, 2H x 2, PhCH*H*CH₂), 2.33-2.82 (m, 1H x 2, C*H*₂), 1.90-1.78 (m, 3H x 2, C*H*₂), 1.66-1.51 (m, 2H x 2, C*H*₂), 1.47-1.44 (m, 3H x 2, C=CHC*H*₃), 1.16 (d, 3H, *J* = 6.2 Hz, OCHC*H*₃), 1.14 (d, 3H, *J* = 6.2 Hz, OCHC*H*₃). To facilitate characterization, this olefin mixture was hydrogenated in the presence of H₂ and Pd(C) (20% w/w) in MeOH at 22 °C for 6 h to afford the corresponding hydrogenation product as a single diastereomer. IR (neat): 2961 (m), 2924 (s), 2855 (w), 1464 (w), 1376 (w), 1325 (w), 1168 (w), 1086 (w), 753 (w), 696 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.04 (m, 5H, Ar-*H*), 3.32-3.21 (m, 1H, OC*H*), 3.19-3.10 (m, 1H, OC*H*), 2.93-2.82 (m, 1H, B segment of an AB system, C*H*H), 2.81-2.72 (m, 1H, A part of an AB system, CH*H*), 1.97-1.85 (m, 1H, C*H*H), 1.70-1.60 (m, 1H, C*H*H), 1.35 (t, *J* = 7.0 Hz, 2H, C*H*₂CH₃), 1.21 (d, J = 5.0 Hz, 3H, C*H*₃), 1.18-1.05 (m, 3H, C*H*₂ and C*H*H), 0.86-0.77 (m, 2H, C*H*₂), 0.70 (q, *J* = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, C₆D₆): δ 143.1, 128.9, 128.7, 126.0, 76.1, 73.3, 40.3, 38.8, 38.3, 37.3, 32.3, 30.0, 22.5, 11.2. HRMS calcd for C₁₆H₂₄O: 232.1827. Found: 232.1834.

Cis-4-benzylidene-2-methyl-6-phenethyltetrahydro-2H-pyran (10a). This cyclization product was isolated as a 1:1 inseparable mixture of E and Z olefin isomers. ¹H NMR (400 MHz, CDCl₃) 7.33-7.13 (m, 20H, Ar-H), 6.28 (s, 2H, C=CHPh), 3.54-3.46 (m, 1H, OCH), 3.40-3.32 (m, 2H, OCH), 3.25-3.18 (m, 1H, OCH), 2.87-2.62 (m, 6H, CH₂), 2.28-2.18 (m, 4H, CH₂), 1.98-1.67 (m, 6H, CH_2), 1.29 (d, J = 6.2 Hz, 3H, CH_3), 1.24 (d, J = 6.2 Hz, 3H, CH_3). To facilitate characterization, this unpurified olefin mixture was hydrogenated in the presence of H₂ and Pd (C) (20% w/w) in MeOH at 22 °C for 6 h to afford the corresponding hydrogenation product as a mixture of two diastereomers at C_4 (1.6:1 ratio; identity of isomers not determined). IR (neat): 3062 (w), 3031 (m), 2924 (s), 2848 (s), 1602 (w), 1495 (s), 1451 (s), 1382 (m), 1325 (w), 1269 (w), 1149 (w), 1080 (m), 1036 (m), 815 (w), 765 (m), 708 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): major isomer & 7.33-1.08 (m, Ar-H), 3.83-3.73 (minor isomer, m, 1H, OCH), 3.68-3.57 (Minor isomer, m, 1H, OCH), 3.44-3.33 (major isomer, m, 1H, OCH), 3.27-3.18 (major isomer, m, 1H, OCH), 2.84-2.62 (major isomer, m, 4H, PhCH₂ and PhCH₂), 2.58-2.47 (minor isomer, m, 1H, PhCHH), 2.50 (minor isomer, d, J = 5 Hz, 2H, PhCH₂), 2.26-2.18 (minor isomer, m, 1H, PhCHH), 1.91-1.40 (bs, CH_2 , CH_2 and CH of the two isomers), 1.18 (major isomer, d, J = 7.0Hz, 3H, CH₃), 1.15 (minor isomer, d, J = 7.0 Hz, 3H, CH₃), 1.00-0.80 (broad s, CH₂ of the two diastereomers). ¹³C NMR (100 MHz, CDCl₃): δ 142.61, 142.60, 141.4, 140.5, 129.3, 129.2, 128.73, 128.70, 128.56, 128.50, 128.49, 128.45, 128.42, 126.1, 125.9, 125.8, 76.3, 73.5, 71.6, 68.6, 43.8, 40.2, 38.4, 38.3, 38.3, 38.1, 37.8, 37.0, 34.8, 33.7, 32.03, 32.02, 22.5, 22.3. HRMS calcd for C₂₁H₂₆O: 294.1984. Found: 294.1990.


Cis-2-methyl-6-(2-methylallyl)-4-methylenetetrahydro-2*H*-pyran (12a). IR (neat): 2961 (w), 2917 (s), 2855 (m), 1457 (w), 1369 (w), 1256 (w), 1099 (w), 1023 (w), 803 (m) cm⁻¹. ¹H-NMR (400 MHz, C₆D₆): δ 4.77 (d, *J* = 9 Hz, 2H, C=C*H*₂), 4.64 (d, *J* = 2 Hz, 2H, C=C*H*₂), 3.39-31 (m, 1H, OC*H*), 3.26-3.17 (m, 1H, OC*H*), 2.32 (dd, *J* = 13.8, 6.9 Hz, 1H, C*H*H), 2.10-2.02 (m, 2H, C*H*H and C*H*H), 1.90 (d, *J* = 13.0 Hz, 1H, C*H*H), 1.85-1.72 (m, 2H, C*H*H and C*H*H), 1.64 (s, 3H, C*H*₃), 1.07 (d, *J* = 6.0 Hz, 3H, C*H*₃). ¹³C NMR (100 MHz, C₆D₆): δ 145.3, 142.7, 112.6, 108.1, 77.0, 74.5, 44.9, 42.6, 40.5, 23.0, 22.0. HRMS calcd for C₁₁H₁₈O: 166.1358. Found: 166.1353.


Cis-2-benzyl-2-methyl-4-methylene-6-phenethyltetrahydro-2*H*-pyran (14a). IR (neat): 3055 (w), 3024 (m), 2392 (m), 1652 (w), 1602 (w), 1495 (m), 1454 (m), 1375 (w), 1313 (w), 1092 (w), 1060 (w), 1029 (w), 973 (w), 897 (w), 751 (s), 699 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.11 (m, 10H, Ar-*H*), 4.74 (d, *J* = 2.0 Hz, 1H, C=C*H*H), 4.63 (d, *J* = 2.0 Hz, 1H, C=CH*H*), 3.43 (m, 1H, OC*H*), 2.89 (d, *J* = 13.2 Hz, 1H, PhC*H*HCO), 2.80-2.73 (m, 2H, PhCH*H*CO and PhC*H*HCH₂), 2.64 (dt, *J* = 13.6, 8.0 Hz, 1H, PhCH*H*CH₂), 2.15 (d, *J* = 14.0 Hz, 1H, CH₂), 1.99 (d, *J* = 12.8 Hz, 1H, CH₂), 1.89-1.78 (m, 2H, CH₂), 1.76-1.67 (m, 1H, CH₂), 0.98 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 142.7, 138.2, 131.2, 128.8, 128.4, 127.9, 126.3, 125.8, 109.9, 75.3, 69.9, 50.2, 45.1, 41.1, 38.6, 31.9, 20.4. HRMS calcd for C₂₂H₂₆O: 306.1984. Found: 306.1978.


Methyl 2-(*cis*-4-methylene-6-phenethyltetrahydro-2*H*-pyran-2-yl)acetate (16a). IR (neat): 3081 (w), 3024 (w), 2949 (m), 2861 (w), 1741 (s), 1652 (w), 1495 (w), 1457 (w), 1438 (w), 1369 (w), 1338 (w), 1250 (w), 1180 (w), 1149 (w), 1092 (m), 1073 (w), 1023 (w), 897 (w) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 7.34-7.23 (m, 3H, Ar-*H*), 7.24-7.16 (m, 2H, Ar-*H*), 4.67 (d, J = 2.0 Hz, 2H, C=CH₂), 3.74 (s, 3H, OCH₃), 3.66-3.78 (m, 1H, OCH), 3.30-3.20 (m, 1H, OCH), 2.80-2.71 (m, 1H, B part of an AB system, CHH), 2.70-2.60 (m, 2H, A part of an AB system CH*H* and B part of an AB system CHH), 2.45 (dd, J = 9.0, 3.0 Hz, 1H, A part of an AB system, CH*H*), 2.28 (d, J = 8.0 Hz, 1H, B part of an AB system, CHH), 2.18 (d, J = 9.0 Hz, 1H, B part of an AB system, CHH), 2.05-1.90 (m, 2H, A part of an AB system, CHH), 1.75-1.65 (m, 1H, A part of an AB system, CH*H*), 1.90-1.80 (m, 1H, B part of an AB system, CHH), 1.75-1.65 (m, 1H, A part of an AB system CH*H*). ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 144.0, 142.4, 128.8, 128.5, 125.9, 109.4, 77.4, 75.0, 51.9, 41.5, 40.7, 40.6, 38.0, 34.9. HRMS calcd for $C_{17}H_{22}O_3$: 274.1569. Found: 274.1566.



Representative 1H NMR (400 MHz) spectra of cyclization products:

