Operationally Simple, Efficient and Diastereoselective Synthesis of Cis-2,6-disubstituted-4-methylene Tetrahydropyrans by Triflic Acid

Alessandra Puglisi, ${ }^{*}$ Ai-Lan Lee, ${ }^{\dagger}$ Richard R. Schrock, ${ }^{\dagger}$ and Amir H. Hoveyda* ${ }^{*}$
${ }^{\ddagger}$ Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
${ }^{\dagger}$ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
\section*{Supporting Information}

General. All reactions were carried out in oven-dried $\left(135{ }^{\circ} \mathrm{C}\right)$ glassware under an inert atmosphere of dry N_{2} unless otherwise stated. Infrared (IR) spectra were recorded on a Nicolet 210 spectrophometer, $v_{\max }$ in cm^{-1}. Bands are characterized as broad (br), strong (s), medium (m) or weak (w). ${ }^{1}$ H-NMR spectra were recorded on a Varian Gemini 2000 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuteration as the internal reference $\left(\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{C}_{6} \mathrm{D}_{6}\right.$: δ 7.16). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini $2000(100 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal reference $\left(\mathrm{CDCl}_{3}: \delta 77.16, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 128.06\right)$. High-resolution mass spectrometry was performed at the University of Illinois Mass Spectrometry Laboratory. Silica gel chromatography was carried out on $\mathrm{AgNO}_{3} 5 \% \mathrm{w} / \mathrm{w}$ on silica gel. ${ }^{1}$

The enol ether substrates were prepared from the corresponding alcohols using known literature methods. Substrates 1, 5, 7, 9, and 11 were synthesized through Pd-catalyzed transfer vinylation method reported by Bosch and Schlaf. ${ }^{2}$ Enol ether 13 was prepared by Tebbe

[^0]olefination of the corresponding phenylacetate. ${ }^{3}$ Substrate 15 was accessed through a conjugate addition method recently described by Hart. ${ }^{4}$

The homoallylic alcohol precursors were also synthesized based on known literature methods. Homoallylic alcohol precursors to enol ethers 1, 5, 13, and $\mathbf{1 5}$ were obtained by addition of methallyl Grignard reagents to the corresponding aldehydes. ${ }^{5}$ The alcohol precursor to 11 was obtained by reaction of excess methallyl Grignard reagent with ethyl formate. ${ }^{6}$ Alcohol precursors to enol ethers 7 and 9 were prepared by the sequence of reactions reported below, partially described by Evans. ${ }^{7}$

Proof of relative stereochemistry. In general, NOE experiments indicate that the major compound formed is the cis-2,6-disubstituted diastereomer (e.g., enhancement of the carbinol methine protons in 2a; see below). Comparison of ${ }^{1} \mathrm{H}$ NMR spectrum of pyran product $\mathbf{6 a}$ with values reported in the literature further supports these assignments. ${ }^{8}$ For compound 14a, bearing a tertiary ether site, as illustrated below, the appropriate NOE between the Me group and the carbinol proton was observed (NOESY).

[^1]
Representative procedure for the triflic acid catalysed synthesis of cis-2,6-disubstituted-4-methylene tetrahydropyrans. Cis-2-cyclohexyl-6-methyl-4-methylenetetrahydro-2H-pyran (2a). To a benzene solution of enol ether $\mathbf{1}$ ($20 \mathrm{mg}, 0.10$

 $\mathrm{mmol})$ was added a solution of triflic acid in benzene ($10 \mu \mathrm{~L}, 10^{-4} \mathrm{mmol}$). After stirring for 10 minutes at $22{ }^{\circ} \mathrm{C}$ the reaction was quenched by addition of a saturated solution of NaHCO_{3} (aq.). The aqueous phase was extracted with pentane and the organic phase was dried over MgSO_{4}. Isomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude mixture. Purification through AgNO_{3} on silica gel chromatography using pentane as the eluent afforded the desired product as a colorless oil ($11 \mathrm{mg}, 0.055 \mathrm{mmol}, 55 \%$ yield). IR (neat): 3075(w), 2930 (s), 2855 (s), 1659 (m), 1451 (m), 1376 (w), 1350 (w), 1325 (w), 1193 (w), 1117 (m), 1067 (m), 891 (s), 847 (w), 664 (w) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCH}), 2.20-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.97-1.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and $\left.\mathrm{Cy}-H\right), 1.74-1.60(\mathrm{~m}, 4 \mathrm{H}$, Cy-H), 1.43-1.34 (m, 1H, Cy-H), 1.28-1.08 (m, 3H, Cy-H), 1.19 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} H_{3}$), 1.020.88 (m, 2H, Cy-H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.0,108.1, ~ 83.0,74.7,43.3,43.0,37.7$, 29.6, 28.7, 26.8, 26.4, 26.3, 22.1. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}: 194.1671$. Found: 194.1667.Cis-2-methyl-4-methylene-6-phenethyltetrahydro-2H-pyran (6a). IR (neat): 3069 (w), 3024 (w), 2974 (w), 2930 (s), 2886 (w), 2862 (w), 1652 (w), 1602 (w), 1495 (w), 1462 (w), 1375 (w), 1325 (m), 1096 (m), 746 (w), 702 (s$) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.29-7.25 (m, $2 \mathrm{H}, \mathrm{Ar}-H), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.42-34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.28-3.20(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OCH}$), 2.80 (ddd, $J=13.5,9.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHHCH}_{2}$), 2.71 (ddd, $J=13.5,9.3,7.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCHHCH} 2), ~ 2.23-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99-1.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-1.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.27\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3,142.4,128.7,128.5,125.9$, 108.3, 77.4, 74.7, 42.7, 40.8, 38.1, 32.0, 22.1. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: 216.1514$. Found: 216.1512.

Cis-4-ethylidene-2-methyl-6-phenethyltetrahydro-2H-pyran (8a). This cyclization product was isolated as a 1.6:1 inseparable mixture of E and Z olefin isomers. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.13-6.99(\mathrm{~m}, 5 \mathrm{H} \times 2, \mathrm{Ar}-H), 5.16-5.08\left(\mathrm{~m}, 1 \mathrm{H} \times 2, \mathrm{C}=\mathrm{CHCH}_{3}\right), 3.30-3.08(\mathrm{~m}, 2 \mathrm{H}$ x 2, OCH), 2.84-2.74 (m, 2H x 2, PhCHHCH 2), 2.69-2.61 (m, $2 \mathrm{H} \times 2, \mathrm{PhCHHCH}_{2}$), 2.33-2.82 ($\mathrm{m}, 1 \mathrm{H} \times 2, \mathrm{CH}_{2}$), 1.90-1.78 (m, $3 \mathrm{H} \times 2, \mathrm{CH}_{2}$), 1.66-1.51 (m, $2 \mathrm{H} \times 2, \mathrm{CH}_{2}$), 1.47-1.44 (m, $3 \mathrm{H} \times 2$, $\left.\mathrm{C}=\mathrm{CHCH}_{3}\right), 1.16\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{OCHCH}_{3}\right), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{OCHCH}_{3}\right)$. To facilitate
characterization, this olefin mixture was hydrogenated in the presence of H_{2} and $\operatorname{Pd}(\mathrm{C})(20 \%$ w / w) in MeOH at $22{ }^{\circ} \mathrm{C}$ for 6 h to afford the corresponding hydrogenation product as a single diastereomer. IR (neat): 2961 (m), 2924 (s), 2855 (w), 1464 (w), 1376 (w), 1325 (w), 1168 (w), 1086 (w), 753 (w), 696 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.22-7.04(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.32-$ $3.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH})$, 3.19-3.10 (m, 1H, OCH), 2.93-2.82 (m, 1H, B segment of an AB system, $\mathrm{C} H \mathrm{H}), 2.81-2.72(\mathrm{~m}, 1 \mathrm{H}$, A part of an AB system, $\mathrm{CH} H), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 1.70-1.60(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 1.35\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.21(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH})_{3}\right), 1.18-1.05(\mathrm{~m}, 3 \mathrm{H}$, CH_{2} and $\mathrm{C} H \mathrm{H}$), 0.86-0.77 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.70\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 143.1,128.9,128.7,126.0,76.1,73.3,40.3,38.8,38.3,37.3,32.3,30.0,22.5$, 11.2. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}: 232.1827$. Found: 232.1834.

Cis-4-benzylidene-2-methyl-6-phenethyltetrahydro-2H-pyran (10a). This cyclization product was isolated as a 1:1 inseparable mixture of E and Z olefin isomers. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) 7.33-7.13 (m, 20H, Ar- H), 6.28 (s, $2 \mathrm{H}, \mathrm{C}=\mathrm{C} H \mathrm{Ph}$), 3.54-3.46 (m, $1 \mathrm{H}, \mathrm{OCH}$), 3.40-3.32 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}$), 3.25-3.18 (m, 1H, OCH), 2.87-2.62 (m, 6H, CH2), 2.28-2.18 (m, 4H, CH2 $), 1.98-$ $1.67\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. To facilitate characterization, this unpurified olefin mixture was hydrogenated in the presence of H_{2} and Pd (C) $(20 \% \mathrm{w} / \mathrm{w})$ in MeOH at $22{ }^{\circ} \mathrm{C}$ for 6 h to afford the corresponding hydrogenation product as a mixture of two diastereomers at C_{4} (1.6:1 ratio; identity of isomers not determined). IR (neat): 3062 (w), 3031 (m), 2924 (s), 2848 (s), 1602 (w), 1495 (s), 1451 (s), 1382 (m), 1325 (w), 1269 (w), 1149 (w), 1080 (m), 1036 (m), 815 (w), 765 (m), 708 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major isomer δ 7.33-1.08 (m, Ar-H), 3.83-3.73 (minor isomer, m, 1H, OCH), 3.68-3.57 (Minor isomer, $\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}$), 3.44-3.33 (major isomer, $\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}$), 3.27-3.18 (major isomer, $\mathrm{m}, 1 \mathrm{H}$, OCH), 2.84-2.62 (major isomer, $\mathrm{m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}$ and PhCH_{2}), 2.58-2.47 (minor isomer, m, 1 H , PhCHH), 2.50 (minor isomer, d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}$), 2.26-2.18 (minor isomer, m, 1 H , $\mathrm{PhCH} H$), 1.91-1.40 (bs, $\mathrm{CH}_{2}, \mathrm{CH}_{2}$ and CH of the two isomers), 1.18 (major isomer, $\mathrm{d}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.15 (minor isomer, d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.00-0.80 (broad s, CH_{2} of the two diastereomers). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 142.61, 142.60, 141.4, 140.5, 129.3, 129.2, $128.73,128.70,128.56,128.50,128.49,128.45,128.42,126.1,125.9,125.8,76.3,73.5,71.6$, $68.6,43.8,40.2,38.4,38.3,38.3,38.1,37.8,37.0,34.8,33.7,32.03,32.02,22.5,22.3$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}: 294.1984$. Found: 294.1990 .

Cis-2-methyl-6-(2-methylallyl)-4-methylenetetrahydro-2H-pyran (12a). IR (neat): 2961 (w), 2917 (s), 2855 (m), 1457 (w), 1369 (w), 1256 (w), 1099 (w), 1023 (w), 803 (m) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.77\left(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.64\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right.$), 3.39-31 (m, 1H, OCH), 3.26-3.17 (m, 1H, OCH), $2.32(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.10-$ $2.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H \mathrm{H}$ and CHH$), 1.90(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}$ and $\mathrm{C} H \mathrm{H}), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 145.3$, $142.7,112.6,108.1,77.0,74.5,44.9,42.6,40.5,23.0,22.0$. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: 166.1358$. Found: 166.1353.

Cis-2-benzyl-2-methyl-4-methylene-6-phenethyltetrahydro-2H-pyran (14a). IR (neat): 3055 (w), 3024 (m), 2392 (m), 1652 (w), 1602 (w), 1495 (m), 1454 (m), 1375 (w), 1313 (w), 1092 (w), 1060 (w), 1029 (w), 973 (w), 897 (w), 751 (s), 699 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.30-7.11(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-H), 4.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHH}), 4.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH} H), 3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 2.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHHCO}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{PhCH} H \mathrm{CO}$ and PhCHHCH 2$), 2.64\left(\mathrm{dt}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{PCH}_{2}\right.$), $2.15(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $2.13\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.99\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.89-1.78 (m, 2H, CH_{2}), 1.76-1.67 (m, 1H, CH2), $0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.9,142.7$, $138.2,131.2,128.8,128.4,127.9,126.3,125.8,109.9,75.3,69.9,50.2,45.1,41.1,38.6,31.9$, 20.4. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}: 306.1984$. Found: 306.1978.

Methyl 2-(cis-4-methylene-6-phenethyltetrahydro-2H-pyran-2-yl)acetate (16a). IR (neat): 3081 (w), 3024 (w), 2949 (m), 2861 (w), 1741 (s), 1652 (w), 1495 (w), 1457 (w), 1438 (w), 1369 (w), 1338 (w), 1250 (w), 1180 (w), 1149 (w), 1092 (m), 1073 (w), 1023 (w), 897 (w) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.34-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 4.67(\mathrm{~d}$, $\left.J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH} H_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.30-3.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH})$, 2.80-2.71 (m, 1H, B part of an AB system, CHH), 2.70-2.60 (m, 2H, A part of an AB system $\mathrm{CH} H$ and B part of an AB system $\mathrm{C} H \mathrm{H}$), $2.45(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, A part of an AB system, $\mathrm{CH} H), 2.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, $\mathrm{C} H \mathrm{H}), 2.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, CHH$), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}$, A part of an AB system, CHH and A part of an AB system, $\mathrm{CH} H), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{B}$ part of an AB system, CHH$), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{A}$ part of an AB system $\mathrm{CH} H$).${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.9,144.0,142.4,128.8,128.5,125.9$,
109.4, 77.4, 75.0, 51.9, 41.5, 40.7, 40.6, 38.0, 34.9. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}: 274.1569$. Found: 274.1566.

■ Representative 1H NMR (400 MHz) spectra of cyclization products:

[^2]

[^0]: (1) Williams, C.M.; Mander, L. N. Tetrahedron 2001, 57, 425-447.
 (2) Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225-5227.

[^1]: (3) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 3270-3272.
 (4) Hart, D. J.; Bennett, C. E.; Org. Lett. 2003, 5, 1499-1502.
 (5) Uchiai, M.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Chem. Pharm. Bull. 1985, 33, 989-997.
 (6) Breit, B.; Breuninger, D.; J. Am. Chem. Soc., 2004, 126, 10244-10245.
 (7) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G.; J. Am. Chem. Soc. 1996, 118, 4322-4343.
 (8) Kopecky, D. J.; Rychnovsky, S.D. J. Am. Chem. Soc. 2001, 123, 8420-8421.

[^2]: an

