Equations used in the fit of the magnetic moment and susceptibility of complex 7

$$
\begin{gathered}
\chi_{\|}(3 / 2)=\frac{\mathrm{Ng}_{3 / 2}^{2} \beta^{2}}{\mathrm{kT}} \frac{1+9 \exp \left(\frac{-2 \mathrm{D}}{\mathrm{k} \mathrm{~T}}\right)}{4\left(1+\exp \left(\frac{-2 \mathrm{D}}{\mathrm{kT}}\right)\right.} \quad \chi(3 / 2)=\frac{\mathrm{N} \mathrm{~g}_{3 / 2}^{2} \beta^{2}}{\mathrm{kT}} \frac{4+\left(\frac{3 \mathrm{k} \mathrm{~T}}{\mathrm{D}}\right)\left(1-\exp \left(\frac{-2 \mathrm{D}}{\mathrm{kT}}\right)\right.}{4\left(1+\exp \left(\frac{-2 \mathrm{D}}{\mathrm{k} \mathrm{~T}}\right)\right.} \\
\chi_{\mathrm{D}}(3 / 2)=\frac{1}{3}\left(\chi_{\| \|}(3 / 2)+2 \chi(3 / 2)\right) \\
\chi_{\mathrm{D}-\mathrm{s}}(3 / 2)=\frac{\chi_{\mathrm{D}}(3 / 2)}{1-\left(\frac{2 \mathrm{zJ}}{\mathrm{Ng}_{3 / 2}} \mathrm{Ng}_{3 / 2}^{2}\right) \chi_{\mathrm{D}}(3 / 2)} \\
\chi(1 / 2)=\frac{2 \mathrm{Ng}_{1 / 2}^{2} \beta^{2}}{\mathrm{kT}(3+\exp (-\mathrm{zJ} / \mathrm{k} \mathrm{~T}))} \\
\chi=\mathbf{P} \chi(1 / 2)+(1-\mathbf{P}) \chi(3 / 2)+\mathrm{TIP}
\end{gathered}
$$

