Supporting Information

Singlet and Triplet Excited State Interactions and Photochemical Reactivity of Phenyleneethynylene Oligomers

P. K. Sudeep, ${ }^{a}$ P. V. James, ${ }^{\text {b }}$ K. George Thomas ${ }^{a, b}$ and

Prashant V. Kamat ${ }^{\text {a* }}$
Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
and
Photosciences and Photonics, Regional Research Laboratory (CSIR), Trivandrum 695 019, India

Figure S1. Oxidative cyclic voltamograms of (A) OPE-1 and (B) OPE-2 recorded in acetonitrile. The second wave in each figure represents the measurement recorded sequentially.

Figure S2. Reductive cyclic voltamograms of (A) OPE-1 and (B) OPE-2 recorded in acetonitrile. The second wave in each figure represents the measurement recorded sequentially.

Figure S3. Fluorescence quenching of OPE-1 by DMA at concentration levels of (a) 0 (b) 15 (c) 30 (d) 45 (e) 60 (f) 75 (g) 90 mM in acetonitrile. $\lambda_{\text {ex }}=375 \mathrm{~nm}$. (Optical Density at 375 nm kept as 0.1). Inset shows the Stern-Volmer fit.

Figure S4. Fluorescence quenching of OPE-2 by DMA at concentration levels of (a) 0 (b) 13.3 (c) 26.6 (d) 39.9 (e) 53.2 (f) 66.5 (g) 79.8 mM in acetonitrile. $\lambda_{\text {ex }}$ $=375 \mathrm{~nm}$. (Optical Density at 375 nm kept as 0.1). Inset shows the Stern-Volmer fit

Figure S5. Dependence of pseudo-first-order rate constants for the triplet decay of OPE-1 on the concentration of DMA. The triplet decay was monitored at 520 nm .

Figure S6. (A) Time-resolved difference absorption spectra recorded after 1 ns following 387-nm laser pulse excitation of OPE-1 in (a) absence and (b) presence of DMA (0.1 M) in a femtosecond laser flash photolysis apparatus.

Modified Stern-Volmer Plot
 Derivation of equation 5

Equation (1^{\prime}) represents the fluorescence decay of M^{*}
$\mathrm{M}^{*}-\mathrm{k}_{\mathrm{f}} \rightarrow \mathrm{M}+\mathrm{h}_{\mathrm{f}}$
the rate of decay of M^{*} is
$\mathrm{d}\left[\mathrm{M}^{*}\right] / \mathrm{dt}=-\mathrm{k}_{\mathrm{f}}\left[\mathrm{M}^{*}\right]$.
$\Rightarrow\left[\mathrm{M}^{*}\right]=\left[\mathrm{M}^{*}\right]_{0} \mathrm{e}^{-\mathrm{ktt}}$
where $\left[\mathrm{M}^{*}\right]_{0}$ is the initial concentration of M^{*}

The fluorescence intensity, $\mathrm{I} \alpha \mathrm{k}_{\mathrm{f}} \int\left[\mathrm{M}^{*}\right] \mathrm{dt}$
Using equation (3^{\prime}), $I \alpha \mathrm{k}_{\mathrm{f}}\left[\mathrm{M}^{*}\right]_{0} \int \mathrm{e}^{-\mathrm{kt}} \mathrm{dt}$
$\mathrm{I} \alpha\left[\mathrm{M}^{*}\right]_{0}$
In presence of a quencher molecule (Q), the possible interaction between Q and M^{*} are
(a) $\mathrm{M}^{*}+\mathrm{Q}-\mathrm{k}_{\mathrm{q}} \rightarrow \mathrm{M}+\mathrm{Q}$
(b) $\mathrm{M}^{*}+\mathrm{Q} \stackrel{\mathrm{K}}{=} \mathrm{M}^{*}---\mathrm{Q}$

The equilibrium constant K for the formation of complex is
$\mathrm{K}=\left[\mathrm{M}^{*}--\mathrm{Q}\right]_{0} /\left[\mathrm{M}^{*}\right][\mathrm{Q}]$
If $\mathrm{M}^{*}---\mathrm{Q}$ is non-fluorescent, the rate of decay of M^{*} is
$\mathrm{d}\left[\mathrm{M}^{*}\right]^{\prime} / \mathrm{dt}=-\mathrm{k}_{\mathrm{f}}\left[\mathrm{M}^{*}\right]^{\prime}-\mathrm{kq}[\mathrm{Q}]\left[\mathrm{M}^{*}\right]^{\prime}$
$\Rightarrow\left[\mathrm{M}^{*}\right]^{\prime}=\left[\mathrm{M}^{*}\right]_{0} \mathrm{e}^{-\mathrm{kf}+\mathrm{kq}[\mathrm{Q}] t}$.
The fluorescence intensity I' $\alpha \mathrm{k}_{\mathrm{f}} \int\left[\mathrm{M}^{*}\right]^{\prime} \mathrm{dt}$
$\mathrm{I}^{\prime} \alpha \mathrm{k}_{\mathrm{f}}\left[\mathrm{M}^{*}\right]_{0}{ }^{\prime} / \mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{q}}[\mathrm{Q}]$
$\mathrm{I}^{\prime} \alpha\left[\mathrm{M}^{*}\right]_{0}{ }^{\prime} /\left(1+\mathrm{k}_{\mathrm{q}}[\mathrm{Q}] / \mathrm{k}_{\mathrm{f}}\right)$ (10^{\prime})

Dividing (4') by (10')

$$
\mathrm{I} / \mathrm{I}^{\prime}=\left(\left[\mathrm{M}^{*}\right]_{0} /\left[\mathrm{M}^{*}\right]_{0^{\prime}}\right)\left(1+\mathrm{k}_{\mathrm{q}}[\mathrm{Q}] \mathrm{k}_{\mathrm{f}}\right) \ldots . .\left(11^{\prime}\right)
$$

Assuming total excited stated are same in both the cases

$$
\left[\mathrm{M}^{*}\right]_{0}=\left[\mathrm{M}^{*}\right]_{0^{\prime}}+\left[\mathrm{M}^{*}---\mathrm{Q}\right]_{0^{\prime} \ldots \ldots \ldots \ldots\left(12^{\prime}\right)}
$$

$$
\left[\mathrm{M}^{*}\right]_{0} /\left[\mathrm{M}^{*}\right]_{0^{\prime}}=\left(\left[\mathrm{M}^{*}\right]_{0^{\prime}}+\left[\mathrm{M}^{*}---\mathrm{Q}\right]_{0^{\prime}}\right) /\left(\left[\mathrm{M}^{*}\right]_{0^{\prime}}=1+[\mathrm{M}---\mathrm{Q}] /\left(\left[\mathrm{M}^{*}\right]=1+\mathrm{K}[\mathrm{Q}] \ldots \ldots . .\left(13^{\prime}\right)\right.\right.
$$

Substitute this in equation (11')
$\mathrm{I}_{0} / \mathrm{I}=(1+\mathrm{K}[\mathrm{Q}])\left(1+\mathrm{k}_{\mathrm{q}}[\mathrm{Q}] / \mathrm{k}_{\mathrm{f}}\right)$
$\mathrm{I}_{0} / \mathrm{I}=1+(\mathrm{K}+\mathrm{kq} / \mathrm{kf})[\mathrm{Q}]+\mathrm{K} \mathrm{kq} / \mathrm{kf}[\mathrm{Q}]^{2}$
$\mathrm{I}_{0} / \mathrm{I}=1+\left(\mathrm{K}+\mathrm{k}_{\mathrm{q}} \tau\right)[\mathrm{Q}]+\mathrm{K}_{\mathrm{q}} \tau[\mathrm{Q}]^{2}$.

