Supporting Information For

Palladium Pincer Complexes with Reduced Bond Angle Strain: Efficient Catalysts for the Heck Reaction

Myeong Sik Yoon, Dowook Ryu, Jeongryul Kim, and Kyo Han Ahn*

Department of Chemistry, POSTECH, San 31 Hyoja-dong, Pohang 790-784, Republic of Korea
*To whom correspondence should be made: Tel: +82 54 279-2105, Fax: +82 54 279-3399, Email: ahn@postech.ac.kr

Contents

(1) Experimental of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$.
(2) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a}$ and $\mathbf{3 b}$
(3) A cif file for the X-ray crystal structure of $\mathbf{3 b}$ (as separate file)

[1,3-bis(2-pyridyloxy)phenyl[palladium chloride (3a)

A mixture of 1,3-bis(2-pyridyloxy)benzene ($0.26 \mathrm{~g}, 1.00 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{PdCl}_{4}(0.33 \mathrm{~g}, 1.00$ mmol), and glacial acetic acid (6 ml) was refluxed for four days. A yellow suspension was changed to a bright grey solid during the reaction. The mixture was allowed to cool to room temperature. The bright grey solid was filtered through a Büchner funnel and washed sequentially with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to give pure 3 a . Yield: 0.23 g (80%). Mp: 270$272{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.98$ (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Py}-\mathrm{H}\right), 7.1$ (m, 3H, Py-H), 7.29 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.86 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Py}-\mathrm{H}), 9.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Py}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 158.0,152.3,151.0,141.0,126.1,118.6,114.5,113.3,110.9$. HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}(\mathrm{M}-\mathrm{Cl})^{+} 368.9855$, found 368.9860.

1,3-Bis(2-pyridyloxy)benzene was prepared from the reaction of 2-bromopyridine with resorcinol, according to the literature (ref. 7).

[1,3-bis(2-pyridyloxy)phenyl]palladium(II) trifluoromethansulfonate (3b)

A mixture of $3 \mathbf{a}(0.18 \mathrm{~g}, 0.44 \mathrm{mmol})$, silver triflate $(0.11 \mathrm{~g}, 0.44 \mathrm{mmol})$, and dichloromethane $(5 \mathrm{ml})$ was stirred for 7 h . The mixture was filtered through Celite to remove silver chloride and washed with dichloromethane. The solvent was evaporated to give $\mathbf{3 b}$ as a pale yellow solid. Yield: 0.22 g (92\%). Mp: 250-252 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.99$ (d, $J=7.9$ Hz, 2H, Py-H), 7.23 (m, 3H, Ar-H, Py-H), 7.34 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 7.93 (t, J = 7.3 Hz , 2H, Py-H), 8.75 (m, 2H, Py-H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 157.2,150.6,149.8,141.5$, $126.7,121.4,117.2\left(-\mathrm{OSO}_{2} \underline{\mathrm{CF}}_{3}\right), 119.2,114.5,113.6,103.7 .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta-$ 1.6. HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}(\mathrm{M}-\mathrm{OTf})^{+} 368.9855$, found 368.9848 .

