Supporting Information

PNA synthesis and characterization

Scheme 1s a: i) Piperidine, DMF ii) (Fmoc)-Lys(Alloc)OH, HOBT, HBTU, DIEA, DMF iii) Piperidine, DMF iv) a) 5-(and-6)-carboxytetramethylrhodamine succinimidyl ester (TAMRA) (Fl₁), DIEA, DMF
b) Nile red butyric acid pentafluorophenyl ester (Fl₂), DIEA, DMF
c) Coumarin 343 (Fl₃), HOBT, HBTU, DIEA, DMF
v) Pd(PPh₃)₄, PPh₃, [Et₂NH₂⁺HCO₃⁻], CH₂Cl₂
vi) Incompetition of two Lysings (Empediate Science) (Page)OID via sutemated sumther

vi) Incorporation of two Lysines (FmocLys(Boc)OH) via automated synthesis vii)PNA-synthesis

viii) 2,2':6',2''-terpyridine carboxylic acid, HBTU, HOBT, DIEA, DMF ix) TFA/*m*-Cresole

Scheme 1s b: 4'-Chloro-2,2':6',2''-terpyridine; ε-caprolactone; KOH; DMSO Ligand was synthesized according to Lit [P. R. Andres, R. Lunkwitz, G. R. Pabst, K. Boehm, D. Wouters, S. Schmatloch, U. S. Achuberth, *Eur. J. Org. Chem.* **2003**, 19, 3769-3776]

General remarks

Solid support bound PNA was synthesized on an Expedite 8909 PNA/DNA synthesizer according manufacturer's recommendations for 2 µmolar synthesis using commercially available PNA building blocks (Fmoc-chemistry) and Fmoc-Lys(Boc)-OH amino acids.

1-Hydroxybenzotriazole (HOBT) and diisopropylethylamine (DIEA) were purchased from Acros Organics. O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), 4'-chloro-2,2':6',2''-terpyridine and Coumarin 343 were purchased from Sigma-Aldrich. 5-(and-6)-Carboxytetramethylrhodamine succinimidyl ester (TAMRA) was purchased from Molecular Probes. Nile red butyric acid pentafluorophenyl ester was kindly provided by S. Black.

MALDI-TOF analysis of PNA probes. A solution of 3,5-dimethoxy-4-hydroxycinnamic acid (27mM, TFA 0.1 %, CH₃CN 33%, MeOH 33% in water) was used as a matrix for MALDI-TOF analysis of the PNA conjugates. MALDI-TOF mass spectra were recorded on a Bruker BIFLEX III spectrometer. Mass accuracy with external calibration was 0.1% of the peak mass, i.e. +/- 3.0 at m/z 3000.

HPLC purification of PNA probes. HPLC was performed at 49°C on a Shimadzu liquid chromatograph equipped with a UV-VIS detector and column oven. Machery-Nagel Nucleosil C4 250 x 4.6 mm column with gradients of CH₃CN (0.1% TFA, solvent B) in water (0.1 % TFA, solvent A) was used (gradient A: 49°C, 0 % B for 5 min, in 30 min to 35 % B, in 10 min to 90 %B, 90 % B for 10 min; gradient B: 22°C, 0-2 % B for 5 min, in 23 min to 20% B in 7 min to 95 % B, 95 % B for 10 min).

PNA characterization.

PNA1a (M_{calc}: 3613.2, M_{found}: 3612.1) PNA1b (M_{calc}: 3267.8, M_{found}: 3267.4) PNA1c (M_{calc}: 3328.8, M_{found}: 3327.8) PNA1a' (M_{calc}: 3335.1, M_{found}: 3534.3) PNA1a'' (M_{calc}: 3398.7, M_{found}: 3399.8) PNA2a (M_{calc}: 3613.2, M_{found}: 3612.4) PNA2b (M_{calc}: 3267.8, M_{found}: 3266.1)

PNA3a (Mcalc: 6468.7, Mfound: 6465.4) PNA3b (Mcalc: 6123.3, Mfound: 6123.8)

Analytical HPLC of PNA 3a and 3b

UV-melting experiments

UV-melting curves were measured between 20 and 80 °C for PNA:DNA duplexes in the absence and presence of Zn(II) using a Varian Carey 100 Bio UV-Vis spectrophotometer. Heating and cooling rates were 0.5 °C/ min. Melting points were averages of the extrema from the first derivative of 41 point smoothed melting curves calculated from at least 2 cooling and 2 heating experiments.

	absence of Zn ²⁺	$1 \text{ eq } Zn^{2+}$	$2 \text{eq} \text{Zn}^{2+}$
PNA 1a/DNA4	50.1°C	54.6°C	55.6°C
PNA 1b/DNA4	44.4°C	44.5°C	44.5°C

TableS1: Melting temperatures of PNA1a/b (2μM) with complementary DNA 4 (2μM) in 10 mM MOPS buffer pH 7, 100 mM NaCl

Experimental details of flow cytometry

HeLA cells (CCl-2) were cultured according to vendor's recommendations (LPC Promochem). For flow cytometry analysis, cells were plated in 6 well plates (Nunc) and grown to 80% confluency. Cells were washed twice with warm HEPES buffer (150 mM NaCl, 1.2 mM CaCl, 1.2 mM MgCl, 2.4 mM K₂HPO₄, 20 mM HEPES, pH 7.4) and incubated with PNA 1-3 (final concentration 2.5 μ M, in HEPES/Glucose) for 1 h at 37°C. cells were washed subsequently twice with warm HEPES and suspended using trypsin/EDTA. Cells were resuspended in 1.5 ml HEPES buffer and subjected to cell sorting.

Flow cytometry was performed on a DAKOCytomation MoFlo high speed cell sorter equipped with a Coherent Innova 90C-6 Argon ion laser. The Laser was tuned to 488 nm at 100 mW. Forward (FSC) and side scatter (SSC) laser light was collected. The fluorescence signal was collected through a 630/40 bandpass filter. Data analysis was performed using Summit software using FSC and SSC to gate out debris. The resultant histograms were saved as a tab delimited file for export into Excel.

Dependence of PNA 1a uptake on Zn²⁺ concentration

Figure 1s: Flow cytometry analysis of HeLa cells incubated with PNA 1a $(2.5\mu M)$ for 1h with varying equivalents of Zn^{2+} , (Mean cellular fluorescence) corrected for autofluorescence

UV-titration of PNA 1a with Zn²⁺

UV-vis curves were measured using a Varian Carey 100 Bio UV-Vis spectrophotometer.

Figure 2s: Titration of PNA 1a (2μM) with a solution of ZnSO₄. Right: Dependence of 323nm absorbance on 0-1.3 eq Zn(II). Left: Spectra on addition of 0-1.3 eq Zn(II), pH 7.0, 10 mM HEPES buffer, 100 mM NaCl, T=25°C.

Similar spectral changes were observed in a titration of 2,2':6',2''-terpyridine (tpy) with ZnSO₄. Significant changes of absorbance from 0 to ca. 0.5 equiv. Zn(II) indicated formation of a complex $(1a)_2$ Zn (or $(tpy)_2$ Zn respectively). Upon addition of more Zn, formation of a 1:1 complex was expected, but the spectral changes were insignificant and this transition could not be followed by spectrophotometry.

It cannot be concluded from Figure 1s, whether species $(1a)_2$ Zn or (1a)Zn, is preferentially taken up by HeLa cells.

Confocal microscopy of HeLa cells incubated with PNA 1d, e

For confocal microscopy cells were plated in 8 well LabTek chambers and 35 mm MatTek chambers and grown to 80% confluency. Cells were washed twice with warm HEPES buffer and incubated with PNA **1-3** (final concentration 2 μ M, in HEPES/Glucose) for 1 h at 37°C. Then cells were washed twice with warm HEPES, and imaged in HEPES /Glucose. Confocal microscopy was performed on a Zeiss LSM 510 Meta confocal microscope. Fluorescence detection channels were set to Ch1: (Ex: 532 nm) LP 570 nm, Ch2: (Ex 488 nm) LP 500 nm. Imaging was performed using a 10x air objective and a 63x oil objective. Image processing was performed using Zeiss LSM 5 image browser.

Figure 3s : Confocal image of living Hela cells directly after incubation of 2 μ M PNA for one hour. a) PNA **1a'** + 1 eq. Zn²⁺ b) PNA **1a''** + 1 eq. Zn²⁺, left panels show pictures taken with 63x, right panels with 10x objectives.