# Chiral Phosphoramide Catalyzed Aldol Additions of Ketone Trichlorosilyl Enolates. Mechanistic Aspects

Scott E. Denmark,\* Son M. Pham, Robert A. Stavenger, Xiping Su, Ken-Tsung Wong and Yutaka Nishigaichi

# SUPPORTING INFORMATION

Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL 61801

| Table of Contents                                                  | Page             |
|--------------------------------------------------------------------|------------------|
| General Experimental                                               | <i>S1-S3</i>     |
| Preparation of Phosphoramide Promoters                             | <i>S3-S12</i>    |
| Catalyzed Aldol Additions of Trichlorosilyl Enolates               | S43-S50          |
| Non-Linear Effect Studies                                          | S50-51           |
| Benzoic Acid Effects                                               | <i>S52</i>       |
| Kinetics: General Procedures                                       | <i>\$53-\$55</i> |
| Raw Kinetic Data (GC, ReactIR, RINMR)                              | \$56-107         |
| Natural Abundance <sup>12</sup> C/ <sup>13</sup> C Isotope Effects | S108-S109        |
| References                                                         | <i>S110</i>      |

# **General Experimental**

<sup>1</sup>H NMR spectra and <sup>13</sup>C NMR spectra were recorded at 500 MHz and 125 MHz, respectively. Spectra are referenced to residual chloroform ( $\delta$  7.26, <sup>1</sup>H;  $\delta$  77.0, <sup>13</sup>C). Chemical shifts are reported in ppm ( $\delta$ ); multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), m (multiplet) and br (broad). Coupling constants, *J*, are reported in Hertz. <sup>1</sup>H and <sup>13</sup>C NMR assignments are corroborated by 2D experiments (HETCOR and COSY). Purity criteria for new compounds was established by microanalysis where possible. Otherwise, HRMS was obtained for elemental formula and P-31 NMR (>60/1 S/N) H-1 NMR (>100/1 S/N) data for purity (>98%). This criterion also applies to all the products of allylation which are known compounds (purity also assured by SFC and GC analysis). Spectra

are available on request from <u>denmark@scs.uiuc.edu</u>.

Mass spectrometric data are reported in the form of m/z (intensity relative to base peak = 100). Infrared spectra (IR) are reported in cm<sup>-1</sup> with the indicated relative intensities: br (broad); s (strong, 67-100%); m (medium, 34-66%); w (weak, 0-33%). Optical rotations are reported as follows:  $[\alpha]_D^T$  temperature (T), concentration (c = g/100 mL) and solvent. Analytical supercritical fluid chromatography (SFC) was performed on packed-column SFC with a built-in photometric detector ( $\lambda$  = 220 nm) using a Daicel Chiralpak AD, AS, OD or OJ column, as indicated. Kugelrohr (bulb-to-bulb) distillation boiling points (bp) correspond to uncorrected airbath temperatures (ABT). All temperatures correspond to internal reaction temperatures measured by Teflon-coated thermocouples unless otherwise noted.

<sup>1</sup>H NMR spectra for all kinetic runs were recorded at 500 MHz using a 5 mm  $^{15}N - ^{31}P$  broad band (BB) probe, in methylene chloride-*d*<sub>2</sub> unless otherwise stated. Tredicator temperatures were calibrated using standard methods involving ethylene glycol and methanol as needed. Analytical gas chromatography (GC) was performed using a flame ionization detector and a Hewlett-Packard HP-5 (50 meter) column or a Hewlett-Packard Ultra-2 (50 meter) column. The injector temperature was 225 °C (set to 160 °C for all kinetic experiments). The detector temperature was 300 °C with a split ratio of approximately 100:1.

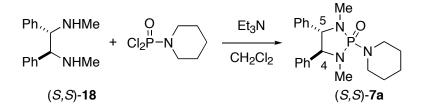
All reactions were performed using oven (140 °C) and/or flame-dried glassware under an atmosphere of dry nitrogen, unless otherwise stated. Solvents and commercial reagents were purified using established procedures prior to use, with the exception of methylene chloride- $d_2$ , which was used directly from the ampoule.

Fourier transform IR analysis was performed using a ReactIR<sup>™</sup> 1000 fitted with a <sup>5</sup>/<sub>8</sub>" DiComp<sup>™</sup> Probe. Mettler-Toledo AutoChem Inc., 7075 Samuel Morse Drive, Columbia, MD, 21046 USA, or visit <u>http://us.mt.com</u>. Acquisitions were recorded using software version 2.1a. Small-volume, flat-bottomed reaction vessels fitted with multiple side arms were designed to mount tightly around the IR probe. In this manner, the mounted reaction vessel could be carefully flame-dried under vacuum and purged with an inert gas, in our case dry nitrogen. 1,2-Dichloroethane was then carefully introduced via syringe. The appropriate background scans were taken following thermal equilibration.

Rapid Injection NMR (RINMR) analysis was performed on a home-built apparatus. For details contact <u>denmark@scs.uiuc.edu</u>. Samples were prepared for RINMR analysis in the

following manner. A carefully dried NMR tube was charged with the desired amount of catalyst and fitted with a small septum. The tube was then placed under vacuum and purged several times with dry nitrogen. Dichloromethane- $d_2$  was then added via syringe followed by **4**. The NMR tube was quickly vortexed to ensure homogeneity and placed into a short Dewar flask at -78 °C. Several tubes could be prepared and stored in this manner to allow sequential collection of the desired kinetic data. The septum is then removed from the cooled NMR tube and it is quickly lowered into a precooled NMR magnet. The RINMR injection probe is then carefully lowered into the open, spinning NMR tube and the entire apparatus is allowed to equilibrate for several minutes. After equilibration, the desired amount of benzaldehyde in CDCl<sub>3</sub> is rapidly injected and is followed immediately by data collection.

Natural abundance <sup>13</sup>C NMR experiments were performed at 500 MHz spectrometer. To obtain the highest quality NMR data, the 90° pulse width (pw90) was determined by measuring the 360° pulse width and dividing by 4. Using this value, T1 was accurately measured and the NMR delay (d1) was set to 8× the longest T1. To assure an integration accuracy of  $\leq$ 1%, a sufficient number of transients were collected to achieve a signal-to-noise of not less than 250:1 as measured using the shortest peak. Integration was standardized by selecting a region 20× the peak width at half-height, centered about the peak in question.


# Literature Preparations. The following compounds were prepared following the literature methods.

(S,S)- and (R,R)-1,2-Diphenyl-1,2-ethanediamine,<sup>1</sup> (S,S)-N,N'-dimethyl-1,2-diphenyl-1,2ethanediamine and all other chiral diamines not listed,<sup>2</sup> (S,S)-N,N'-diethyl-1,2-diphenyl-1,2ethanediamine,<sup>3</sup> (R,R)- and (S,S)-N,N'-1,2-tetraphenylethylene diamine,<sup>4</sup> 1-piperidinophosphoric dichloride,<sup>5</sup> 1-pyrrolidinylphosphoramic dichloride,<sup>5</sup> 1-piperidinophosphorus dichloride,<sup>5</sup> di-*iso*propylaminophosphorus dichloride,<sup>5</sup> diphenylaminophosphamic dichloride.<sup>6</sup>

### **Procedures.**

**Preparation of Phosphoramide Promoters.** 

Representative Procedure I: Synthesis of Phosphoramides from Aminophosphoryl Dichlorides. (4*S*,5*S*)-(+)-1,3-Dimethyl-4,5-diphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide ((*S*,*S*)-7a)



To a solution of (S,S)-N,N'-dimethyl-1,2-diphenyl-1,2-ethanediamine (S,S)-**18**<sup>2</sup> (3.53 g, 14.7 mmol) and triethylamine (5.2 mL, 37.1 mmol, 2.5 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (300 mL) was added N-piperidinophosphoric dichloride (2.4 mL, 15.6 mmol, 1.05 equiv). The solution was heated to reflux under nitrogen for 44 h and then was cooled to rt. The solution was washed with 5% aq. HCl (2 X 50 mL) and sat. aq. NaHCO<sub>3</sub> solution (60 mL) and was dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated on a rotavap. The residue was purified by column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH, 19/1) and was recrystallized from hexane to afford 3.15 g (58%) of (*S*,*S*)-**7a** as white needles.

# Analytical Data for (S,S)-7a:

<u>mp</u>: 110-111 °C (hexane)

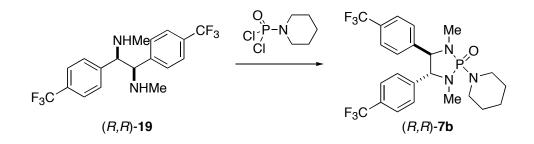
<sup>1</sup>H NMR:  $(400 \text{ MHz}, \text{CDCl}_3)$ 

7.30-7.26 (m, 6 H, 2 X *m*-, *p*-Ph), 7.13-7.10 (m, 2 H, *o*-Ph), 7.07-7.02 (m, 2 H, *o*-Ph), 3.94 (d, J = 8.8, 1 H, HC(4)), 3.89 (d, J = 9.0, 1 H, HC(5)), 3.33-3.24 (m, 4 H, HC(1')), 2.38 (d, J = 9.5, 3 H, NMe), 2.37 (d, J = 9.2, 3 H, NMe), 1.72-1.54 (m, 6 H, (HC(2',3'))

```
<sup>13</sup><u>C NMR</u>: (100 MHz, CDCl<sub>3</sub>)

138.5 (d, J = 9.9, ipso-Ph), 138.3 (d, J = 6.1, ipso-Ph), 128.4 (m-Ph), 127.96 (m-Ph), 127.89 (o-Ph), 127.6 (o-Ph), 72.4 (d, J = 11.5, C(4)), 70.5 (d, J = 10.7, C(5)),

45.4 (d, J = 3.1, C(1')), 30.1 (d, J = 2.3, NMe), 29.5 (d, J = 4.6, NMe), 26.8 (d, J = 3.8, C(2')), 24.8 (C(3'))
```


<sup>31</sup><u>P NMR</u>: (122 MHz, CDCl<sub>3</sub>)

27.35

- IR: (CHCl3)
  3067 (w, CH), 3036 (w, CH), 3020 (w, CH), 3012 (w, CH), 2979 (m, CH), 2959 (m, CH), 2939 (s, CH), 2853 (m, CH), 2818 (w, CH), 1497 (w), 1469 (w), 1456 (m), 1446 (w), 1376 (w), 1359 (w), 1339 (w), 1294 (w), 1280 (w), 1241 (s), 1221 (w), 1207 (m), 1180 (s), 1162 (s), 1125 (w), 1071 (m), 1039 (w), 1019 (m), 998 (m), 962 (s), 833 (w), 810 (w), 775 (w), 768 (w), 700 (s)
- <u>MS</u>: (EI, 70 eV) 369 (M<sup>+</sup>, 26), 250 (23), 166 (15), 165 (12), 120 (32), 119 (C<sub>8</sub>H<sub>9</sub>N<sup>+</sup>, 36), 118 (87), 84 (C<sub>5</sub>H<sub>10</sub>N<sup>+</sup>, 100), 60 (19), 43 (17), 42 (12) <u>TLC</u>:  $R_f 0.42$  (EtOAc/*i*-PrOH, 9/1)
- <u>Opt. Rot.</u>:  $[\alpha]_D^{22}$  +18.2 (*c* = 1.3, CHCl<sub>3</sub>)
- Analysis:
   Calcd for C21H28N3OP (369.45)

   Calculated:
   C, 68.27%;
   H, 7.64%;
   N, 11.37%;
   P, 8.38%

   Found:
   C, 68.00%;
   H, 7.68%;
   N, 11.31%;
   P, 8.23%
- (+)-(4*R*,5*R*)-1,3-Dimethyl-4,5-bis-(4-trifluoromethyl-phenyl)-2-piperidino-1,3,2diazaphospholidine 2-Oxide (*R*,*R*)-7b.



Following Representative Procedure I from triethylamine (230  $\mu$ L, 1.64 mmol, 4.5 equiv), (*R*,*R*)-**19**<sup>2</sup> (137 mg, 0.364 mmol) and piperidinophosphoric dichloride (61  $\mu$ L, 0.4 mmol, 1.1 equiv) in 70 mL of CH<sub>2</sub>Cl<sub>2</sub> was obtained 75 mg (41%) of (*R*,*R*)-**7b** as white needles after column chromatography (SiO<sub>2</sub>, TBME/MeOH, 19/1) and recrystallization (hexane).

Analytical Data for (+)-(R,R)-7b:

| <u>M.W.:</u> 505.45 |
|---------------------|
|---------------------|

<u>mp</u>: 138-139 °C (hexane)

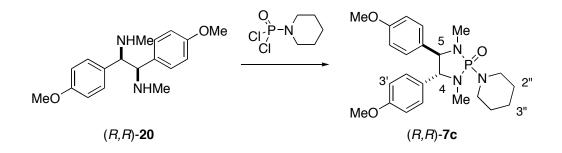
<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>) 7.58 (d, J = 8.0, 2 H, HC(3')), 7.57 (d, J = 7.8, 2 H, HC(3')), 7.26 (d, J = 7.8, 2 H, HC(2')), 7.17 (d, J = 8.1, 2 H, HC(2')), 3.98 (d, J = 8.7, 1 H, HC(4)), 3.92 (d, J = 8.7, 1 H, HC(5)), 3.32-3.22 (m, 4 H, HC(1")), 3.38 (d, J = 10.4, 3 H, Me), 3.37 (d, J = 9.2, 3 H, Me), 1.73-1.63 (m, 2 H, HC(3")), 1.63-1.56 (m, 4 H, HC(2")).

- <sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>) 142.3 (d, J = 10.3 (C(1')), 142.2 (d, J = 6.6, C(1')), 130.7 (q, J = 32.2, C(4')), 128.2 (C(2')), 127.9 (C(2')), 125.7 (br, C(3')), 123.98 (q, J = 272.6, CF<sub>3</sub>), 123.90 (q, J = 271.7, CF<sub>3</sub>), 71.7 (d, J = 11.0, C(4)), 70.0 (d, J = 11.1, C(5)), 45.6 (d, J = 2.8, C(1")), 30.4 (d, J = 2.8, Me), 29.6 (d, J = 4.6, Me), 26.8 (d, J = 3.7, C(2")), 24.7 (C(3")).
- <sup>19</sup><u>F NMR</u>: (470 MHz, CDCl<sub>3</sub>) -64.18, -64.22.
- <sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>) 29.54
  - IR: (CHCl3)

2981 (w), 2940 (w), 2880 (w), 2842 (w), 2820 (w), 1620 (w), 1467 (w), 1447 (w), 1419 (w), 1368 (w), 1325 (s), 1310 (w), 1300 (w), 1288 (w), 1244 (w), 1167 (m), 1132 (s), 1107 (m), 1068 (s), 1038 (w), 1017 (w), 1002 (w), 962 (m), 856 (w), 836 (w).

<u>MS</u>: (CI)

534 (M<sup>+</sup>+29, 29), 507 (M<sup>+</sup>+2, 24), 506 (M<sup>+</sup>+1, 95), 505 (M<sup>+</sup>, 17), 504 (M<sup>+</sup>-1, 14), 487 (26), 486 (M<sup>+</sup>-F, 100), 84 (35).


 HRMS:
 (CI)

 Calcd. for (C23H27F6N3OP)
 506.1796

 Found:
 506.1790

| <u>Opt. Rot.:</u> | $[\alpha]_D^{22}$ +0.6 (CHCl <sub>3</sub> , c = 2.10) (+24.2 at 405 nm.)                               |         |    |          |        |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------|---------|----|----------|--------|--|--|
| <u>TLC</u> :      | <i>R</i> <sub>f</sub> 0.38 (TBME / MeOH, 20/1)                                                         |         |    |          |        |  |  |
| HPLC:             | $t_R$ ((4 <i>R</i> ,5 <i>R</i> )- <b>134a</b> ) 20.73 min (Daicel ChiralCel AD, hexane/EtOH, 97/3, 0.5 |         |    |          |        |  |  |
|                   | mL/min)                                                                                                |         |    |          |        |  |  |
| Analysis:         | C23H26F6N                                                                                              | [3OP    |    |          |        |  |  |
|                   | Calcd: C,                                                                                              | 54.66%; | H, | 5.18%;N, | 8.31%. |  |  |
|                   | Found: C,                                                                                              | 54.75%; | H, | 5.22%;N, | 7.84%. |  |  |

(+)-(4*R*,5*R*)-1,3-Dimethyl-4,5-bis(4-methoxyphenyl)-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*R*,*R*)-7c.



To a solution of the diamine (R,R)-**20**<sup>2</sup> (523 mg, 1.74 mmol) and triethylamine (610  $\mu$ L, 4.35 mmol, 2.5 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (160 mL) was added piperidinophosphoryl dichloride (280  $\mu$ L, 1.83 mmol, 1.05 equiv) at 0 °C. The solution was then heated to reflux for 37 h and another portion of the dichloride (140  $\mu$ L, 0.9 mmol, 0.52 equiv) was added. The reaction mixture was heated to reflux for 8 h further and then was poured into 5% aq. HCl (20 mL). The phases were separated and the organic phase was washed with sat. aq. NaHCO<sub>3 solution</sub> (20 mL) and brine (20 mL), and then was dried (Na<sub>2</sub>SO<sub>4</sub>) filtered and concentrated on a rotovap. The residue was purified by column chromatography (EtOAc/*i*-PrOH, 9/1) to afford 560 mg (75%) of a white foam, which was recrystallized (hexane) to give 251 mg (34%) of (*R*,*R*)-**7c** as white crystals. Analytical Data for (+)-(*R*,*R*)-**7c**:

<u>M.W.:</u> 429.50

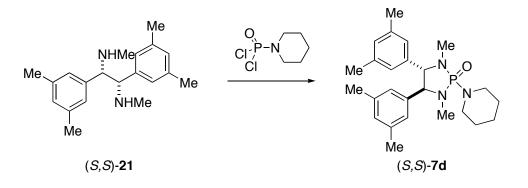
<u>mp</u>: 115-117 °C (hexane)

# <sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 7.03 (d, J = 8.1, 2 H, HC(2')), 6.95 (d, J = 8.8, 2 H, HC(2')), 6.80 (d, J = 8.8, 2 H, HC(3')), 6.79 (d, J = 8.8, 2 H, HC(3')), 3.85 (d, J = 9.0, 1 H, HC(4)), 3.79 (d, 1 H, HC(5)), 3.78 (s, 3 H, MeO), 3.78 (s, 3 H, MeO), 3.26-3.20 (m, 4 H, HC(1")), 2.34 (d, J = 10.2, 3 H, MeN), 2.33 (d, J = 9.5, 3 H, MeN), 1.68-1.54 (m, 6 H, HC (2", 3")).

- <sup>13</sup><u>C NMR</u>: (100 MHz, CDCl<sub>3</sub>) 159.23 (C(4')), 159.21 (C(4')), 130.4 (d, J = 9.9, C(1')), 130.3 (d, J = 5.9, C(1')), 129.0 (C(2')), 128.7 (C(2')), 113.72 (C(3')), 113.62 (C(3')), 72.1 (d, J = 10.7 C(4)), 70.2 (d, J = 10.7, C(5)), 55.2 (MeO), 45.6 (d, J = 2.3, C(1")), 30.0 (d, J = 3.1, MeN), 29.4 (d, J = 4.6, MeN), 26.8 (d, J = 3.1, C(2")), 24.8 (C(3")).
- <sup>31</sup><u>P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

27.11

IR: (CHCl3)


3020 (w), 2958 (m), 2938 (m), 2879 (w), 2851 (m), 2840 (m), 2817 (w), 1613 (m), 1587 (w), 1513 (s), 1464 (m), 1443 (m), 1303 (w), 1289 (w), 1246 (s), 1213 (w), 1173 (s), 1160 (s), 1070 (w), 1037 (m), 1022 (w), 997 (m), 961 (s), 849 (w), 839 (w), 833 (w), 796 (m), 747 (w), 773 (w).

- <u>MS</u>: (EI, 70 eV) 429 (M<sup>+</sup>, 8), 280 (5), 184 (10), 149 (26), 148 (12), 89 (28), 73 (100), 69 (12), 62 (46), 61 (12), 58 (46), 57 (12), 55 (17).
- <u>Opt. Rot.</u>:  $[\alpha]_D^{22}$  +49.9 (CHCl<sub>3</sub>, c = 1.12)
  - <u>TLC</u>:  $R_f 0.32$  (TBME/MeOH, 20/1)

Analysis: C23H32N3O3P

| Calcd: C, | 64.32%; | Н, | 7.51%;N, | 9.78%;P, | 7.21%. |
|-----------|---------|----|----------|----------|--------|
| Found: C, | 64.18%; | H, | 7.68%;N, | 9.66%;P, | 6.96%. |

(+)-(4*S*,5*S*)-1,3-Dimethyl-4,5-bis(3,5-dimethylphenyl)-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7d.



Following Representative Procedure I from triethylamine (185  $\mu$ L, 1.33 mmol, 2.4 equiv), the diamine (*S*,*S*)-**21**<sup>2</sup> (164 mg, 0.55 mmol) and piperidinophosphoryl dichloride (86  $\mu$ L, 0.56 mmol, 1.02 equiv) in 65 mL of CH<sub>2</sub>Cl<sub>2</sub> was obtained 145 mg (62%) of (*S*,*S*)-**7d** as a white foam after column chromatography (SiO<sub>2</sub>, TBME/MeOH, 19/1). An analytical sample was obtained by recrystallization from hexane.

# Analytical Data for (S,S)-7d:

- <u>M.W.:</u> 425.56
  - <u>mp</u>: 149-150 °C
- <sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

6.91 (s, 1 H, HC (4')), 6.89 (s, 1 H, HC(4')), 6.74 (br, 2 H, HC(2')), 6.64 (s, 2 H, H(2')), 3.83 (d, J = 8.6, 1 H, HC(4)), 3.78 (d, J = 8.6, 1 H, HC(5)), 3.28-3.20 (m, 4 H, HC(1")), 2.37 (d, J = 10.2, 3 H, MeN), 2.36 (d, J = 9.1, 3 H, MeN), 2.25 (s, 3 H, Me-Ar), 2.24 (s, 3 H, Me-Ar), 1.70-1.56 (m, 6 H, HC(2", 3").

<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>)

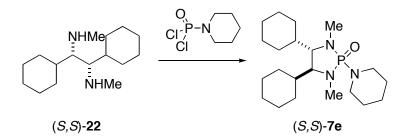
138.9 (d, J = 10.1 C(1')), 138.6 (d, J = 6.4, C(1')), 137.7 (C(3')), 129.52 (C(4')), 129.47 (C(4')), 125.6 (C(2')), 125.4 (C(2')), 72.1 (d, J = 11.0, C(4)), 70.3 (d, J =11.0, C(5)), 45.6 (d, J = 2.8, C(1")), 30.2 (d, J = 3.7, MeN), 29.6 (d, J = 4.6, MeN), 26.8 (d, J = 3.7, C(2")), 24.8 (C(3")), 21.3 (Me-Ar), 21.2 (Me-Ar). <sup>31</sup><u>P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

27.48

IR: (CHCl3)

2981 (m), 2938 (s), 2853 (m), 2816 (w), 1609 (m), 1463 (m), 1446 (m), 1376 (m), 1359 (w), 1339 (m), 1305 (w), 1281 (w), 1258 (m), 1244 (w), 1156 (s), 1124 (w), 1071 (m), 1033 (w), 1022 (m), 998 (m), 961 (s), 923 (w), 857 (w), 822 (w), 701 (w), 660 (w), 608 (w).

<u>MS</u>: (EI, 70 eV)


426 (M<sup>+</sup>+1, 36), 425 (M<sup>+</sup>, 97), 424 (M<sup>+</sup>-1, 13), 410 (15), 344 (11), 340 (10), 320 (10), 279 (15), 278 (65), 263 (16), 194 (43), 193 (47), 148 (68), 147 (47), 146 (93), 132 (61), 119 (17), 84 (100), 60 (26).

- <u>Opt. Rot.:</u>  $[\alpha]_D^{22}$  +7.2 (CHCl<sub>3</sub>, c = 1.00)
  - <u>TLC</u>:  $R_f 0.47$  (TBME/MeOH, 20/1)
  - <u>HPLC</u>:  $t_R$  ((4*S*,5*S*)-7d) 9.93 min (Daicel ChiralCel AD, hexane/EtOH, 97/3, 0.5 mL/min)

Analysis: C25H36N3OP

| Calcd: C, | 70.56%; | H, | 8.53%;N, | 9.87%. |
|-----------|---------|----|----------|--------|
| Found: C, | 70.74%; | H, | 8.63%;N, | 9.82%. |

(+)-(4*S*,5*S*)-1,3-Dimethyl-4,5-dicyclohexyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7e.



Following Representative Procedure I, to a solution of the diamine (S,S)-**22**<sup>2</sup> (230 mg, 0.911 mmol) and triethylamine (305  $\mu$ L, 2.19 mmol, 2.4 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was added piperidinophosphoryl dichloride (153  $\mu$ L, 0.929 mmol, 1.02 equiv) dropwise at 0 °C. The

solution was then heated to reflux for 66 h and then was poured into 5% aq. HCl solution. The phases were separated and the organic layer was washed with sat. aq. NaHCO3 solution and brine then was dried (Na2SO4) and concentrated on a rotavap. The residue was purified by column chromatography (SiO2, EtOAc/*i*-PrOH 19/1) to give 172 mg (49%) of (*S*,*S*)-**7e** as a white foam.

Analytical Data for (S,S)-7e

<u>M.W.:</u> 381.55

<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

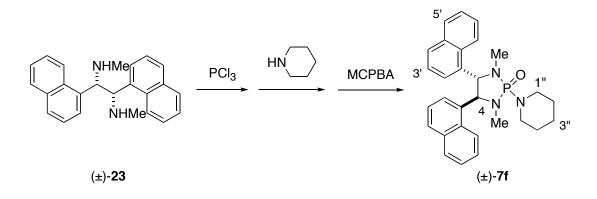
3.18-2.98 (m, 4 H, H(1")), 2.64 (d, *J* = 16.1, 1 H, HC(4)), 2.52 (d, *J* = 9.1, 3 H, Me), 2.51 (d, *J* = 2.7, 3 H, Me), 2.35 (dd, *J* = 7.3, 7.1, 1 H, HC(5)), 1.97 (d, *J* = 12.8, 1 H), 1.86 (d, *J* = 12.3, 1 H), 1.80-0.90 (m, 26 H, CH<sub>2</sub>).

<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>)

66.9 (d, J = 15.7, C(4)), 66.0 (d, J = 11.0, C(5)), 45.4 (d, J = 2.8, C(1")), 45.0 (d, J = 2.8, C(1')), 41.0 (C(1')), 33.7 (d, J = 5.5, Me), 30.6 (d, J = 6.4, Me), 30.1, 29.6, 29.1, 27.7, 26.8 (d, J = 3.7, C(2")), 26.52, 26.45 (d, J = 3.7, C(2")), 26.3, 26.2, 24.9 (C(3")).

- <sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>) 27.48
  - <u>IR</u>: (CHCl<sub>3</sub>) 2931 (s), 2854 (s), 1450 (m), 1374 (w), 1358 (w), 1338 (w), 1301 (w), 1260 (w), 1249 (w), 1161 (s), 1124 (w), 1070 (m), 1027 (w), 1008 (w), 977 (w), 961 (m), 896 (w).
  - <u>MS</u>: (CI)

410 (M<sup>+</sup>+29, 16), 383 (M+2, 24), 382 (M+1, 100), 381 (M+, 11), 380 (M-1, 45), 299 (15), 298 (87).


HRMS: (CI)

Calcd. for (C<sub>21</sub>H41N3OP) 382.2987 Found: 382.2991

<u>Opt. Rot.</u>:  $[\alpha]_D^{22} + 1.5$  (CHCl<sub>3</sub>, c = 2.31)

TLC: 
$$R_f 0.52$$
 (EtOAc/*i*-PrOH, 19/1)

**Representative Procedure II:** Synthesis of Phosphoramides from Phosphorus Trichloride. (±)-1,3-Dimethyl-4,5-bis(1-naphthyl)-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (±)-7f



To a stirred cold (-78 °C) solution of PCl<sub>3</sub> (97  $\mu$ L, 1.11 mmol, 1.02 equiv) in 3 mL of CH<sub>2</sub>Cl<sub>2</sub> was added (±)-*N*,*N*'-dimethyl-1,2-bis(1-naphthyl)-1,2-ethanediamine (±)-23<sup>2</sup> (370 mg, 1.09 mmol) in 3 mL of CH<sub>2</sub>Cl<sub>2</sub> via a syringe under nitrogen. Then triethylamine (318  $\mu$ L, 2.28 mmol, 2.1 equiv) was added at the same temperature. The mixture was warmed to room temperature, was stirred for 5 h, and then was evaporated under reduced pressure to remove the excess reagents (PCl<sub>3</sub> and triethylamine).

The residue was suspended in 4 mL of CH<sub>2</sub>Cl<sub>2</sub> and piperidine (269  $\mu$ L, 2.72 mmol, 2.5 equiv) at room temperature and the mixture was stirred under nitrogen, for 18 h and then was concentrated under reduced pressure to remove excess piperidine.

The residue was dissolved in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> and a solution of MCPBA (70 %, 563 mg, 2.28 mmol, 2.1 equiv) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise at 0° C. The mixture was allowed to warm to room temperature and was stirred for 24 h. Then, sat. aq. NaHCO<sub>3</sub> solution (10 mL) was added with stirring. The aqueous layer was separated and was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined organic solutions were washed with sat. aq. NaHCO<sub>3</sub>, (10 mL) dried (MgSO<sub>4</sub>), filtered, and evaporated to give a residue, which was purified by column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH, 19/1 to 9/1) to afford 196 mg (38%) of (±)-7f. An analytical sample was obtained by recrystallization from hexane.

## Analytical Data for (±)-7f:

<u>mp</u>: 183-186 °C (hexane)

# <sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

mixture of rotamers: 9.33 (d, J = 8.6), 8.12 (d, J = 5.1), 7.90 (d, J = 8.1), 7.87 (d, J = 7.1), 7.78-7.52 (m), 7.16 (dd, J = 7.7, 7.5), 7.10-6.92 (br), 6.83 (dd, J = 8.1, 7.1), 6.74-6.58(br), 6.48 (d, J = 6.8), 6.37 (d, J = 8.8), 5.54 (d, J = 9.1), 5.08-4.92 (br), 4.33 (d, J = 9.3), 3.46-3.32 (br, HC(1")), 2.48 (d, J = 10.4), 2.44 (d, J = 9.0, Me), 2.43 (d, J = 10.5, Me), 1.82-1.62 (br, HC(2", 3")).

<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>)

mixture of rotamers: 136.1, 135.0, 133.3, 132.4, 132.2, 131.7, 131.4, 129,6, 129.2, 128.9, 128.1, 127.2, 126.0, 125.8, 125.4, 125.3, 125.1, 124.7, 124.4, 124.2, 123.2, 122.1, 121.5, 61.2, 46-45 (br, C(1")), 31-29 (br, Me), 26.89 (d, J = 2.8, C(2")), 24.85 (C(3")).

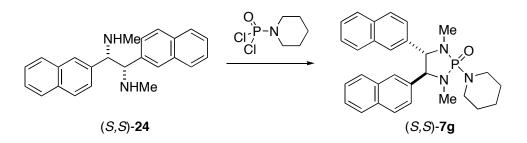
<sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>)

28.20 (br), 26.21, 25.63 (minor).

IR: (CHCl3)

3059 (w), 3018 (w), 2981 (m), 2970 (m), 2958 (m), 2939 (m), 2883 (w), 2853 (m), 2822 (w), 1597 (w), 1512 (w), 1466 (w), 1446 (w), 1396 (w), 1376 (w), 1362 (w), 1352 (w), 1339 (m), 1326 (w), 1289 (m), 1257 (w), 1243 (m), 1165 (s), 1150 (m), 1124 (w), 1071 (w), 1048 (w), 1020 (m), 981 (m), 962 (s), 865 (w), 852 (w), 834 (w), 815 (w), 804 (w), 661 (w), 647 (w).

 $\underline{MS}$ : (FAB)


471 (M<sup>+</sup>+2, 34), 470 (M<sup>+</sup>+1, 100), 469 (M<sup>+</sup>, 11), 468 (M<sup>+</sup>-1, 13), 216 (18), 170 (10), 168 (14).

<u>TLC</u>:  $R_f 0.40$  (TBME/MeOH, 20/1)

Analysis: C29H32N3OP

| Calcd: C, | 74.18%; | H, | 6.87%;N, | 8.95%. |
|-----------|---------|----|----------|--------|
| Found: C, | 74.10%; | H, | 6.75%;N, | 8.88%. |

# (+)-(4*S*,5*S*)-1,3-Dimethyl-4,5-bis-(2-naphthyl)-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7g.



Following Representative Procedure I from triethylamine (185  $\mu$ L, 1.32 mmol, 3.5 equiv), the diamine (*S*,*S*)-**24**<sup>2</sup> (180 mg, 0.529 mmol) and piperidinophosphoryl dichloride (89  $\mu$ L, 0.582 mmol, 1.1 equiv) in 50 mL of CH<sub>2</sub>Cl<sub>2</sub> was obtained 75 mg (30%) of (*S*,*S*)-**7g** as white crystals after column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH, 9/1) and recrystallization (hexane).

# Analytical Data for (S,S)-7g:

<u>M.W.:</u> 469.59

<u>mp</u>:  $205-206 \ ^{\circ}C$  (hexane)

<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

7.86-7.78 (m, 4 H, Ar), 7.69 (d, J = 7.7, 1 H, Ar), 7.66 (d, J = 7.9, 1 H, Ar), 7.54 (br, 1 H, HC(1')), 7.50-7.40 (m, 5 H, Ar), 7.37 (br, 1 H, HC(1')), 7.32 (dd, J = 8.5, 1.5, 1 H, HC(3')), 4.24 (d, J = 8.6, 1 H, HC(4)), 4.19 (d, J = 8.6, 1 H, HC(5)), 3.40-3.38 (m, 4 H, HC(1")), 2.43 (d, J = 10.4, Me), 2.42 (d, J = 9.1 3 H, Me), 1.72-1.60 (m, 6 H, HC (2", 3")).

<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>)

136.1 (d, J = 10.2, C(2')), 136.0 (d, J = 7.5, C(2')), 133.29 (C(9')), 133.27 (C(9')), 133.14 (C(10')), 133.11 (C(10')), 128.5 (Ar), 128.4 (Ar), 127.9 (Ar), 127.9 (Ar), 127.7 (Ar), 127.4 (Ar), 127.2 (Ar), 126.2 (Ar), 126.08 (Ar), 126.02 (Ar), 125.5 (Ar), 124.7 (Ar), 72.2 (d, J = 12.0, C(4)), 70.6 (d, J = 11.0, C(5)), 45.7 (C(1")), 30.3 (Me), 29.6 (d, J = 3.7, Me), 26.8 (d, J = 3.7, C(2")), 24.8 (C(3")). <sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>)

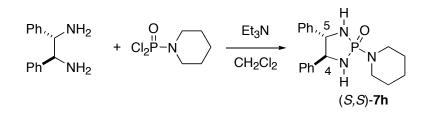
27.38

<u>IR</u>: (CHCl3)

3059 (w), 2982 (m), 2973 (m), 2963 (m), 2939 (m), 2904 (w), 2882 (w), 2852 (m), 2822 (w), 1602 (w), 1509 (w), 1467 (w), 1445 (w), 1375 (m, 1361 (w), 1339 (m), 1326 (w), 1319 (w), 1289 (m), 1269 (w), 1244 (m), 1162 (w), 1150 (m), 1123 (m), 1071 (m), 1026 (m), 1019 (m), 1005 (m), 961 (s), 953 (m), 896 (w), 883 (w), 962 (w), 832 (w), 660 (w).

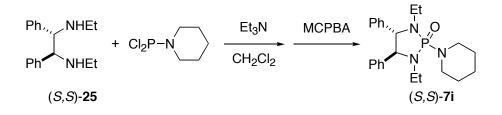
 $\underline{MS}: \quad (EI, 70 \text{ eV})$ 

470 (M<sup>+</sup>+1), 469 (M<sup>+</sup>, 70), 301 (10), 300 (42), 216 (21), 215 (17), 170 (33), 169 (81), 168 (100), 153 (14), 141 (23), 128 (11), 60 (18).


<u>Opt. Rot.</u>:  $[\alpha]_D^{22}$  +80.7 (CHCl<sub>3</sub>, c = 1.38)

<u>TLC</u>:  $R_f 0.39 (TBME / MeOH, 20 / 1)$ 

Analysis: C29H32N3OP


| Calcd: C, | 74.18%; | H, | 6.87%;N, | 8.95%;P, | 6.60%. |
|-----------|---------|----|----------|----------|--------|
| Found: C, | 74.12%; | H, | 6.75%;N, | 8.68%;P, | 6.72%. |

(4S,5S)-4,5-Diphenyl-2-(1-piperidinyl)-1,3,2-diazaphospholidine 2-Oxide (S,S)-7h.



Following Representative Procedure I, from triethylamine (0.63 mL, 4.5 mmol, 3.0 equiv), (*S*,*S*)-1,2-diphenyl-1,2-ethanediamine<sup>1</sup> (0.318 g, 1.5 mmol) and 1-piperidinylphosphoric dichloride (0.23 mL, 1.5 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (14+8+8 mL) was obtained 0.301 g (59%) of (*S*,*S*)-7h as white crystals after column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH 10/1) and recrystallization (CHCl<sub>3</sub>/hexane). Anal. Calcd for C<sub>19</sub>H<sub>24</sub>N<sub>3</sub>OP (341,37): C, 66.85; H, 7.09; N, 12.31. Found: C, 66.52; H, 6.90; N, 12.13.

Representative Procedure III: Synthesis of Phosphoramides from Aminophosphorus Dichloride. (4*S*,5*S*)-(+)-1,3-Diethyl-4,5-diphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7i)



To a solution of triethylamine (0.66 mL, 4.73 mmol, 2.2 equiv) in 80 mL of CH<sub>2</sub>Cl<sub>2</sub> at reflux was added a solution of *N*,*N*'-diethyl-1,2-diphenyl-1,2-ethanediamine (*S*,*S*)-**25**<sup>3</sup> (578 mg, 2.15 mmol)in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> and a solution of piperidinophosphorus dichloride (0.33 mL, 2.15 mmol, 1.0 equiv) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> simultaneously via a syringe pump over 2 h. After addition the solution was heated to reflux for an additional 30 min and then was cooled back to 0° C. A solution of MCPBA (85%, 480 mg, 2.37 mmol, 1.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was then added via syringe and the solution was stirred at rt overnight. The slightly yellow solution was poured into a separatory funnel and washed with water (20 mL), sat. aq. NaHCO3 solution (2 X 20 mL) and brine (20 mL). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo to afford a crude product that was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 19/1) to give 549 mg (64%) of (*S*,*S*)-**7i** as a white solid. Recrystallization from hexane afforded 255 mg (30%) analytically pure sample as white prisms.

# Analytical Data for (S,S)-7i:

<u>mp</u>: 150-152 °C (hexane)

```
<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)
```

7.32-7.20 (m, 6 H, Ph), 7.20-7.12 (m, 2 H, Ph), 7.06-7.00 (m, 2 H, Ph), 4.12 (d, J = 8.5, 1 H, HC(4)), 4.04 (d, J = 8.5, 1 H, HC(5)), 3.36-3.20 (m, 4 H, HC(1')), 2.88-2.70 (m, 4 H, H<sub>2</sub>C(Et)), 1.68-1.58 (m, 6 H, HC(2', 3')), 1.07 (t, J = 7.2, 3H, Me), 0.97 (t, J = 7.1, Me).

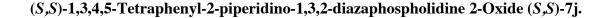
<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>) 139.2 (d, J = 10.1, C(1")), 138.9 (d, J = 6.4, C(1")), 128.4 (C(3")), 128.3 (C(3")), 128.1 (C(2")), 127.90 (C(2")), 127.87 (C(4")), 127.6 (C(4")), 69.5 (d, J = 12.0, C(4)), 68.1 (d, J = 11.0, C(5)), 45.9 (d, J = 2.8, C(1')), 38.0 (d, J = 2.8, C(Et)), 37.1 (d, J = 4.6, C(Et)), 26.6 (d, J = 4.6, C(2')), 24,8 (C(3')), 13.6 (Me), 13.4 (Me).

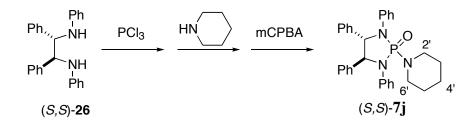
<sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>)

28.12

 $\underline{IR}$ : (CHCl<sub>3</sub>)

2973 (m), 2938 (s), 2902 (w), 2872 (m), 2853 (m), 1602 (w), 1492 (w), 1463 (w), 1455 (m), 1444 (m), 1377 (m), 1357 (m), 1338 (m), 1310 (w), 1278 (w), 1258 (w), 1161 (s), 1123 (m), 1071 (s), 1054 (m), 1022 (m), 961 (s), 917 (w), 912 (w), 901 (w), 879 (w), 854 (w), 838 (w), 700 (w), 659 (w), 613 (w).


 $\underline{MS}: \quad (EI, 70 \text{ eV})$ 


397 (M<sup>+</sup>, 34), 264 (21), 235 (13), 180 (14), 179 (11), 134 (39), 133 (40), 132 (53), 118 (25), 104 (20), 91 (13), 84 (100), 74 (13), 55 (11).

- <u>Opt. Rot.</u>:  $[\alpha]_D^{22}$  +6.2 (CHCl<sub>3</sub>, c = 1.20)
  - <u>TLC</u>:  $R_f 0.33 (CH_2Cl_2/MeOH, 19/1)$
- Analysis: Calcd for C23H32N3OP (397.50)

| Calcd: | С, | 69.50%; | H, | 8.11%; | N, | 10.57%; P, | 7.79%. |
|--------|----|---------|----|--------|----|------------|--------|
| Found: | C, | 69.48%; | H, | 8.08%; | N, | 10.55%; P, | 8.04%. |

Denmark et al.





Following Representative Procedure II, to a stirred cold (-78 °C) solution of PCl<sub>3</sub> (69 mL, 0.79 mmol, 1.04 equiv) in 3 mL of CH<sub>2</sub>Cl<sub>2</sub> was added (*S*,*S*)-*N*,*N*',1,2-tetraphenyl-1,2ethanediamine (*S*,*S*)-**26**<sup>4</sup> (261 mg, 0.716 mmol, 1.0 equiv) in 3 mL of CH<sub>2</sub>Cl<sub>2</sub> via a syringe under nitrogen. Then triethylamine (0.22 mL, 1.57 mmol, 2.2 equiv) was added at the same temperature. The mixture was warmed to room temperature, was stirred for 5 h, and then was evaporated under reduced pressure to remove the excess reagents (PCl<sub>3</sub> and triethylamine).

The residue was suspended in 4 mL of CH<sub>2</sub>Cl<sub>2</sub> and piperidine (0.21 mL, 2.15 mmol, 3.0 equiv) at room temperature and the mixture was stirred under nitrogen, for 18 h and then was concentrated under reduced pressure to remove excess piperidine.

The residue was dissolved in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> and a solution of MCPBA (50%, 250 mg; 0.72 mmol, 1.0 mmol) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise at 0° C. The mixture was allowed to warm to room temperature and was stirred for 24 h. Then, sat. aq. NaHCO<sub>3</sub> solution (10 mL) was added with stirring. The aqueous layer was separated and was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined organic solutions were washed with sat. aq. NaHCO<sub>3</sub>, (10 mL) dried (MgSO<sub>4</sub>), filtered, and evaporated to give a residue, which was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> then CH<sub>2</sub>Cl<sub>2</sub>/*i*-PrOH, 100/1 as eluents). Recrystallization from hexane afforded 196 mg (55 %) of (*S*,*S*)-**7j** as a colorless amorphous solid.

Analytical Data for (-)-(S,S)-7j:

<u>M.W.:</u> 493.59

<u>mp</u>: 195-197° C (hexane)

 $^{1}$ <u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

7.25-7.20 (m, 8H), 7.19-7.13 (m, 6H), 7.103-7.06 (m, 2H), 7.00 (dd, *J* = 7.7, 0.9,

2H), 6.94 (t, *J* = 7.3, 1H), 6.91 (t, *J* = 6.4, 1H), 4.93 (d, *J* = 8.1, 1H, HC(4/5)), 4.88 (dd, *J* = 8.3, 6.8, 1H, H(5/4)), 3.40-3.32 (m, 2H, HC(1')), 3.18-3.08 (m, 2H, HC(1')), 1.46-1.38 (m, 4H, HC(2')H<sub>2</sub>), 1.18-1.06 (m, 2H, HC(3'))

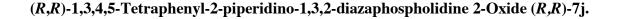
- <sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>) 140.30 (d, J = 3.7, C(1")), 140.29 (d, J = 6.6, (C1")), 138.38 (d, J = 8.3,C(1")), 138.30 (d, J = 4.6,(C1")), 129.0, 128.6, 128.52, 128.1, 127.7, 127.5, 123.2, 122.2, 121.9, 121.8, 119.6, 119.5, 67.7 (d, J = 10.1, C(4/5)), 66.7 (d, J = 12.0, C(5/4)), 45.4 (d, J = 2.8, C(1')), 25.4 (d, J = 4.6, C(2')), 24.4 (C(3'))
- <sup>31</sup><u>P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

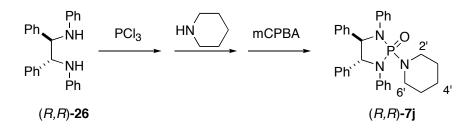
17.30

IR: (CHCl3)

2989(w), 2940(m), 2899(w), 2854(w), 1599(m), 1493(s), 1456(m), 1385(m), 1377(m), 1361(w), 1353(w), 1341(w), 1308(w), 1294(m), 1279(w), 1262(m), 124(w), 1165(w), 1120(m), 1069(m), 1029 (w), 1001(w), 967(s), 917 (w), 836(w), 699(w)

 $\underline{MS}: \quad (EI, 70 \text{ eV})$ 


494 (M<sup>+</sup>+1, 21), 493 (M<sup>+</sup>, 50), 182 (43), 181 (100), 180 (39), 104 (10), 84 (25), 77 (18)


<u>Opt. Rot.</u>:  $[\alpha]_D^{22} - 194$  (CHCl3, c = 1.01)

<u>TLC</u>:  $R_f$  0.49 (EtOAc)

Analysis: C31H32N3OP

Calcd: C, 75.44%; H, 6.53%; N, 8.51%; P, 6.28%. Found: C, 75.31%; H, 6.30%; N, 8.46%; P, 6.09%.





Following Representative Procedure II, to a stirred cold (-78 °C) solution of PCl<sub>3</sub> (69 mL, 0.79 mmol) in 3 mL of dry CH<sub>2</sub>Cl<sub>2</sub> was added (R,R)-**26**<sup>4</sup> (261 mg, 0.716 mmol) in 3 mL of dry CH<sub>2</sub>Cl<sub>2</sub> via a syringe under nitrogen. Then triethylamine (0.22 mL, 1.57 mmol) was added at the same temperature. The mixture was warmed to room temperature, stirred for 5 h, and then condensed under reduced pressure to remove the excess reagents (PCl<sub>3</sub> and triethylamine).

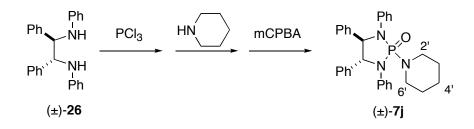
The residue was suspended in 4 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and stirred, to which was added piperidine (0.21 mL, 2.15 mmol) at room temperature under nitrogen. The mixture was stirred for 18 h and condensed under reduced pressure to remove excess piperidine.

The residue was dissolved in 5 mL of CH<sub>2</sub>Cl<sub>2</sub>. *m*-Chloroperbenzoic acid (50%, 250 mg; 0.72 mmol) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 24 h. Then saturated aqueous NaHCO<sub>3</sub> was added with stirring. The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> twice. The combined organic solutions were washed with saturated aqueous NaHCO<sub>3</sub>, dried over MgSO<sub>4</sub>, filtered, and evaporated to give a crude material, which was chromatographed on silica gel (CH<sub>2</sub>Cl<sub>2</sub> then CH<sub>2</sub>Cl<sub>2</sub>/2-propanol = 100/1 as eluents) and recrystalized from hexane to afford 196 mg (55%) of (*R*,*R*)-**7j** as a colorless amorphous solid.

Analytical Data for (R,R)-7j:

<u><sup>1</sup>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

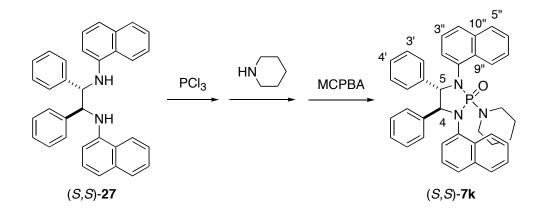
7.24-7.20 (m, 8H), 7.18-7.13 (m, 6H), 7.10 (m, 2H), 7.00 (d, J = 8.1, 2H), 6.94 (t, J = 7.3, 1H), 6.91 (t, J = 6.6, 1H), 4.93 (d, J = 8.2, 1H, NCH), 4.88 (dd, J = 8.2, 1.4, 1H, NCH), 3.36 (m, 2H, C(2'/6')H<sub>2</sub>), 3.14 (m, 2H, C(2'/6')H<sub>2</sub>), 1.43 (m, 4H, C(3', 5')H<sub>2</sub>), 1.13 (m, 2H, C(4')H<sub>2</sub>).


# $\frac{13}{\text{C NMR}}:$ (100 MHz, CDCl<sub>3</sub>) 140.24 (d, *J* = 3.1, *ipso*-Ph), 140.22 (d, *J* = 6.1, *ipso*-Ph), 138.3 (d, *J* = 8.8, *ipso*-Ph), 138.2 (d, *J* = 6.1, *ipso*-Ph), 128.9, 128.6, 128.5, 128.0, 127.7, 127.5, 123.2, 122.2, 121.8 (d, *J* = 3.8, *o*-Ph), 119.5 (d, *J* = 4.6, *o*-Ph), 67.7 (d, *J* = 9.9, CH), 66.7 (d, *J* = 11.4, CH), 45.3 (d, *J* = 3.1, C(2', 6')), 25.4 (d, *J* = 4.6, C(3', 5')), 24.3 (C(4')).

<u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

17.25

- <u>IR</u>: (KBr) 3063 (w), 3029 (w), 3010 (w), 2934 (m), 2851 (m), 1630 (w), 1599 (s), 1494 (s), 1455 (m), 1401 (s), 1385 (m), 1340 (m), 1259 (s), 1236 (s), 1165 (m), 1120 (m), 1067 (m), 1030 (m), 965 (s), 917 (w), 793 (w), 757 (m), 734 (m), 698 (m)
- <u>MS</u>: (EI, 70 eV) 494 (M<sup>+</sup>+1, 22), 493 (M<sup>+</sup>, 57), 182 (48), 181 (100), 180 (34), 104 (9), 84 (22), 77 (17).
- <u>TLC</u>:  $R_f 0.89$  (EtOAc)
- <u>Opt. Rot.:</u>  $[\alpha]_D^{22} + 174.8 \ (c = 1.05, CHCl_3)$


# (±)-1,3,4,5-Tetraphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (±)-(7j)



Following Representative Procedure II, from ( $\pm$ )-**26**<sup>4</sup> (1.09 g, 3.0 mmol), PCl<sub>3</sub> (294 mL, 3.3 mmol, 1.1 equiv), triethylamine (0.92 mL, 6.6 mmol, 2.2 equiv), piperidine (0.89 mL, 9.0 mmol, 3.0 equiv) and MCPBA (50%, 1.14 g, 3.3 mmol, 1.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (15+15+15 mL) was obtained 0.62 g (42%) of ( $\pm$ )-**7j** as a colorless amorphous solid after column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/*i*-PrOH, 20/1) and recrystallization (toluene/hexane).

| Analytical Da     | ata for (±)- <b>7j</b> :                                                                   |                |    |          |          |        |  |
|-------------------|--------------------------------------------------------------------------------------------|----------------|----|----------|----------|--------|--|
| <u>M.W.:</u>      | 493.59                                                                                     |                |    |          |          |        |  |
| <u>mp</u> :       | 196-197 °C (                                                                               | (toluene/hexan | e) |          |          |        |  |
| 31 <u>P NMR</u> : | (162 MHz, C                                                                                | CDCl3)         |    |          |          |        |  |
|                   | 17.30                                                                                      | 17.30          |    |          |          |        |  |
| <u>MS</u> :       | (EI, 70 eV)                                                                                |                |    |          |          |        |  |
|                   | 494 (M+1, 21), 493 (M <sup>+</sup> , 50), 182 (100), 180 (39), 104 (10), 84 (25), 77 (18). |                |    |          |          |        |  |
| <u>TLC</u> :      | $R_f 0.49 (\text{EtOAc})$                                                                  |                |    |          |          |        |  |
| Analysis:         | C31H32N3OP                                                                                 |                |    |          |          |        |  |
|                   | Calcd: C,                                                                                  | 75.44%;        | H, | 6.53%;N, | 8.51%;P, | 6.28%. |  |
|                   | Found: C,                                                                                  | 75.68%;        | H, | 6.51%;N, | 8.49%;P, | 6.25%. |  |

(+)-(4*S*,5*S*)-1,3-Bis-(1-naphthyl)-4,5-diphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7k.



Following Representative Procedure II, to a solution of phosphorus trichloride (100  $\mu$ L, 1.14 mmol, 1.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added the solution of the diamine (*S*,*S*)-**27**<sup>4</sup> (482 mg, 1.04 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) via a cannula at –78 °C followed by triethylamine (363  $\mu$ L, 3.12 mmol, 3.0 equiv). The colorless solution was then slowly warmed to rt and the solution turned light green-yellow. The solution was stirred at rt for 6 h and then was cooled back to –78 °C. Piperidine (310  $\mu$ L, 3.12 mmol, 3.0 equiv) was added and then the solution was allowed to warm to rt and was stirred overnight. A solution of MCPBA (50%, 431 mg, 1.25 mmol, 1.2 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added and the mixture stirred at rt for 5 h. The redorange solution was then poured into sat. aq. NaHCO<sub>3</sub> solution (30 mL) and the layers were separated. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 20 mL) and combined organic layers were washed with brine (20 mL), dried (MgSO<sub>4</sub>), and concentrated on a rotavap. The oily residue was then purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 3/1 to 1/1) to give 309 mg (50%) of (*S*,*S*)-**7k** as an off-white foam, which was recrystallized from toluene/hexane to give white amorphous powder.

Analytical Data for (S,S)-7k:

<u>M.W.:</u> 593.72

<u>mp</u>: 188-190 °C(toluene/hexane)

<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

mixture of rotamers: 9.54 (d, J = 8.4), 8.82-8.38 (br), 8.32-8.06 (br), 7.96-6.92

(br), 5.64-5.52 (br), 5.57 (d, *J* = 9.2), 5.24-5.12 (br), 3.36 -2.72 (br), 1.74-1.62 (br), 1.32-0.36 (br).

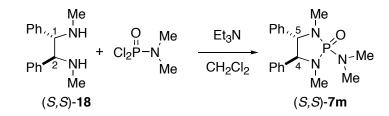
- <sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>) mixture of rotamers: 138.8, 137.8, 134.5, 132.6, 131.1, 129.0, 128.6, 128.2, 128.0, 127.8, 127.6, 127.4, 126.6, 126.2, 125.6, 125.0, 124.6, 123.6, 118.1, 71.76, 69.9, 46.2, 45.7, 26.0, 25.0, 24.0, 14.1.
- <sup>31</sup><u>P NMR</u>: (202 MHz, CDCl<sub>3</sub>)

mixture of rotamers: 21.29 (br), 20.25 (br), 14.02 (minor).

IR: (CHCl3)

3091 (w), 3065 (w), 2986 (m), 2968 (m), 2941 (m), 2903 (w), 2884 (w), 2879 (w), 2854 (m), 1596 (m), 1575 (m), 1510 (w), 1497 (w), 1465 (w), 1456 (w), 1444 (w), 1393 (s), 1376 (w), 1363 (w), 1342 (w), 1307 (w), 1281 (m), 1266 (m), 1251 (w), 1237 (w), 1192 (w), 1166 (m), 1151 (w), 1116 (m), 1097 (s), 1072 (s), 1049 (m), 1034 (w), 1026 (m), 967 (s), 945 (m), 915 (w), 854 (w), 839 (w), 820 (w), 699 (w), 605 (w).

 $\underline{MS}: \quad (EI, 70 \text{ eV})$ 


594 (M+1, 10), 593 (M<sup>+</sup>, 23), 446 (17), 232 (24), 231 (100), 230 (13), 91 (14), 84 (10), 57 (16), 56 (12).

- <u>Opt. Rot.</u>:  $[\alpha]_D^{22}$ -356 (CHCl<sub>3</sub>, c = 1.01)
  - <u>TLC</u>:  $R_f 0.33$  (hexane / EtOAc, 1/1).

Analysis: C39H36N3OP

| Calcd: C, | 78.90%; | Н, | 6.11%;N, | 7.08%;P, | 5.22%. |
|-----------|---------|----|----------|----------|--------|
| Found: C, | 78.86%; | Н, | 6.26%;N, | 6.91%;P, | 5.18%. |

(4*S*,5*S*)-1,3-Dimethyl-4,5-diphenyl-2-dimethylamino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7m



Following Representative Procedure I, from triethylamine (0.21 mL, 0.154 g, 1.53 mmol), (S,S)-18<sup>2</sup> (0.146 g, 0.61 mmol) and *N*,*N*-dimethylphosphoramic dichloride (0.073 mL, 0.099 g, 0.61 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5+1+1 mL), was obtained 0.121 g (60%) of (S,S)-7m as a white solid after chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH 10/1). An analytical sample was obtained by recrystallization from hexane.

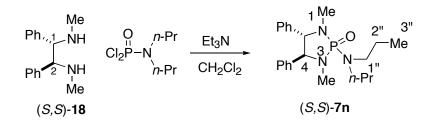
Analytical data for (S,S)-7m:

<u>mp</u>:  $161 - 163 \,^{\circ}C$  (hexane)

<sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 7.30 - 7.25 (m, 6H, CH(Ar)), 7.14 - 7.10 (m, 2H, CH(Ar)), 7.08 - 7.05 (m, 2H, CH(Ar)), 3.94 (dm J = 9.0, HCPh), 3.90 (d, J = 8.8, HCPh), 2.88 (d, J = 9.5, 6H, (CH<sub>3</sub>)<sub>2</sub>N), 2.37 (d, J = 9.0, CH<sub>3</sub>N), 2.35 (d, J = 10.3, CH<sub>3</sub>N)

<sup>13</sup><u>C NMR</u>: (100 MHz, CDCl<sub>3</sub>) 138.3 (C(Ar)), 138.2(C(Ar)), 128.4 (CH(Ar)), 128.4 (CH(Ar)), 128.0 (CH(Ar)), 128.0 (CH(Ar)), 127.9 (CH(Ar)), 127.7 (CH(Ar)), 72.3 (d, J = 11.4) and 70.7 (d, J = 10.7) ((C(4), C(5)), 37.0 (d, J = 4.6, (CH<sub>3</sub>)<sub>2</sub>N), 30.2 (d, J = 2.3, CH<sub>3</sub>N), 29.2(d, J = 4.6, CH<sub>3</sub>N)

<sup>31</sup><u>P NMR</u>: (162 MHz, CDCl<sub>3</sub>)


29.61

<u>IR</u>: (KBr)

3470 (w), 3210 (w), 3027 (w), 2940 (w), 2805 (w), 1491 (m), 1455 (m), 1291 (m), 1244 (s), 1202 (s), 1152 (s), 1071 (m), 984 (s), 791 (s), 745 (s)

| <u>MS</u> :       | (70 eV)                                                                                |                                               |          |           |          |  |  |  |
|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|----------|-----------|----------|--|--|--|
|                   | 329 (M <sup>+</sup> , 85), 210 (38), 166 (27), 165 (28), 120 (28), 119 (56), 118 (100) |                                               |          |           |          |  |  |  |
| <u>TLC</u> :      | <i>Rf</i> 0.23 (EtO)                                                                   | <i>R</i> f 0.23 (EtOAc/ <i>i</i> -PrOH, 10/1) |          |           |          |  |  |  |
| <u>Opt. Rot.:</u> | $[\alpha]_{\rm D}^{22}$ -5.10 (                                                        | $[\alpha]_D^{22}$ -5.10 (c = 1.02, CHCl3)     |          |           |          |  |  |  |
| Analysis:         | Calcd for C <sub>18</sub> H <sub>24</sub> N <sub>3</sub> OP                            |                                               |          |           |          |  |  |  |
|                   | Calcd:                                                                                 | C, 65.64;                                     | Н, 7.34; | N, 12.76; | P, 9.40. |  |  |  |
|                   | Found:                                                                                 | C, 65.68;                                     | Н, 7.30; | N, 12.65; | P, 9.34. |  |  |  |

(4*S*,5*S*)-1,3-Dimethyl-4,5-diphenyl-2-di-*n*-propylamino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7n



Following Representative Procedure I, from triethylamine (0.42 mL, 3.0 mmol, 3.0 equiv), (*S*,*S*)-18<sup>2</sup> (0.248 g, 1.0 mmol) and *N*,*N*-dipropylphosphoramic dichloride (0.218 mL, 1.0 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was obtained 0.179 g (46%) of 7n as a thick oil after column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH 10/1).

# Analytical Data for (S,S)-7n:

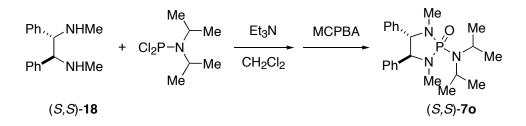
<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

7.28-7.20 (m, 6 H, Ar), 7.18-7.12 (d, 2 H, Ar), 7.04-6.98 (d, Ar), 3.94 (d, J = 8.6, 1H, HC(4)), 3.90 (d, J = 8.6, 1H, HC(5)), 3.22-3.12 (m, 2 H, H2C(1")), 3.04-2.96 (m, 2 H, H2C(1")), 2.35 (d, J = 9.3, 3 H, MeN(1)), 2.32 (d, J = 11.5, 3 H, MeN(3)), 1.76-1.58 (m, 4 H, H2C(2")), 0.97 (t, J = 7.3, 6 H, Me(3"))

<sup>31</sup><u>P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

27.74

<u>MS</u>: (EI, 70 eV) 386 (M<sup>+</sup>+1, 13), 385 (M<sup>+</sup>, 34), 357 (29), 356 (100), 286 (22), 285 (96), 251 (14), 


 166 (40), 165 (10), 133 (53), 132 (63), 120 (24), 119 (20), 118 (54), 100 (39), 91 (18), 60 (23)

 Analysis:
 Calcd for C22H32N3OP (385.49)

 Calcd:
 C, 68.55%;
 H, 8.37%;
 N, 10.90%.

 Found:
 C, 68.52%;
 H, 8.07%;
 N, 10.98%.

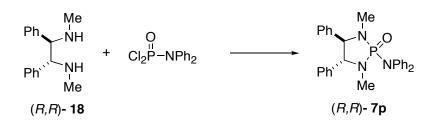
(4*S*,*5S*)-1,3-Di-(2-propyl)-4,5-diphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-70)



Following Representative Procedure III, from (S,S)-**18**<sup>2</sup> (483 mg, 2.01 mmol), triethylamine (0.62 mL, 4.42 mmol, 2.2 equiv) and dimethylaminophosphoric dichloride (0.414 mL, 2.01 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (80+10+10 mL) was obtained 549 mg (71%) of (S,S)-**70** as a white foam after chromatography (SiO<sub>2</sub>, TBME/MeOH, 49/1).

Analytical Data for (S,S)-70:

<u>M.W.:</u> 385.49


<sup>1</sup><u>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

7.28-7.22 (m, 6 H, Ph), 7.18-7.04 (m, 2 H, Ph), 7.00-6.96 (m, 2 H, Ph), 3.92 (d, J = 8.8, 1 H, HC(4)), 3.87 (d, J = 8.8, HC(5)), 3.50-3.88 (m, 2 H, HC(1')), 2.35 (d, J = 9.2, 3 H, MeN), 2.35 (d, J = 10.3, 3 H, MeN), 1.42-1.32 (m, 12 H, Me-CH).

<sup>13</sup><u>C NMR</u>: (125 MHz, CDCl<sub>3</sub>) 138.8 (d, J = 10.1, C(1")), 138.7 (d, J = 5.5, C(1")), 128.4 (C(3")), 128.3 (C(3")), 128.0 (C(2")), 127.9 (C(2")), 127.8 (C(4")), 127.5 (C(4")), 72.1 (d, J = 11.0, C(4)), 70.9 (d, J = 11.0, C(5)), 45.8 (br, C(1')), 30.0 (d, J = 2.8, MeN), 29.4 (d, J = 5.5, MeN), 24.0 (br, C(2')).

| 31 <u>P NMR</u> : | (202 MHz, CDCl3)                                                                            |
|-------------------|---------------------------------------------------------------------------------------------|
|                   | 28.12                                                                                       |
| <u>MS</u> :       | (EI, 70 eV)                                                                                 |
|                   | 385 (M <sup>+</sup> , 20), 371 (12), 370 (44), 343 (15), 342 (60), 286 (26), 285 (100), 266 |
|                   | (11), 167 (11), 166 (56), 165 (11), 120 (30), 119 (30), 118 (77), 105 (24), 100             |
|                   | (61), 91 (12), 77(21), 73 (83), 60 (30), 59 (17), 57 (36)                                   |
| <u>HRMS</u>       | (EI)                                                                                        |
|                   | Calcd. for C <sub>22</sub> H <sub>32</sub> N <sub>3</sub> OP 385.2283;                      |
|                   | Found: 385.2284.                                                                            |
| <u>TLC</u> :      | <i>R</i> <sub>f</sub> 0.42 (TBME / MeOH, 19/1)                                              |

(*R*,*R*)-1,3-Dimethyl-4,5-diphenyl-2-diphenylamino-1,3,2-diazaphospholidine 2-Oxide (*R*,*R*)-7p.



Following Representative Procedure I, to a solution of triethylamine (0.44 mL, 3.16 mmol) in 30 mL of dry CH<sub>2</sub>Cl<sub>2</sub> were added solutions of (R,R)-18<sup>7</sup> (314 mg, 1.31 mmol) in 15 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and diphenylaminophosphorus dichloride (450 mg, 1.57 mmol) in 15 mL of dry CH<sub>2</sub>Cl<sub>2</sub> simultaneously and dropwise over 30 min at reflux under nitrogen. The solution was heated to reflux for 36 h then was concentrated under reduced pressure to give a residue, which was purified by column chromatography on silica gel (CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/2-propanol, 100/2 then 100/4) affording 372 mg (63%) of (R,R)-7**p** as a colorless amorphous solid.

# <u>Data for (*R*,*R*)-7p</u>:

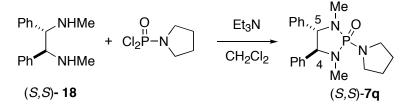
<u>lH NMR</u>: (400 MHz, CDCl<sub>3</sub>)

7.44-7.35 (m, 8H, o, m-Ph), 7.27-7.17 (m, 6H, m, p-Ph', p-Ph, p-Ph"), 7.12-7.08

(m, 4H, *o*-Ph', *m*-Ph"), 6.44 (d, *J* = 8.3, 2H, *o*-Ph"), 3.99 (d, *J* = 8.9, 1H, NCH), 3.71 (d, *J* = 8.9, 1H, NCH), 2.56 (d, *J* = 9.5, 3H, CH<sub>3</sub>), 2.46 (d, *J* = 10.3, 3H, CH<sub>3</sub>).

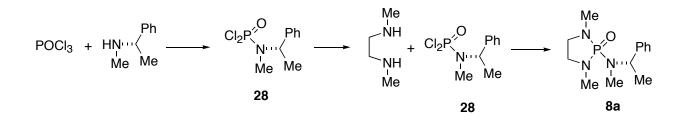
- $\frac{13_{\text{C NMR}}}{145.3 \text{ (d, } J = 4.6, ipso-Ph), 137.7 (ipso-Ph), 137.6 \text{ (d, } J = 4.6, ipso-Ph), 129.1, 128.5, 128.23, 128.16, 128.09, 127.99 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 71.2 \text{ (d, } J = 2.8), 127.95, 127.87, 125.4, 128.87, 128.87, 128.87$ 
  - *J* = 10.0, NCH), 71.0 (d, *J* = 11.0, NCH), 29.6 (d, *J* = 3.7, CH<sub>3</sub>), 29.1 (d, *J* = 5.5, CH<sub>3</sub>)
- <u>31P NMR</u>: (162 MHz, CDCl3)

20.76


<u>IR</u>: (KBr)

3088 (w), 3062 (w), 3032 (w), 2974 (w), 2930 (m), 2904 (m), 2856 (m), 2815 (w), 1590 (m), 1489 (s), 1455 (m), 1401 (m), 1339 (w), 1300 (m), 1280 (m), 1257 (s), 1211 (s), 1166 (s), 1074 (m), 1033 (s), 1016 (s), 991 (s), 915 (w), 901 (w), 891 (w), 830 (w), 814 (w), 777 (m), 746 (s), 700 (s), 632 (m), 626 (w), 613 (w), 555 (s)

<u>Opt. Rot.</u>:  $[\alpha]_D^{22}$  +25.7 (*c* = 0.65, CHCl<sub>3</sub>)


- <u>TLC</u>:  $R_f 0.73$  (EtOAc)
- <u>Analysis</u>: C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>OP (453.52) Calcd.: C, 74.15; H, 6.22; N, 9.27; P, 6.83 Found: C, ; H, ; N, ; P,

(4*S*,5*S*)-1,3-Dimethyl-4,5-diphenyl-2-(1-pyrrolidinyl)-1,3,2-diazaphospholidine 2-Oxide (*S*,*S*)-7q.



Following Representative Procedure I, from triethylamine (0.55 mL, 3.93 mmol, 2.5 equiv), (*S*,*S*)-**18**<sup>2</sup> (0.377 g, 1.57 mmol) and 1-pyrrolidinylphosphoramic dichloride (0.295 g, 1.57 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (20+8+8 mL) was obtained 0.34 g (61%) of (*S*,*S*)-**7q** as white crystals after column chromatography (SiO<sub>2</sub>, EtOAc/*i*-PrOH 9/1) and recrystallization (hexane), mp: 105-106 °C (hexane); TLC  $R_f$  = 0.32 (EtOAc/*i*-PrOH, 10/1). Anal. Calcd for C<sub>20</sub>H<sub>26</sub>N<sub>3</sub>OP (355.42): C, 67.5; H, 7.37; N, 11.82. Found: C, 67.36; H, 7.13; N, 11.78.

# (S)-1,3-Dimethyl-2-methyl(1-phenylethyl)amino-1,3,2-diazaphospholidine 2-Oxide (8a)



A solution of (*S*)-1-methylamino-1-phenylethane (7.3 mL, 50 mmol) in 15 mL of dry diethyl ether was added to a solution of POCl<sub>3</sub> (14 mL, 150 mmol) in 25 mL of dry diethyl ether, dropwise through an addition funnel at 0 °C under nitrogen. After completion of the addition, the mixture was stirred at rt overnight. The solvent was distilled off, the mixture was heated at 130-140 °C (bath temperature) to reflux for 20 h, the POCl<sub>3</sub> was distilled off under atmospheric pressure then the product was distilled under reduced pressure to give 9.35 g (74%) of **28** as a colorless liquid (bp 150 °C/1.1 mmHg; ABT) which solidified upon cooling.

## Data for 28:

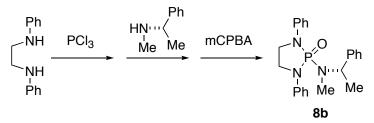
| <u><sup>1</sup>H NMR</u> : | (400 MHz, CDCl3)                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------|
|                            | 7.37-7.31 (m, 5H, Ph), 5.39 (dq, $J = 11.0$ , 7.1, CHCH3), 2.55 (d, $J_{\text{PH}} = 16.1$ , |
|                            | NC <i>H</i> 3), 1.63 (d, <i>J</i> = 6.8, CHC <i>H</i> 3)                                     |
| 31 <u>P NMR</u> :          | (162 MHz, CDCl3)                                                                             |
|                            | 18.19                                                                                        |

To a solution of triethylamine (3.5 mL, 25 mmol) in 200 mL of dry CH<sub>2</sub>Cl<sub>2</sub> were added solutions of *N*,*N*'-dimethylethylenediamine (1.06 mL, 10 mmol) in 25 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and (*S*)-methyl(1-phenylethyl)aminophosphorus dichloride **18** (2.52 g, 10 mmol) in 25 mL of dry CH<sub>2</sub>Cl<sub>2</sub> simultaneously over 2 h using a syringe pump at reflux under nitrogen. The solution was heated to reflux for 42 h then was concentrated under reduced pressure to give a residue, which was purified by column chromatography on silica gel (ethyl acetate/2-propanol, 10/1, 10/2, then 10/3). Distillation under reduced pressure (bp 160-165 °C/0.1 mmHg; ABT) afforded 2.139g (80%) of **8a** as hygroscopic colorless crystals. Analytical sample was obtained by further recrystalization from hexane.

# Analytical Data for 8a:

- <u>mp</u>:  $51-52 \,^{\circ}C$  (hexane)
- <u><sup>1</sup>H NMR</u>: (500 MHz, CDCl<sub>3</sub>)

7.41 (d, *J* = 7.1, 2H, *o*-Ph), 7.32 (t, *J* = 7.5, 2H, *m*-Ph), 7.23 (t, *J* = 7.3, *p*-Ph), 5.05 (dq, *J* = 8.8, 7.1, CHCH<sub>3</sub>), 3.18 (m, 2H, CH<sub>2</sub>), 3.11 (m, 2H, CH<sub>2</sub>), 2.57 (d, *J* = 9.7, 3H, NCH<sub>3</sub>), 2.49 (d, *J* = 9.7, 3H, NCH<sub>3</sub>), 2.27 (d, *J* = 10.2, 3H, NCH<sub>3</sub>), 1.52 (d, *J* = 7.1, 3H, CHCH<sub>3</sub>).


 $\frac{13}{C \text{ NMR}}$ : (100 MHz, CDCl3) 142.3 (d, J = 4.6, *ipso*-Ph), 128.0 (*o/m*-Ph), 127.5 (*o/m*-Ph), 126.8 (*p*-Ph), 53.2 (d, J = 4.6, CHCH3), 47.3 (d, J = 12.2, CH2), 31.43 (d, J = 6.9, NCH3), 31.38 (d, J =6.9, NCH3), 26.6 (d, J = 5.3, NCH3), 17.5 (d, J = 1.5, CHCH3)

<u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

27.93

| <u>IR</u> :       | (CHCl3)                                                                                      |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
|                   | 3104 (w), 3088 (w), 3017 (w), 2979 (s), 2943 (m), 2854 (w), 2819 (w), 1494 (w),              |  |  |  |  |  |
|                   | 1481 (w), 1470 (w), 1452 (w), 1376 (m), 1352 (s), 1265 (m), 1229 (s), 1211 (s),              |  |  |  |  |  |
|                   | 1196 (s), 1167 (s), 1038 (m), 1027 (m), 1005 (m), 995 (m), 948 (s), 889 (w), 702             |  |  |  |  |  |
|                   | (m), 662 (m), 518 (m)                                                                        |  |  |  |  |  |
| <u>MS</u> :       | (EI, 70 eV)                                                                                  |  |  |  |  |  |
|                   | 267 (M <sup>+</sup> , 38), 252 (22), 135 (13), 134 (100), 133 (91), 105 (13), 90 (8), 77 (8) |  |  |  |  |  |
| <u>Opt. Rot.:</u> | $[\alpha]_D^{22}$ -1.6 ( <i>c</i> = 1.1, CHCl <sub>3</sub> )                                 |  |  |  |  |  |
| <u>TLC</u> :      | <i>R</i> <sub>f</sub> 0.58 (EtOAc/ <i>i</i> -PrOH, 9/1)                                      |  |  |  |  |  |
| Analysis:         | C13H22N3OP (267.31)                                                                          |  |  |  |  |  |
|                   | Calcd.: C, 58.41%; H, 8.30%; N, 15.72%; P, 11.59%.                                           |  |  |  |  |  |
|                   | Found: C, 58.39%; H, 8.38%; N, 15.77%; P, 11.37%.                                            |  |  |  |  |  |
|                   |                                                                                              |  |  |  |  |  |

(S)-1,3-Diphenyl-2-methyl(1-phenylethyl)amino-1,3,2-diazaphospholidine 2-Oxide (8b)



Following Representative Procedure II, to a stirred cold (-78 °C) solution of PCl<sub>3</sub> (0.95 mL; 11 mmol) in 20 mL of dry CH<sub>2</sub>Cl<sub>2</sub> was added a solution of N,N'-diphenylethylenediamine (2.12 g, 10 mmol) in 20 mL of dry CH<sub>2</sub>Cl<sub>2</sub> through a dropping funnel under nitrogen. Then triethylamine (3.5 mL; 25 mmol) was added at the same temperature. The mixture was warmed to room temperature and was stirred for 24 h. To this mixture was added 40 mL of dry diethyl ether and the precipitates were filtered off and washed with dry ether (40 mL). The combined filtrate and washings were concentrated under reduced pressure to remove the excess reagents (PCl<sub>3</sub> and triethylamine).

The residue was dissolved in 10 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and stirred, to which was added a mixture of (S)-1-methylamino-1-phenylethane (1.45 mL, 10 mmol) and triethylamine (4.2 mL, 30 mmol) at 0 °C, and the mixture was stirred for 18 h at rt under nitrogen. After addition of dry

ether (30 mL), the suspension was filtered to remove the precipitates and condensed under reduced pressure.

The residue was dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub>, and a solution of *m*-chloroperbenzoic acid (50%, 3.45 g, 10 mmol) in 15 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and was stirred for 24 h. Then sat. aq. NaHCO<sub>3</sub> solution (25 mL) was added with stirring. The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 25 mL). The combined organic solutions were washed with sat. aq. NaHCO<sub>3</sub> solution (25 mL) than was dried over MgSO<sub>4</sub>, filtered, and evaporated to give a crude material, which was purified by column chromatography on silica gel (benzene/CH<sub>2</sub>Cl<sub>2</sub>/2-propanol, 30/20/1 as eluent). Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane afforded 1.96 g (50%) of **8b** as colorless fine needles. An analytical sample was obtained by sublimation at 0.05 mmHg.

#### Analytical Data for **8b**:

<u>mp</u>: 204-205 °C (sublimation)

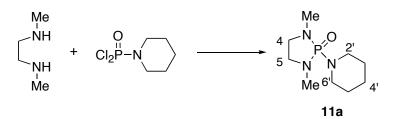
 $\frac{1_{\rm H NMR}}{1_{\rm H NMR}}$ : (400 MHz, CDCl3)

7.32 (t, J = 7.8, 2H, *m*-Ph), 7.25 (t, J = 7.8, 2H, *m*-Ph'), 7.22 (d, J = 7.8, 2H, *o*-Ph), 7.16 (d, J = 7.6, 2H, *o*-Ph'), 7.13-7.07 (m, 3H, *m*, *p*-Ph"), 7.04-6.97 (m, 4H, *p*-Ph, *o*-Ph", *p*-Ph'), 4.84 (dq, J = 10.0, 7.1, CHCH<sub>3</sub>), 3.94-3.76 (m, 4H, CH<sub>2</sub>CH<sub>2</sub>), 2.51 (d, J = 10.5, 3H, NCH<sub>3</sub>), 1.20 (d, J = 7.1, 3H, CHCH<sub>3</sub>).

 $\frac{13_{\rm C NMR}}{100}$  (100 MHz, CDCl<sub>3</sub>)

141.6 (d, J = 6.6, *ipso*-Ph), 140.7 (d, J = 4.6, *ipso*-Ph'), 129.18 (*m*-Ph), 129.15 (*m*-Ph), 127.9 (*o*/*m*-Ph'), 127.5 (*o*/*m*-Ph'), 126.9 (*p*-Ph'), 121.74 (*p*-Ph), 121.68 (*p*-Ph), 117.1 (d, J = 4.6, *o*-PhN), 117.0 (d, J = 4.6, *o*-PhN), 54.0 (d, J = 5.3, CHCH3), 43.04 (d, J = 12.2, CH2), 43.00 (d, J = 12.2, CH2), 27.9 (d, J = 5.3, NCH3), 16.8 (CHCH3)

<u>31P NMR</u>: (162 MHz, CDCl3)


15.31

IR: (KBr)

3057 (w), 3030 (w), 2981 (w), 2941 (w), 2883 (w), 2811 (w), 1599 (s), 1581 (m), 1499 (s), 1482 (s), 1453 (m), 1400 (m), 1384 (m), 1379 (s), 1363 (m), 1348 (m),

|              | 1317 (m), 1281 (s), 1231 (s), 1207 (s), 1190 (m), 1165 (s), 1135 (s), 1102 (w),             |           |            |           |  |  |  |
|--------------|---------------------------------------------------------------------------------------------|-----------|------------|-----------|--|--|--|
|              | 1066 (w), 1048 (m), 1033 (m), 994 (s), 949 (s), 877 (w), 777 (m), 749 (s), 73               |           |            |           |  |  |  |
|              | (m), 702 (s), 688 (s), 616 (m), 586 (w), 530 (m)                                            |           |            |           |  |  |  |
| <u>MS</u> :  | (EI, 70 eV)                                                                                 |           |            |           |  |  |  |
|              | 391 (M <sup>+</sup> , 29), 376 (13), 258 (14), 257 (46), 152 (23), 135 (10), 134 (100), 119 |           |            |           |  |  |  |
|              | (13), 106 (42), 105 (37), 104 (20), 77 (19).                                                |           |            |           |  |  |  |
| Opt. Rot.:   | $[\alpha]_D^{22}$ +1.7 ( <i>c</i> = 1.1, CHCl <sub>3</sub> )                                |           |            |           |  |  |  |
| <u>TLC</u> : | $R_f 0.87$ (EtOAc)                                                                          |           |            |           |  |  |  |
| Analysis:    | C <sub>23</sub> H <sub>26</sub> N <sub>3</sub> OP (391.45)                                  |           |            |           |  |  |  |
|              | Calcd.: C, 70.57%;                                                                          | H, 6.69%; | N, 10.73%; | P, 7.91%. |  |  |  |
|              | Found: C, 70.35%;                                                                           | H, 6.56%; | N, 10.79%; | P, 7.86%. |  |  |  |
|              |                                                                                             |           |            |           |  |  |  |

# 1,3-Dimethyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (11a)



Following Representative Procedure I, to a solution of triethylamine (2.3 mL, 17 mmol) in 150 mL of dry CH<sub>2</sub>Cl<sub>2</sub> were added solutions of *N*,*N*'-dimethylethylenediamine (0.71 mL; 6.7 mmol) in 30 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and piperidinophosphorus dichloride (1.02 mL; 6.7 mmol) in 30 mL of dry CH<sub>2</sub>Cl<sub>2</sub> simultaneously over 2 h using a syringe pump at reflux under nitrogen. The solution was heated to reflux for 40 h then was concentrated under reduced pressure to give a colorless residue, which was purified by column chromatography on silica gel (ethyl acetate, ethyl acetate/2-propanol, 9/1, and then ethyl acetate/2-propanol, 7/3 as eluents). Distillation of the product, (bp 120-125 °C/0.05 mmHg; ABT) afforded 1.45 g (100%) of **11a** as colorless hygroscopic crystals. An analytical sample was prepared by further recrystalization from hexane.

# Analytical Data for 11a:

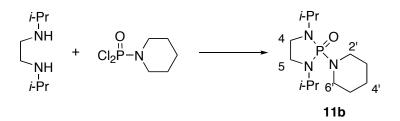
<u>mp</u>:  $55-56 \,^{\circ}C$  (hexane)

- <u>1H NMR</u>: (400 MHz, CDCl<sub>3</sub>) 3.11 (m, 2H, C(4/5)H<sub>2</sub>), 3.05-2.96 (m, 6H, C(4/5)H<sub>2</sub>, C(2', 6')H<sub>2</sub>), 2.49 (d, J = 9.8, 6H, CH<sub>3</sub>), 1.51 (m, 2H, C(4')H<sub>2</sub>), 1.41 (m, 4H, C(3', 5')H<sub>2</sub>).
- $\frac{13_{\text{C NMR}}}{47.2 \text{ (d, } J = 12.2, \text{ C}(4, 5)), 45.3 \text{ (d, } J = 3.1, \text{ C}(2', 6')), 31.5 \text{ (d, } J = 4.6, \text{ CH}_3), 26.7 \text{ (d, } J = 3.8, \text{ C}(3', 5')), 24.7 \text{ (C}(4')).}$
- <u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

26.44

<u>IR</u>: (CHCl3)

2979 (m), 2938 (s), 2852 (m), 1493 (w), 1482 (w), 1470 (w), 1445 (w), 1376 (w), 1351 (w), 1338 (w), 1264 (m), 1230 (m), 1191 (m), 1166 (s), 1122 (w), 1068 (m), 1040 (m), 1026 (w), 961 (s), 943 (m), 863 (w), 853 (w), 834 (w), 670 (w), 665 (w), 547 (w)


 $\underline{MS}: \quad (EI, 70 \text{ eV})$ 

217 (M<sup>+</sup>, 30), 133 (44), 131 (8), 90 (8), 85 (11), 84 (100)

- <u>TLC</u>:  $R_f 0.20$  (EtOAc/*i*-PrOH, 9/1)
- Analysis: C9H20N3OP (217.25)

| Calcd.: C, 49.76%; | H, 9.28%; | N, 19.34%; | P, 14.26%. |
|--------------------|-----------|------------|------------|
| Found: C, 49.56%;  | H, 9.22%; | N, 19.46%; | P, 14.34%. |

1,3-Diisopropyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (11b)



Following Representative Procedure I, to a solution of triethylamine (2.4 mL, 17.5 mmol) in 150 mL of dry CH<sub>2</sub>Cl<sub>2</sub> were added solutions of *N*,*N*'-diisopropylethylenediamine (1.27 mL, 7.0 mmol) in 30 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and piperidinophosphorus dichloride<sup>5</sup> (1.07 mL; 7.0 mmol) in 30 mL of dry CH<sub>2</sub>Cl<sub>2</sub> simultaneously over 2 h using a syringe pump at reflux under nitrogen. The solution was heated to reflux for 36 h then was concentrated under reduced pressure to give a colorless residue, which was purified by column chromatography on silica gel (ethyl acetate, ethyl acetate/2-propanol, 95/5 then ethyl acetate/2-propanol, 9/1 as eluents). Distillation of the product (bp 145 °C/0.05 mmHg; ABT) afforded 949 mg (50%) of **11b** as hygroscopic colorless crystals. The analytical sample was prepared by further recrystalization from hexane.

# Analytical Data for **11b**:

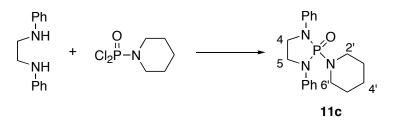
<u>mp</u>: 52-53 °C (hexane)

<u><sup>1</sup>H NMR</u>: (400 MHz, CDCl<sub>3</sub>)

3.34 (d sep, J = 8.2Hz, 6.6, 2H, CH), 3.09 (m, 2H, C(4/5)H<sub>2</sub>), 2.97 (m, 6H, C(4/5)H<sub>2</sub>, C(2', 6')H<sub>2</sub>), 1.49 (m, 2H, C(4')H<sub>2</sub>), 1.41 (m, 4H, C(3' 5')H<sub>2</sub>), 1.13 (d, J = 6.6Hz, 6H, CH<sub>3</sub>), 1.08 (d, J = 6.6Hz, 6H, CH<sub>3</sub>).

- $\frac{13_{\text{C NMR}}}{45.6 \text{ (d, } J = 3.1, \text{ C}(2', 6')\text{), } 44.1 \text{ (d, } J = 5.3, \text{ CH}\text{), } 39.0 \text{ (d, } J = 13.0, \text{ C}(4, 5)\text{), } 26.7 \text{ (d, } J = 4.6, \text{ C}(3', 5')\text{), } 24.8 \text{ (C}(4')\text{), } 21.4 \text{ (d, } J = 2.3, \text{ CH}_3\text{), } 21.2 \text{ (d, } J = 4.6, \text{ CH}_3\text{).}}$
- <u>31P NMR</u>: (162 MHz, CDCl3)

22.44


 $\underline{IR}$ : (CDCl<sub>3</sub>)

2970 (s), 2937 (s), 2851 (m), 1477 (w), 1464 (w), 1452 (w), 1443 (w), 1401 (w), 1390 (w), 1365 (w), 1336 (w), 1230 (m), 1222 (m), 1212 (m), 1179 (s), 1167 (m), 1112 (m), 1064 (m), 1027 (w), 960 (s), 862 (w), 698 (w), 669 (w), 561 (w)

- <u>MS</u>: (EI, 70 eV) 273 (M<sup>+</sup>, 34), 259 (10), 258 (70), 189 (15), 175 (79), 147 (8), 133 (17), 105 (17), 85 (10), 84 (100), 72 (12)
- <u>TLC</u>:  $R_f 0.71$  (EtOAc/*i*-PrOH, 9/1)

<u>Analysis</u>: C13H28N3OP (273.36) Calcd.: C, 57.12%; H, 10.32%; N, 15.37%; P, 11.33%. Found: C, 56.82%; H, 10.46%; N, 15.56%; P, 11.21%.

### 1,3-Diphenyl-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (11c)

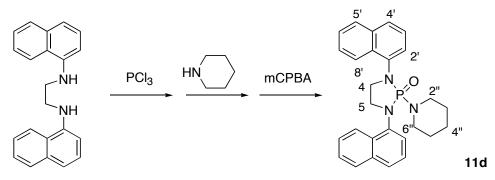


Following Representative Procedure I, to a solution of *N*,*N*'-diphenylethylene diamine (2.12 g, 10 mmol) in 20 mL of dry 1,2-dichloroethane were added triethylamine (3.5 mL, 25 mmol) and piperidinophosphorus dichloride<sup>5</sup> (1.53 mL, 10 mmol) at r.t. under nitrogen. The mixture was heated to reflux for 19 h when the mixture solidified. The mixture was filtered with help of CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and was washed with CH<sub>2</sub>Cl<sub>2</sub> (100 mL). The filtrate and the washings were combined and concentrated under reduced pressure to give tan solid which was purified by column chromatography on silica gel (CH<sub>2</sub>Cl<sub>2</sub> then CH<sub>2</sub>Cl<sub>2</sub>/2-propanol, 20/1 as eluents). Recrystalization from benzene/hexane afforded 1.741 g (51%) of **11c** as colorless fine needles. Analytical Data for **11c**:

<u>mp</u>: 169-171 °C (benzene-hexane)

- $\frac{13_{\text{C NMR}}}{141.7 \text{ (d, } J = 7.4 \text{Hz, } ipso-\text{Ph}\text{), } 129.2 \text{ (m-Ph), } 121.3 \text{ (p-Ph), } 116.2 \text{ (d, } J = 4.6 \text{Hz, } o-\text{Ph}\text{), } 45.0 \text{ (d, } J = 2.8 \text{Hz, } \text{C(2', 6')}\text{), } 42.5 \text{ (d, } J = 11.0 \text{Hz, } \text{C(4, 5)}\text{), } 25.5 \text{ (d, } J = 4.6 \text{Hz, } \text{C(3', 5')}\text{), } 24.3 \text{ (C(4')).}$
- <u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

13.32.


 $\underline{IR}$ : (KBr)

2950 (m), 2933 (s), 2873 (m), 2853 (m), 2836 (s), 1598 (s), 1491 (s), 1465 (m), 1452 (m), 1438 (m), 1400 (m), 1383 (s), 1342 (s), 1325 (m), 1286 (s), 1249 (s), 1219 (s), 1187 (s), 1166 (s), 1147 (m), 1121 (s), 1072 (s), 1033 (s), 997 (s), 962

(s), 863 (m), 831 (m), 754 (s), 737 (m), 708 (s), 691 (s), 591 (m), 526 (s)
<u>MS</u>: (EI, 70 eV)
342 (M<sup>+</sup>+1, 22), 341 (M<sup>+</sup>, 91), 258 (58), 257 (34), 153 (23), 152 (32), 119 (36), 107 (10), 106 (100), 105 (41), 104 (30), 84 (89), 77 (28).
<u>TLC</u>: *R*f 0.83 (EtOAc)
<u>Analysis</u>: C19H24N3OP (341.39)
Calcd.: C, 66.85%; H, 7.09%; N, 12.31%; P, 9.07%.

| Found: C, 66.66%; H | , 7.04%; N | N, 12.19%; I | P, 8.88%. |
|---------------------|------------|--------------|-----------|
|---------------------|------------|--------------|-----------|

#### 1,3-Di(1-naphthyl)-2-piperidino-1,3,2-diazaphospholidine 2-Oxide (11d)



Following Representative Procedure II, to a stirred cold (-78 °C) solution of PCl<sub>3</sub> (0.61 mL, 7.0 mmol) in 10 mL of dry CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 1,2-di(1-naphthylamino)ethane<sup>8</sup> (2.0 g, 6.4 mmol) in 10 mL of dry CH<sub>2</sub>Cl<sub>2</sub> through a dropping funnel under nitrogen. Then triethylamine (2.2 mL, 16 mmol) was added at the same temperature. The mixture was warmed to room temperature and was stirred for 24 h. After filtration of the precipitates, the filtrate was concentrated under reduced pressure to remove the excess reagents (PCl<sub>3</sub> and triethylamine).

The residue was suspended in 13 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and was stirred, to which was added piperidine (2.3 mL, 2.3 mmol) at room temperature. The mixture was stirred for 20 h, filtered to remove the precipitates, and was concentrated under reduced pressure to remove excess piperidine.

The residue was dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> and a solution of *m*-chloroperbenzoic acid (50%, 2.21 g, 6.4 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and was stirred for 24 h. Then sat. aq. NaHCO<sub>3</sub> solution

(25 mL) was added with stirring. The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined organic solutions were washed with sat. aq. NaHCO3 solution, then were dried over MgSO<sub>4</sub>, filtered, and evaporated to give a residue that was chromatographed (SiO<sub>2</sub>, benzene then benzene/ethyl acetate, 4/1). Recrystalized from diethyl ether/hexane gave 1.29 g (46%) of **11d** as slightly tan crystals.

## Analytical Data for 11d:

- 170-171 °C (Et<sub>2</sub>O-hexane) <u>mp</u>:
- <sup>1</sup>H NMR: (500 MHz, CDCl3)

8.44 (d, J = 8.4, 2H, C(8')H), 7.93 (d, J = 7.3, 2H, C(2'/4')H), 7.91 (d, J = 8.1, 2H, C(5')H, 7.77 (d, J = 8.2, 2H, C(2'/4')H), 7.60 (ddd, J = 8.4, 6.8, 1.3, 2H, C(7')H), 7.53 (ddd, J = 8.2, 7.0, 1.1, 2H, C(6')H), 7.50 (t, J = 7.9, 2H, C(3')H), 4.19 (m, 2H, C(4/5)H2), 3.82 (m, 2H, C(4/5)H2), 3.06 (m, 4H, C(2", 6")H2), 1.14 (m, 2H, C(4")H<sub>2</sub>), 0.92 (m, 4H, C(3", 5")H<sub>2</sub>).

- 13C NMR: (100 MHz, CDCl3) 138.0 (d, J = 4.6), 134.8, 131.3 (d, J = 5.3), 128.5, 126.6, 126.1, 126.0, 125.9, 124.5 (d, J = 3.0), 123.5 (br), 49.3 (d, J = 12.2, C(4, 5)), 45.7 (d, J = 3.1, C(2", 6")), 26.0 (d, J = 4.6, C(3", 5")), 24.1 (C(4")).
- <sup>31</sup>P NMR: (162 MHz, CDCl<sub>3</sub>) 16.56. IR:
  - 3037 (w), 3010 (w), 2964 (m), 2931 (s), 2846 (s), 1591 (s), 1574 (s), 1509 (m), 1478 (w), 1462 (s), 1441 (m), 1394 (s), 1372 (s), 1341 (s), 1276 (s), 1237 (s), 1219 (s), 1205 (s), 1180 (s), 1168 (s), 1116 (s), 1100 (s), 1080 (s), 1071 (s), 1028 (s), 1017 (m), 966 (s), 936 (m), 804 (s), 797 (s), 775 (s), 731 (s), 680 (m), 646 (m), 623 (m), 605 (w),
  - <u>MS</u>: (EI, 70 eV)

(KBr)

442 (M<sup>+</sup>+1, 51), 441 (M<sup>+</sup>, 100), 359 (25), 358 (77), 357 (18), 291 (33), 272 (16), 203 (20), 188 (16), 186 (18), 170 (11), 169 (32), 168 (18), 167 (11), 157 (21), 156 (92), 155 (40), 154 (51), 143 (10), 130 (10), 129 (15), 128 (23), 127 (28), 115 (18), 84 (35).

| <u>TLC</u> : | $R_f 0.83$ (EtOAc)  |            |           |           |           |  |  |
|--------------|---------------------|------------|-----------|-----------|-----------|--|--|
| Analysis:    | C27H28N3OP (441.51) |            |           |           |           |  |  |
|              | Calcd.:             | C, 73.45%; | H, 6.39%; | N, 9.52%; | P, 7.02%. |  |  |
|              | Found:              | C, 73.32%; | H, 6.42%; | N, 9.61%; | P, 6.74%. |  |  |

#### 1,3-Dimethyl-2-diphenylamino-1,3,2-diazaphospholidine 2-Oxide (12a)

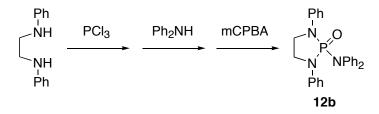


Following Representative Procedure I, to a solution of triethylamine (1.74 mL, 12.5 mmol) in 150 mL of dry CH<sub>2</sub>Cl<sub>2</sub> were added solutions of N,N'-dimethylethylenediamine (0.53 mL, 5.0 mmol) in 15 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and diphenylaminophosphorus dichloride (1.43 g, 5.0 mmol) in 15 mL of dry CH<sub>2</sub>Cl<sub>2</sub> simultaneously and dropwise at reflux under nitrogen. The solution was heated to reflux for 15 h then was concentrated under reduced pressure to give a residue, which was purified by column chromatography on silica gel (ethyl acetate then ethyl acetate/2-propanol, 10/1 as eluents). Recrystalization from CH<sub>2</sub>Cl<sub>2</sub>/hexane afforded 1.32 g (87%) of **12a** as colorless needles.

Analytical Data for 12a:

<u>mp</u>: 115-116 °C (CH<sub>2</sub>Cl<sub>2</sub>-hexane)

 $\frac{1_{\text{H NMR}}}{1_{\text{H NMR}}}$ (400 MHz, CDCl3)
(m, 8H, o, m-Ph), 7.11 (m, 2H, p-Ph), 3.12 (m, 2H, CH2), 2.79 (m, 2H, CH2), 2.64 (d,  $J_{\text{PH}} = 9.5$ , 6H, CH3).
(100 MHz, CDCl3)
(100 MHz, CDCl3)
(145.2 (d,  $J_{\text{PC}} = 4.6$ , *ipso*-Ph), 128.8 (m-Ph), 127.2 (d,  $J_{\text{PC}} = 3.1$ , o-Ph), 124.9 (p-Ph), 46.6 (d,  $J_{\text{PC}} = 13.7$ , CH2), 31.2 (d,  $J_{\text{PC}} = 6.1$ , CH3).


<u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>) 19.39. IR: (KBr)
3090 (w), 3059 (w), 3020 (w), 3000 (w), 2987 (w), 2969 (w), 2987 (m), 2969 (m), 2934 (m), 2912 (s), 2898 (s), 2861 (s), 2820 (m), 1584 (s), 1485 (s), 1454 (s), 1444 (s), 1427 (m), 1400 (m), 1381 (s), 1355 (s), 1336 (m), 1311 (m), 1254 (s), 1203 (s), 1173 (s), 1088 (m), 1074 (s), 1040 (s), 1033 (s), 1005 (s), 981 (s), 945 (s), 925 (s), 894 (s), 862 (m), 851 (m), 762 (s), 733 (s), 721 (s), 713 (s), 696 (s), 667 (s), 610 (m), 604 (m), 541 (s), 516 (m)
MS: (EI, 70 eV)
302 (M<sup>+</sup>+1, 9), 301 (M<sup>+</sup>, 51), 169 (5), 168 (5), 167 (9), 134 (5), 133 (100), 90 (6), 69 (9).

<u>TLC</u>:  $R_f 0.61$  (EtOAc/*i*-PrOH, 9/1)

<u>Analysis</u>: C<sub>16</sub>H<sub>20</sub>N<sub>3</sub>OP (301.33)

| Calcd.: C, 63.78%; | H, 6.69%; | N, 13.95%; | P, 10.28%. |
|--------------------|-----------|------------|------------|
| Found: C, 63.73%;  | H, 6.79%; | N, 14.21%; | P, 9.97%.  |

#### 1,3-Diphenyl-2-diphenylamino-1,3,2-diazaphospholidine 2-Oxide (12b)



Following Representative Procedure II, to a stirred cold (-78 °C) solution of PCl<sub>3</sub> (0.5 mL, 5.73 mmol) in 20 mL of dry CH<sub>2</sub>Cl<sub>2</sub> was added a solution of N,N'-diphenylethylene diamide (1.10 g, 5.17 mmol) in 5 mL of dry CH<sub>2</sub>Cl<sub>2</sub> immediately followed by addition of triethylamine (1.8 mL, 13 mmol). The mixture was warmed to rt and stirring was continued overnight. Solvent, excess PCl<sub>3</sub> and triethylamine were removed under reduced pressure.

The residue was suspended in 10 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and a solution of diphenylamine (0.875 g, 5.17 mmol) dissolved in triethylamine (2.2 mL, 15.5 mmol) was added to it via a syringe, which was washed with 5 mL of dry CH<sub>2</sub>Cl<sub>2</sub>. The mixture was stirred at rt for 36 h and then was concentrated under reduced pressure to remove excess triethylamine.

The residue was suspended in CH<sub>2</sub>Cl<sub>2</sub> (25 mL) and was treated with *m*CPBA (50 %, 1.78 g, 5.17 mmol) at 0 °C. The mixture was stirred at 0 °C-rt for 20 h, then sat. aq. NaHCO<sub>3</sub> solution (25 mL) was added with stirring. The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined organic solutions were washed with sat. aq. NaHCO<sub>3</sub> (10 mL), dried over MgSO<sub>4</sub>, filtered, and evaporated to give a crude material. The product was purified by column chromatography on silica gel (CH<sub>2</sub>Cl<sub>2</sub>/hexane, 1/2 then CH<sub>2</sub>Cl<sub>2</sub>/hexane/2-propanol, 1/2/0.03) and recrystallization from benzene/hexane to give 1.59 g (72 %) of **12b** as colorless needles.

#### Analytical Data for **12b**:

mp: 210-211 °C (benzene/hexane)

 $\frac{1_{\text{H NMR}}}{1_{\text{H NMR}}}$ : (400 MHz, CDCl3)

7.35 (t, J = 7.8, 4H, *m*-Ph), 7.23 (d, J = 7.8, 4H, *o*-Ph), 7.21 (t, J = 7.8, 4H, *m*-Ph'), 7.13 (t, J = 7.3, 2H, *p*-Ph'), 7.08-7.03 (m, 6H, *o*-Ph', *p*-Ph), 3.62 (m, 2H, CH<sub>2</sub>), 3.14 (m, 2H, CH<sub>2</sub>).

 $\frac{13_{\text{C NMR}}}{143.6 \text{ (d, } J = 5.3, ipso-Ph), 141.1 \text{ (d, } J = 7.6, ipso-Ph), 129.3 (m-Ph), 129.0 (m-Ph), 127.4 \text{ (d, } J = 2.3, o-Ph), 125.8 (p-Ph), 121.8 (p-Ph), 116.6 \text{ (d, } J = 5.3, o-Ph), 42.2 \text{ (d, } J = 12.2, CH2)}$ 

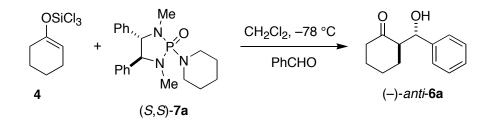
<u>31P NMR</u>: (162 MHz, CDCl<sub>3</sub>)

7.43

<u>IR</u>: (KBr)

3064 (m), 3055 (m), 3036 (m), 2970 (w), 2946 (m), 2888 (m), 2874 (m), 1597 (s), 1492 (s), 1467 (s), 1451 (m), 1401 (m), 1383 (m), 1362 (s), 1353 (s), 1310 (s), 1267 (s), 1255 (s), 1231 (s), 1213 (s), 1149 (m), 1127 (s), 1106 (s), 1077 (s), 1031 (s), 1019 (s), 996 (s), 958 (s), 935 (m), 751 (s), 701 (s), 691 (s), 586 (s), 531 (s)

 $\underline{MS:} \quad (EI, 70 \text{ eV})$ 


426 (M<sup>+</sup>+1, 44), 425 (M<sup>+</sup>, 90), 258 (38), 257 (100), 169 (10), 168 (15), 167 (22), 152 (64), 106 (16), 105 (46), 104 (37), 91 (10), 77 (38).

<u>TLC</u>:  $R_f 0.90$  (EtOAc)

<u>Analysis</u>: C<sub>26</sub>H<sub>24</sub>N<sub>3</sub>OP (425.47) Calcd.: C, 73.40%; H, 5.69%; N, 9.88%; P, 7.28% Found: C, 73.48%; H, 5.63%; N, 9.92%; P, 6.98%

#### 2. Catalyzed Aldol Additions of Trichlorosilyl Enolates

General Procedure for Catalyzed Aldol Additions of Trichlorosilyl Enolates 4 and (Z)-9 with Fast Addition of Aldehyde: (-)-(2R,1'S)-2-(Hydroxyphenylmethyl)cyclohexanone (*anti*-6a)

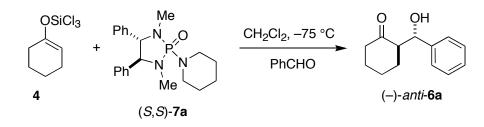


Catalyst (*S*,*S*)-**7a** (7.3 mg, 0.02 mmol, 0.1 equiv) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) and was cooled to -78 °C. Trichlorosilyl enolate **4b** (40  $\mu$ L, 0.22 mmol, 1.1 equiv) was added dropwise over 1 min Benzaldehyde (20.3  $\mu$ L, 1.0 mmol) was then added neat, over 20 sec. The reaction mixture was stirred at -78 °C for 2 h, then sat. aq. NaHCO<sub>3</sub> solution (5 mL)was added quickly and the mixture was allowed to warm to rt. The phases were separated, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 X 10 mL). The organic phases were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo*. The syn/anti ratio was determined by <sup>1</sup>H NMR (400 MHz) analysis to be 1/28. The crude material was purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 6/1) to give 1.3 mg of (–)-*syn*-**6a** as an oil and 35.3 mg (90% total) of (–)-*anti*-**6a** as a clear oil.

## Analytical Data for (-)-anti-6a:

<u>mp</u>: 41-42 °C

<sup>1</sup><u>H NMR</u>: (400 MHz, CDCl<sub>3</sub>)


7.36-7.26 (m, 5 H, Ph), 4.78 (dd, J = 9.2 and 2.4, 1 H, PhCHOH), 3.98 (d, J = 2.4, 1 H, OH), 2.64-2.58 (m, 1 H, C(2)H<sub>ax</sub>), 2.50-2.44 (m, 1 H, C(6)H<sub>eq</sub>), 2.39-2.31

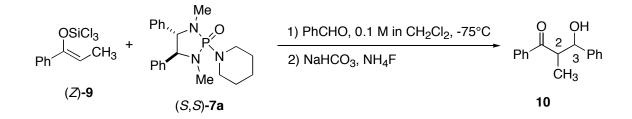
(m, 1 H, C(6)H<sub>ax</sub>), 2.11-2.03 (m, 1 H, C(5)H<sub>eq</sub>), 1.80-1.74 (m, 1 H, C(4)H<sub>eq</sub>), 1.71-1.47 (m, 3 H, C(5)H<sub>ax</sub>, C(3)H<sub>eq</sub>, C(4)H<sub>ax</sub>), 1.34-1.23 (m, 1 H, C(3)H<sub>ax</sub>)

<sup>13</sup><u>C NMR</u>: (100.6 MHz, CDCl<sub>3</sub>)
215.53 (C=O), 140.84 (*ipso*-Ph), 128.30 (*m*-Ph), 127.81 (*p*-Ph), 126.95 (*o*-Ph), 74.64 (CHOH), 57.35 (C(2)), 42.60 (C(6)), 30.76 (C(3)), 27.74 (C(5)), 24.63 (C(4))

- <u>IR</u>: (CHCl<sub>3</sub>) 3536 (m, OH), 3066 (m), 3033 (m), 2945 (s), 2904 (m), 2868 (m), 1697 (s, C=O), 1497 (m), 1450 (s), 1426 (m), 1400 (m), 1322 (m), 1312 (m), 1297(m), 1226 (s), 1201(s), 1191 (m), 1130 (s, C-O), 1101 (m), 1064 (m), 1041 (s), 1029 (m), 1016 (m), 846 (m), 777 (m), 731 (m), 724 (m), 707(m)
- <u>MS</u>: (EI, 70 eV) 204 (M<sup>+</sup>, 6), 186 (M<sup>+</sup> – H<sub>2</sub>O, 21), 106 (M<sup>+</sup> – C<sub>6</sub>H<sub>10</sub>O, 40), 98 (M<sup>+</sup> – C<sub>7</sub>H<sub>6</sub>O, 100), 70 (48), 55 (33)
- <u>TLC</u>:  $R_f 0.24$  (hexane/EtOAc, 3/1)
- <u>Opt. Rot.</u>:  $[\alpha]_{D}^{24}$ -24.2° (*c* =1.03, CHCl<sub>3</sub>)
  - <u>HPLC</u>:  $t_{\rm R}$  (2*R*,1'*S*)-**6a** 16.2 min (4.6%);  $t_{\rm R}$  (2*S*,1'*R*)-**6a** 19.6 min (95.4%) (Chiracel OJ, 90/10 hexane/*i*-PrOH, 0.5 mL min<sup>-1</sup>)
  - <u>HPLC</u>:  $t_{\rm R}$  (2*S*,1'*S*)-**6a** 16.8 min (40.5%);  $t_{\rm R}$  (2*R*,1'*R*)-**6a** 22.3 min (59.5%) (Chiracel OJ, 90/10 hexane/*i*-PrOH, 0.5 mL min<sup>-1</sup>)
- <u>Analysis:</u> C13H16O2 (204.27) Calcd.: C, 76.44%; H, 7.90% Found: C, 76.45%; H, 7.80%

General Procedure for Catalyzed Aldol Additions of 4 with Slow Addition of Aldehyde: (–)-(2*R*,1'S)-2-(Hydroxyphenylmethyl)cyclohexanone (*anti*-6a)




Catalyst (*S*,*S*)-**7a** (37.6 mg, 0.1 mmol, 0.1 equiv) was dried under vacuum (0.05 mmHg) for 12 at rt, CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added and the solution was cooled to -75 °C (internal). Trichlorosilyl enolate **4** (200  $\mu$ L, 1.1 mmol, 1.1 equiv) was added dropwise over 2 min A solution of benzaldehyde (102.0  $\mu$ L, 1.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was then added to the first solution, dropwise, via cannula over 45 min During the addition the temperature remained at -75 °C. The reaction mixture was stirred at -75 °C for 30 min, then it was quickly poured into cold (0 °C) sat. aq. NaHCO3 solution (10 mL) and the slurry was stirred for 15 min The two-phase mixture was filtered through Celite, the phases were separated, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 X 50 mL). The organic phases were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. The syn/anti ratio was determined by <sup>1</sup>H NMR (500 MHz) analysis to be 1/>50. The crude material was purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 6/1) to give 2.4 mg of (-)-*syn*-**6a** as an oil and 189.8 mg (94% total) of (-)-*anti*-**6a** as a clear oil . Analytical Data for (-)-*syn*-**6a**:

<u>SFC</u>:  $t_{\rm R}$  (2*S*,1'*S*)-**6a** 2.62 min (41.0%);  $t_{\rm R}$  (2*R*,1'*R*)-**6a** 3.26 min (59.0%) (Chiralcel OJ, 150 bar, 40 °C, 6% CH<sub>3</sub>OH in CO<sub>2</sub>, 2.5 mL min<sup>-1</sup>)

Analytical Data for (–)-*anti*-**6a**:

<u>SFC</u>:  $t_{\rm R}$  (2*S*,1'*R*)-**6a** 2.23 min (4.5%);  $t_{\rm R}$  (2*R*,1'*S*)-**6a** 2.54 min (95.5%) (Chiralcel OJ, 150 bar, 40 °C, 6% CH<sub>3</sub>OH in CO<sub>2</sub>, 2.5 mL min<sup>-1</sup>)

Denmark et al.



Reaction between (Z)-9 and Benzaldehyde Promoted by Phosphoramide (S,S)-7a

Phosphoramide (*S*,*S*)-7a (34.7 mg, 0.079 mmol) was dried at room temperature under high vacuum (ca. 0.05 mmHg) for 3 h in a two-necked round-bottomed flask. To this were added trichlorosilyl enolate (*Z*)-9 (113 mL, 0.55 mmol) and 5 mL of dry CH<sub>2</sub>Cl<sub>2</sub> successively under nitrogen. After the solution was cooled to -75 °C (internal temperature, dry ice-2-propanol bath), benzaldehyde (50 mL, 0.49 mmol) was added dropwise and the mixture was stirred at -75 °C for 6 h.

The reaction mixture was poured into a mixture of 5 mL of sat. aq. NaHCO3 solution and 8 mL of 20% aqueous NH4F solution at 0 °C and was stirred for 1 h at room temperature. After separation of the organic layer, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated under reduced pressure to give the crude products.

By the <sup>1</sup>H NMR analysis of of the crude products (comparison of the integrarions of C(3)*H* of **10**; d 5.25 (br) for *syn*-**10** and d 5.00 (dd) for *anti*-**10**), the diastereomeric ratio was determined to be syn/anti = 1/1.4. The crude mixture was chromatographed on silica gel (hexane/ethyl acetate = 20/1.5) to give *syn*-**10** (26.6 mg, 0.111 mmol) and *anti*-**10** (42.0 mg, 0.173 mmol). Total yield was 58 %.

#### **Reaction in 8 min**

Reactions were performed as mentioned above but the reaction time was 8 min In the reactions of the promoters **11a**, **11b**, **11c**, and **HMPA**, 0.20 mL (1.1 mmol) of **4** and 0.10 mL (0.98 mmol) of benzaldehyde were used. In the reactions of **11d**, **12a**, and **12b**, 100 mL (0.55 mmol) of enolate **4** and 50 mL (0.49 mmol) of benzaldehyde were used.

Conversion was determined by comparison of <sup>1</sup>H NMR integrations of the aromatic

signal of remained benzaldehyde (d 7.88 (d, 2H, o-Ph)) and the C(1')H signals of 6a.

#### **Reaction for Loading Effect**

According to the general method, most of the reactions for loading effect were performed in 0.5 mmol scale; i.e. using 50 mL (0.49 mmol) of benzaldehyde and 100 mL (0.55 mmol) of enolate **4** or 113 mL of enolate (Z)-**9** in 5 mL of dry CH<sub>2</sub>Cl<sub>2</sub>. Other procedure was the same.

When the loading of the promoter was more than 40 mol%, the reaction scale was 0.25 mmol; i.e. using 25 mL (0.25 mmol) of benzaldehyde and 50 mL (0.28 mmol) of enolate **4** in 2.5 mL of dry CH<sub>2</sub>Cl<sub>2</sub>.

#### **Concentration Effect**

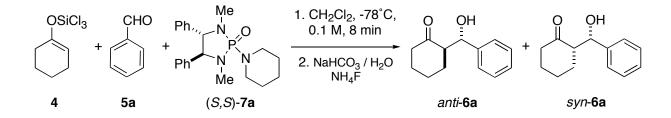
(1 M reaction) Phosphoramide **12a** (15.6 mg, 0.052 mmol) was dried at room temperature under high vacuum (ca. 0.05 mmHg) for 3 h in a two-necked round-bottomed flask. To this were added trichlorosilyl enolate **4** (0.10 mL, 0.55 mmol) and 0.5 mL of dry CH<sub>2</sub>Cl<sub>2</sub> successively under nitrogen. After the solution was cooled to -75 °C (internal temperature, dry ice-2-propanol bath), benzaldehyde (50 mL, 0.49 mmol) was added dropwise and the mixture was stirred at -75 °C for 1.5 h.

(0.01 M reaction) Procedure was the same as above except using 50 mL of dry CH<sub>2</sub>Cl<sub>2</sub> as the solvent and the reaction time extended to 6 h.

Quenching procedure, determination of the product ratio, and isolation of the product were the same in both cases as those of the general method.

### Loading Effect of Aldehyde

Phosphoramide **11c** (18.5 mg, 0.054 mmol) was dried at room temperature under high vacuum (ca. 0.05 mmHg) for 3 h in a two-necked round-bottomed flask. To this were added trichlorosilyl enolate **4** (0.10 mL, 0.55 mmol) and 5 mL of dry CH<sub>2</sub>Cl<sub>2</sub> successively under nitrogen. After the solution was cooled to -75 °C (internal temperature, dry ice-2-propanol bath), benzaldehyde (0.20 mL, 1.97 mmol) was added dropwise and the mixture was stirred at -75 °C for 3 h. Quenching procedure and determination of the product ratio were the same as those of the general method.


#### Phosphoramide-Promoted Reaction in the Presence of Acid

Phosphoramide **12a** (3.4 mg, 0.011 mmol) was dried at room temperature under high vacuum (ca. 0.05 mmHg) for 3 h in a two-necked round-bottomed flask. To this were added trichlorosilyl enolate **4** (100 mL, 0.55 mmol) and 4 mL of dry CH<sub>2</sub>Cl<sub>2</sub> successively under nitrogen. After the solution was cooled to -75 °C (dry ice-2-propanol bath), benzoic acid (1.4 mg, 0.011 mmol) in 1 mL of dry CH<sub>2</sub>Cl<sub>2</sub> and benzaldehyde (50 mL, 0.49 mmol) were added successively and the mixture was stirred at -75 °C for 3 h. The cold reaction mixture was poured into a mixture of 5 mL of saturated aqueous NaHCO<sub>3</sub> and 8 mL of 20 % aqueous NH4F at 0 °C with vigorous stirring, which was continued for 30 min at rt. Then insoluble material was filtered through a celite pad and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> twice. The combined organic solutions were dried (MgSO4) and condensed to give white solid.

The product ratio was determined by  ${}^{1}$ H NMR as metioned above. The product **6a** was isolated (86.8 mg, 87 %) by column chromatography.

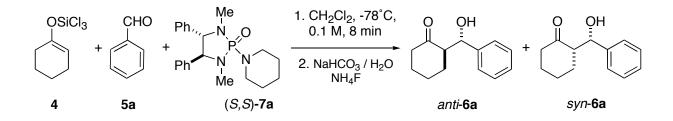
Other experiments in Tables 13 and 14 were performed in a similar way. For triflic acid, a CH<sub>2</sub>Cl<sub>2</sub> solution (0.113 M) was prepared in advance by diluting 20 mL (0.226 mmol) of triflic acid with 2 mL of dry CH<sub>2</sub>Cl<sub>2</sub> under nitrogen.

#### Aldol Addition Reactions of Trichlorosilyl Enolate 4 to Benzaldehyde Catalyzed by (S,S)-7a



The phosphoramide (*S*,*S*)-**7a** (36.9 mg, 0.1 mmol, 0.1 equiv) was weighed into a dry flask and dried under high vacuum for 4 h and then CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added under argon. The solution was then cooled to  $-78^{\circ}$  C and trichlorosilyl enolate **4** (201  $\mu$ L, 1.1 mmol, 1.1 equiv) was added neat and the solution stirred for 10 min Benzaldehyde (167  $\mu$ L, 1.0 mmol, 1.0 equiv) was added into the reaction mixture via a syringe along the wall of the flask and the reaction mixture was stirred at  $-78 \,^{\circ}$ C for 8 min and then poured into a mixture of sat. aq. NaHCO<sub>3</sub> (10 mL) solution and 20% aq. NH4F (10 mL) solution at 0 °C with vigorous stirring. The mixture was then allowed to stir at rt for 30 min Layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The organic extracts were washed (brine), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo to give an oil. <sup>1</sup>H NMR analysis showed a syn/anti ratio of 1/35. The crude product was then separated by column chromatography (SiO<sub>2</sub>, hexane/EtOAc 9/1 to 3/1) to give 6.3 mg (3%) *syn*-**6a**, and 196.1 mg of *anti*-**6a** (96%) (total yield 99%). Analysis of the products by chiral HPLC revealed syn er of 1.2/1 and anti er of 21/1.

Analytical Data for anti-6a:


<u>HPLC</u>:  $t_R((2S,1'R)-6a)$  14.36 min (4.5%), and  $t_R((2R,1'S)-6a)$  17.52 min (95.5%)

(Daicel ChiralCel OJ, hexane/i-PrOH, 90/10, 0.8 mL/min) (er 21/1)

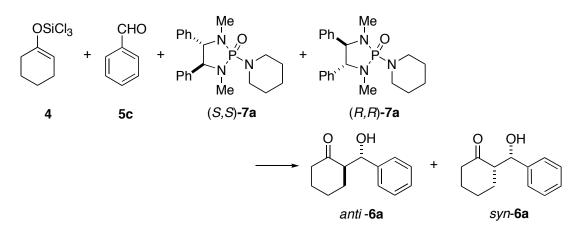
#### Analytical Data for syn-6a

<u>HPLC</u>:  $t_R (2R,1'R-6a) 15.22 \text{ min } (45.4\%), \text{ and } t_R (2S,1'S-6a) 20.82 \text{ min } (54.6\%) (Daicel ChiralCel OJ, hexane/$ *i*-PrOH, 90/10, 0.8 mL/min) (er 1.2/1)

# Aldol Addition Reactions of Trichlorosilyl Enolate 4 to Benzaldehyde Catalyzed by (*S*,*S*)-7a (One Equivalent)



Following the procedure described above from the phosphormide (*S*,*S*)-**7a** (369.3 mg, 1.0 mmol, 1.0 equiv), the trichlorosilyl enolate **4** (201  $\mu$ L, 1.1 mmol, 1.1 equiv) and benzaldehyde (101.6  $\mu$ L, 1.0 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was obtained 2.1 mg (1%) *syn*-**6a**, and 199.1 mg of *anti*-**6a** (97%) (total yield 98%). Diastereomeric ratio was determined on the crude product mixture by <sup>1</sup>H NMR analysis (syn/anti, 1/95).

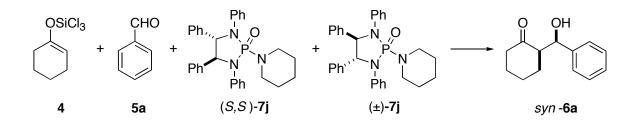

## Analytical Data for anti-6a:

<u>HPLC</u>:  $t_R ((2S,1'R)-6a) 13.33 \min (4.15\%), \text{ and } t_R ((2R,1'S)-6a) 16.28 \min (95.85\%)$ (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min) (er 23/1)

#### Analytical Data for syn-6a

<u>HPLC</u>:  $t_R (2R, 1'R-6a) 13.96 \min (15.3\%)$ , and  $t_R (2S, 1'S-6a) 18.10 \min (84.7\%)$  (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min) (er 5.5/1)

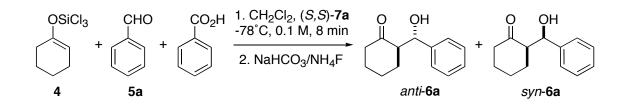
Nonlinear Effect Studies: Phosphoramide (S,S)-7a.




Phosphoramide (*S*,*S*)-**7a** (25.89 mg, 0.07008 mmol) and (*R*,*R*)-**7a** (11.11 mg, 0.03007 mmol) was weighed into a round bottomed flask and dried under high vacuums for 4 h. The phosphoramide (39.95% e.e. based on the weights) was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) under argon and the solution cooled to -78 °C. The trichlorosilyl enolate **4** (201  $\mu$ L, 1.1 mmol) was then added via a syringe and solution stirred for 5 min Benzaldehyde (102  $\mu$ L, 1.0 mmol) was then added and the solution stirred at -78° C for 8 min The reaction mixture was then poured into a mixture of sat. aq. NaHCO3 solution and 20% aq. NH4F solution at 0° C with vigorous stirring. The mixture was then stirred at rt for 30 min The layers were separated and the aqueous layer extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 20 mL). The combined organic solution was washed with brine, dried (MgSO4) and concentrated to give oily residue, which was then purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 9/1 to 3/1) to give *anti*-**6a** (189 mg, 93%) along with *syn*-**6a** (9.2 mg, 5%).

#### Analytical Data for anti-6a

<u>HPLC</u>:  $t_R ((2S,1'R)-6a) 13.65 \min (23.4\%)$ , and  $t_R ((2R,1'S)-6a) 16.87 \min (76.6\%)$ (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min) (53.3\% e.e.) Denmark et al.


Nonlinear Effect Studies: Phosphoramide (S,S)-7j.



A mixture of (*S*,*S*)-**7j** (4.96 mg, 0.01005 mmol) and (±)-**7j** (19.69 mg, 0.03989 mmol) was dried under high vacuums over night and then dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) under argon (20.1% e.e. of phosphoramide **7j** based on weights). The solution was cooled to  $-78^{\circ}$  C and enolate **4** (100.3  $\mu$ L, 0.55 mmol) was added. After the solution was stirred for 5 min at  $-78^{\circ}$  C benzaldehyde (50.8  $\mu$ L, 0.50 mmol) was added and the solution was stirred at  $-78^{\circ}$  C for 2 h. The reaction was then quenched by pouring into a mixture of sat. aq. NaHCO<sub>3</sub> solution (6 mL) and 20% aq. NH4F solution (6 mL) solution at 0° C with vigorous stirring. The mixture was then stirred at rt for 1 h and then filtered through a layer of Celite. The layers of the filtrate were separated and the aqueous layer extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined organic solution was washed with brine, dried (MgSO4) and concentrated to give solid residue (syn/anti >100/1), which was then purified by column chromatography (SiO<sub>2</sub>, hexane/EtOAc, 9/1) to give *syn*-**6a** (86.7 mg, 85%). HPLC analysis showed 11.3% e.e. for *syn*-**6a**.

#### Analytical Data for syn-6a

<u>HPLC</u>:  $t_R (2R, 1'R)-6a$ )13.35 min (55.65%), and  $t_R ((2S, 1'S)-6a)$  17.87 min (44.35%) (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min)



**Benzoic Acid Effects on the Phosphoramide** (*S*,*S*,)-7a Catalyzed Reactions

To a solution of the phosphoramide (*S*,*S*,)-**7a** (36.9 mg, 0.1 mmol, 0.1 equiv) and benzoic acid (12.2 mg, 0.1 mmol, 0.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added **4** (201  $\mu$ L, 1.1 mmol, 1.1 equiv) via a syringe at -78 °C. The solution was stirred for 5 min before benzaldehyde (102  $\mu$ L, 1.0 mmol, 1.0 equiv) was added along the side wall of the flask at -78 °C. The reaction mixture was then stirred for 8 min at this temperature and poured into a mixture of sat. aq. NaHCO<sub>3</sub> solution (10 mL) and 20 % aq. NH4F solution (10 mL) at 0 °C with rapid stirring. The mixture was then warmed to rt and stirred for 30 min The layers were separated and aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 X 10 mL). The combined extracts were washed with brine (10 mL) and dried (MgSO4). Solvent was removed in vacuo to give the crude product as an oil. <sup>1</sup>H NMR analysis showed conversion of 24% with syn/anti ratio of 4.1/1. The crude product was then separated by column chromatography (SiO<sub>2</sub>, hexane/EtOAc 9/1 to 3/1) to give the syn product *syn*-**6a** (28.7 mg, 1.0/1 er) as white crystals, anti product *anti*-**6a** (6.5 mg, er, 8.1/1) as an oil and 1.4 mg of mixed product (total yield 18%).

#### Analytical Data for syn-6a

<u>HPLC</u>:  $t_R ((2R,1'R)-138)$  13.92 min (51.0%), and  $t_R ((2S,1'S)-138)$  18.50 min (49.0%) (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min)

#### Analytical Data for anti-6a

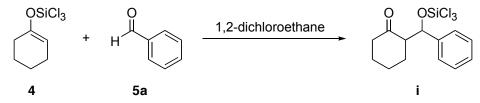
<u>HPLC</u>:  $t_R ((2S,1'R)-6a) 13.50 \min (10.8\%)$ , and  $t_R ((2R,1'S)-6a) 16.34 \min (89.2\%)$ (Daicel ChiralCel OJ, hexane/*i*-PrOH, 90/10, 0.8 mL/min)

#### **Kinetics: General Procedures.**

General Procedure 1a, GC Kinetics using zeroeth order aldehyde:

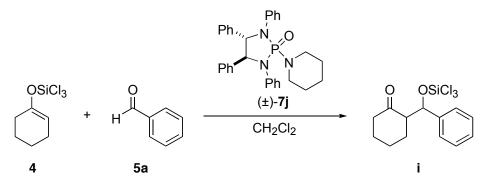


Pivalaldehyde (2) (1.16 mL, 10.4 mmol, 10 equiv.) was added rapidly to a solution of enolate, 1 (150  $\mu$ L, 1.04 mmol) and adamantane (22.3 mg, 0.16 mmol) in 1,2-dichloroethane (8 mL) at room temperature. Small aliquots were removed via cannula directly into a cold (0 °C) solution of concentrated KF and 1.0 M phosphate buffer (1/1, v/v). The mixture was vigorously vortexed and then was extracted with EtOAc. The mixture was passed through Florisil (plug) and quickly eluted with EtOAc. The sample was then analyzed by GC.


## General Procedure 1b, GC Kinetics using zeroeth order enolate:

Pivalaldehyde (2) (29  $\mu$ L, 0.26 mmol) was added rapidly to a solution of enolate, 1 (380  $\mu$ L, 2.6 mmol, 10 equiv.) and adamantane (6.8 mg, 0.05 mmol) in dichloroethane (2 mL) at room temperature. Small aliquots were removed via cannula directly into a cold (0 °C) solution of concentrated KF and 1.0 M phosphate buffer (1/1, v/v). The mixture was vigorously vortexed and then was extracted with EtOAc. The mixture was passed through Florisil (plug) and quickly eluted with EtOAc. The sample was then analyzed by GC.

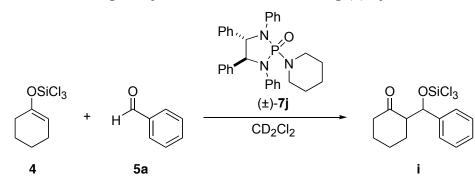
<u>GC</u>:


Instrument:Hewlett-Packard 5890, Hewlett-Packard 3396 Series III IntegratorConditions:Hewlett-Packard HP-5, 50 m 150 °C, 15 psi, 4  $\mu$ L.Retention Times (t<sub>R</sub>): $\mathbf{3} = 5.8$  min; Adamantane = 7.0 min

### General Procedure 2a, Uncatalyzed ReactIR Kinetics:



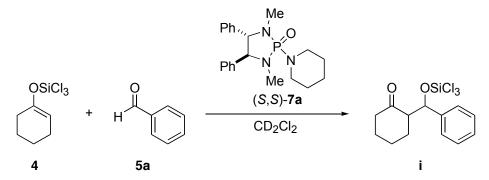
A dry reaction vessel was assembled onto the IR probe and vented for several minutes with dry nitrogen. 1,2-dichloroethane (1.5 mL) was then added to the reaction vessel and a *background* file was collected. Enolate **1** (82  $\mu$ L, 0.45 mmol) was then added and allowed to fully mix and the solution was left to equilibrate before beginning data collection. Benzaldehyde (46  $\mu$ L, 0.45 mmol) was added quickly to the enolate solution. IR spectra were collected at 3 min intervals for 180 min at 30 °C by internal monitoring. Recorded disappearance of peak at 1679 cm<sup>-1</sup> (enolate C=C).


#### General Procedure 2b, Catalyzed ReactIR Kinetics:



15 mg of ( $\pm$ )-7j was added to a dry reaction vessel. The vessel was assembled onto the IR probe and vented for several minutes with dry nitrogen. Dry methylene chloride (2.3 mL) was then added to the reaction vessel. The vessel was then submerged into a chilled isopropanol bath and the contents were allowed to equilibrate prior to collecting a *background* file. Enolate 4(111  $\mu$ L, 0.61 mmol) was then added and allowed to fully mix. Benzaldehyde (62  $\mu$ L, 0.61 mmol) was added quickly to the reaction solution. IR spectra were collected at 30 s intervals for 240 min at -49 °C by internal monitoring. Recorded disappearance of peak at 1679 cm<sup>-1</sup> (enolate C=C).

<u>IR</u>:


Instrument:ASI ReactIR 1000Probe and Detector:5/8" DiComp Probe using an MCT detector operating at -195 °C



General Procedure 3a, Rapid Injection NMR Kinetics Using (±)-7j:

To a dry NMR tube was added phosphoramide ( $\pm$ )-7j (8.6 mg, 0.017 mmol) of, CD<sub>2</sub>Cl<sub>2</sub> (600 µL) and enolate 4 (65 mL, 0.35 mmol). The tube was vigorously mixed using a vortex shaker and stored in a short dewar at -78 °C. Following proper positioning into spinner, the cap was carefully removed and the tube was quickly lowered into a precooled spectrometer under dry nitrogen. The fully primed RINMR injection apparatus was then carefully lowered into the spinning tube and the entire setup was allowed to equilibrate for several minutes. After equilibration, a benzaldehyde solution (85 µL, 0.35 mmol) was then rapidly injected.

#### General Procedure 3b, Rapid Injection NMR Kinetics Using (S,S)-7a:



To a dry NMR tube was added 3.2 mg (0.009 mmol) of phosphoramide, 600  $\mu$ L of CD<sub>2</sub>Cl<sub>2</sub>, 50  $\mu$ L of a stock solution of 1% TMS in CDCl<sub>3</sub> followed by 16  $\mu$ L (0.086 mmol) of enolate (*S*,*S*)-**7a**. The tube was vigorously mixed using a vortex shaker and stored in a short dewar at -78 °C. Following proper positioning into spinner, the cap was carefully removed and the tube was quickly lowered into a precooled spectrometer under dry nitrogen. The fully primed RINMR injection apparatus was then carefully lowered into the spinning tube and the entire setup was allowed to equilibrate for several minutes. After equilibration a benzaldehyde solution (42  $\mu$ L, 0.086 mmol) was then rapidly injected.

## Raw Data. GC Kinetics of Addition of 1 to 2.

### Temperature: 20 °C, Run #1:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (6.9 mg, 0.051 mmol) in 1,2-dichloroethane (2.0 mL) at 20 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.014 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 1441     | 5925       | 0.10       | 0.10      | 0.09                                  |
| 10    | 1854     | 4396       | 0.16       | 0.10      | 0.15                                  |
| 15    | 2660     | 4334       | 0.22       | 0.09      | 0.23                                  |
| 20    | 3339     | 4400       | 0.27       | 0.08      | 0.30                                  |
| 25    | 3644     | 4073       | 0.32       | 0.08      | 0.36                                  |
| 30    | 4609     | 4334       | 0.38       | 0.07      | 0.45                                  |
| 37    | 3023     | 2398       | 0.44       | 0.06      | 0.56                                  |
| 40    | 5023     | 3583       | 0.49       | 0.06      | 0.65                                  |
| 45    | 5957     | 4114       | 0.51       | 0.06      | 0.68                                  |
| 50    | 5320     | 3400       | 0.55       | 0.05      | 0.76                                  |
| 55    | 7074     | 4210       | 0.59       | 0.05      | 0.85                                  |
| 60    | 8078     | 4575       | 0.61       | 0.04      | 0.92                                  |

#### Temperature: 20 °C, Run #2:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (7.5 mg, 0.055 mmol) in 1,2-dichloroethane (2.0 mL) at 20 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.015 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 0        | 0          | -          | -         | -                                     |
| 10    | 1446     | 3637       | 0.15       | 0.09      | 0.16                                  |
| 15    | 2360     | 4030       | 0.21       | 0.09      | 0.24                                  |
| 20    | 3124     | 4234       | 0.27       | 0.08      | 0.32                                  |
| 25    | 3808     | 4184       | 0.32       | 0.07      | 0.41                                  |
| 30    | 3966     | 3980       | 0.35       | 0.07      | 0.46                                  |
| 35    | 5387     | 4594       | 0.41       | 0.06      | 0.57                                  |
| 40    | 4413     | 3348       | 0.46       | 0.06      | 0.67                                  |
| 45    | 4436     | 3162       | 0.49       | 0.05      | 0.73                                  |
| 50    | 6356     | 4226       | 0.53       | 0.05      | 0.81                                  |
| 55    | 6257     | 3944       | 0.55       | 0.05      | 0.88                                  |
| 60    | 5901     | 3527       | 0.58       | 0.04      | 0.96                                  |

# Temperature: 20 °C, Run #3:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (6.9 mg, 0.051 mmol) in 1,2-dichloroethane (2.0 mL) at 20 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.022 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 1433     | 2876       | 0.18       | 0.10      | 0.14                                  |
| 10    | 2732     | 2914       | 0.33       | 0.08      | 0.29                                  |
| 15    | 4211     | 3102       | 0.48       | 0.07      | 0.45                                  |
| 20    | 4417     | 2625       | 0.59       | 0.06      | 0.59                                  |
| 25    | 5700     | 2897       | 0.68       | 0.05      | 0.74                                  |
| 30    | 6000     | 2731       | 0.76       | 0.05      | 0.88                                  |

## Temperature: 30 °C, Run #1:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (5.4 mg, 0.040 mmol) in 1,2-dichloroethane (8.0 mL) at 30 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.022 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 1527     | 3550       | 0.16       | 0.10      | 0.12                                  |
| 10    | 2561     | 3237       | 0.28       | 0.09      | 0.24                                  |
| 15    | 3852     | 3395       | 0.40       | 0.08      | 0.36                                  |
| 20    | 4421     | 3123       | 0.48       | 0.07      | 0.47                                  |
| 25    | 5203     | 3101       | 0.58       | 0.06      | 0.59                                  |
| 30    | 5564     | 2949       | 0.64       | 0.06      | 0.70                                  |
| 35    | 7145     | 3315       | 0.75       | 0.05      | 0.85                                  |

# Temperature: 30 °C, Run #2:

Using General Procedure 1, pivalaldehyde (1.16 mL, 10.4 mmol) was added to a solution of enolate 1 (150  $\mu$ L, 1.03 mmol) and adamantane (22 mg, 0.16 mmol) in 1,2-dichloroethane (8.0 mL) at 30 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.026 \text{ min}^{-1}$ .

| Time<br>(min) | Aldolate<br>Area | Adamantane<br>Area | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>o</sub> ) |
|---------------|------------------|--------------------|------------|-----------|---------------------------------------|
| 5             | 3698             | 8134               | 0.17       | 0.10      | 0.14                                  |
| 10            | 9981             | 11970              | 0.30       | 0.08      | 0.27                                  |
| 15            | 9753             | 8239               | 0.42       | 0.07      | 0.41                                  |
| 20            | 11317            | 7846               | 0.50       | 0.07      | 0.53                                  |
| 25            | 16531            | 9866               | 0.58       | 0.06      | 0.64                                  |
| 30            | 20130            | 10449              | 0.67       | 0.05      | 0.79                                  |

# Temperature: 30 °C, Run #3:

Using General Procedure 1, pivalaldehyde (1.16 mL, 10.4 mmol) was added to a solution of enolate 1 (150  $\mu$ L, 1.03 mmol) and adamantane (22 mg, 0.15 mmol) in 1,2-dichloroethane (8.0 mL) at 30 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.025 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane | <b>c</b> : |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 4071     | 7921       | 0.19       | 0.10      | 0.14                                  |
| 10    | 7399     | 7945       | 0.33       | 0.08      | 0.27                                  |
| 15    | 10888    | 8526       | 0.45       | 0.07      | 0.40                                  |
| 20    | 14008    | 8708       | 0.56       | 0.07      | 0.53                                  |
| 25    | 13471    | 7268       | 0.64       | 0.06      | 0.65                                  |
| 30    | 18727    | 8974       | 0.72       | 0.05      | 0.77                                  |

# Temperature: 40 °C, Run #1:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (7.1 mg, 0.052 mmol) in 1,2-dichloroethane (2.0 mL) at 40 °C as internally monitored. The reaction was monitored every 5 minutes for 100 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.035 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 1595     | 3093       | 0.19       | 0.09      | 0.20                                  |
| 10    | 2842     | 3424       | 0.30       | 0.08      | 0.34                                  |
| 18    | 6117     | 4420       | 0.48       | 0.06      | 0.66                                  |
| 22    | 7056     | 4488       | 0.55       | 0.05      | 0.80                                  |
| 26    | 11330    | 6468       | 0.61       | 0.04      | 0.95                                  |
| 30    | 10167    | 5380       | 0.66       | 0.04      | 1.08                                  |
| 35    | 9355     | 4549       | 0.71       | 0.03      | 1.27                                  |

# Temperature: 40 °C, Run #2:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate 1 (29  $\mu$ L, 0.26 mmol) and adamantane (6.7 mg, 0.049 mmol) in 1,2-dichloroethane (2.0 mL) at 40 °C as internally monitored. The reaction was monitored every 5 minutes for 90 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.026 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 1326     | 4711       | 0.11       | 0.10      | 0.10                                  |
| 10    | 1776     | 3092       | 0.21       | 0.09      | 0.21                                  |
| 18    | 3695     | 4074       | 0.32       | 0.08      | 0.36                                  |
| 22    | 4210     | 3474       | 0.43       | 0.07      | 0.51                                  |
| 26    | 5539     | 3832       | 0.51       | 0.06      | 0.65                                  |
| 30    | 5972     | 3633       | 0.57       | 0.05      | 0.78                                  |
| 35    | 6005     | 3338       | 0.63       | 0.05      | 0.90                                  |
| 40    | 6595     | 3457       | 0.66       | 0.04      | 0.99                                  |
| 45    | 5750     | 2710       | 0.73       | 0.03      | 1.20                                  |

# Temperature: 40 °C, Run #3:

Using General Procedure 1, pivalaldehyde (380  $\mu$ L, 2.6 mmol) was added to a solution of enolate **1** 29  $\mu$ L, 0.26 mmol) and adamantane (22 mg, 0.15 mmol) in 1,2-dichloroethane (2.0 mL) at 40 °C as internally monitored. The reaction was monitored every 3 minutes for 60 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.025 \text{ min}^{-1}$ .

| Time<br>(min) | Aldolate<br>Area | Adamantane<br>Area | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|---------------|------------------|--------------------|------------|-----------|---------------------------------------|
| 4             | 1739             | 3834               | 0.17       | 0.10      | 0.13                                  |
| 7             | 3354             | 4104               | 0.29       | 0.09      | 0.25                                  |
| 11            | 5481             | 4499               | 0.43       | 0.07      | 0.40                                  |
| 14            | 6249             | 4244               | 0.51       | 0.07      | 0.51                                  |
| 17            | 3327             | 1901               | 0.61       | 0.06      | 0.65                                  |
| 21            | 16019            | 7914               | 0.70       | 0.05      | 0.80                                  |

# Temperature: 65 °C, Run #1:

Using General Procedure 1, pivalaldehyde (760  $\mu$ L, 5.2 mmol) was added to a solution of enolate 1 (58  $\mu$ L, 0.52 mmol) and adamantane (9.1 mg, 0.07 mmol) in 1,2-dichloroethane (8.0 mL) at 65 °C as internally monitored. The reaction was monitored every 4 minutes for 60 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.085 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 7     | 6365     | 3494       | 0.45       | 0.06      | 0.60                                  |
| 14    | 7716     | 2770       | 0.69       | 0.03      | 1.18                                  |
| 19    | 9388     | 2930       | 0.80       | 0.02      | 1.59                                  |
| 23    | 7015     | 2028       | 0.86       | 0.02      | 1.96                                  |

# Temperature: 65 °C, Run #2:

Using General Procedure 1, pivalaldehyde (760  $\mu$ L, 5.2 mmol) was added to a solution of enolate **1** (58  $\mu$ L, 0.52 mmol) and adamantane (13 mg, 0.10 mmol) in 1,2-dichloroethane (8.0 mL) at 63 °C as internally monitored. The reaction was monitored every 4 minutes for 60 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.055 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 5     | 4637     | 5759       | 0.29       | 0.08      | 0.30                                  |
| 10    | 7577     | 4104       | 0.49       | 0.05      | 0.88                                  |
| 18    | 8830     | 4145       | 0.74       | 0.04      | 1.13                                  |
| 23    | 10224    | 4333       | 0.82       | 0.03      | 1.38                                  |

# Temperature: 65 °C, Run #3:

Using General Procedure 1, pivalaldehyde (760  $\mu$ L, 5.2 mmol) was added to a solution of enolate 1 (58  $\mu$ L, 0.52 mmol) and adamantane (6.8 mg, 0.05 mmol) in 1,2-dichloroethane (8.0 mL) at 63 °C as internally monitored. The reaction was monitored every 4 minutes for 60 minutes, and then incrementally thereafter until complete conversion.  $k_{obs} = 0.062 \text{ min}^{-1}$ .

| Time  | Aldolate | Adamantane |            |           |                                       |
|-------|----------|------------|------------|-----------|---------------------------------------|
| (min) | Area     | Area       | Conversion | [Enolate] | ln([Enolate]/[Enolate] <sub>0</sub> ) |
| 7     | 6365     | 3494       | 0.41       | 0.07      | 0.52                                  |
| 14    | 7716     | 2770       | 0.62       | 0.04      | 0.98                                  |
| 19    | 9388     | 2930       | 0.72       | 0.03      | 1.26                                  |
| 23    | 7015     | 2028       | 0.77       | 0.03      | 1.49                                  |

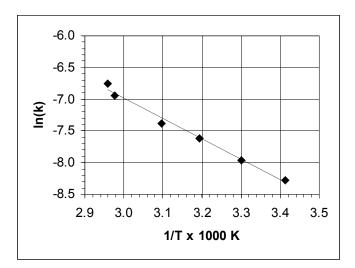



Figure I. Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -3.22,  $R^2 = 0.99$ ).

## Raw Data. ReactIR Kinetics of Addition of 1 to 2. Uncatalyzed.

## Temperature: 30 °C, Run #1:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 30 °C as internally monitored. The reaction was monitored every 3 minutes until complete conversion. k = 0.021 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0314     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 3.00       | 0.0288     | 0.182     | 0.10       | 1.70          | 0.11                                  |
| 6.00       | 0.0255     | 0.157     | 0.23       | 1.85          | 0.25                                  |
| 9.00       | 0.0229     | 0.136     | 0.33       | 1.99          | 0.40                                  |
| 12.00      | 0.0205     | 0.118     | 0.42       | 2.14          | 0.54                                  |
| 15.00      | 0.0187     | 0.104     | 0.49       | 2.26          | 0.67                                  |
| 18.00      | 0.0167     | 0.089     | 0.56       | 2.42          | 0.82                                  |
| 21.00      | 0.0155     | 0.080     | 0.61       | 2.53          | 0.93                                  |
| 24.00      | 0.0144     | 0.071     | 0.65       | 2.64          | 1.05                                  |
| 27.00      | 0.0131     | 0.061     | 0.70       | 2.80          | 1.21                                  |

### Temperature: 30 °C, Run #2:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 30 °C as internally monitored. The reaction was monitored every 3 minutes until complete conversion. k = 0.021 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0274     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 3.00       | 0.0244     | 0.176     | 0.13       | 1.74          | 0.14                                  |
| 6.00       | 0.0219     | 0.154     | 0.24       | 1.87          | 0.27                                  |
| 9.00       | 0.0195     | 0.133     | 0.34       | 2.02          | 0.42                                  |
| 12.00      | 0.0173     | 0.114     | 0.44       | 2.17          | 0.58                                  |
| 15.00      | 0.0160     | 0.102     | 0.50       | 2.28          | 0.69                                  |
| 18.00      | 0.0143     | 0.087     | 0.57       | 2.44          | 0.84                                  |
| 21.00      | 0.0133     | 0.079     | 0.61       | 2.54          | 0.94                                  |
| 24.00      | 0.0123     | 0.070     | 0.66       | 2.66          | 1.07                                  |
| 27.00      | 0.0113     | 0.061     | 0.70       | 2.79          | 1.20                                  |

## Temperature: 30 °C, Run #3:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 30 °C as internally monitored. The reaction was monitored every 3 minutes until complete conversion.  $k = 0.0211 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0353     | 0.203     | 0.00       | 1.595         | 0.00                                  |
| 3.00       | 0.0314     | 0.177     | 0.13       | 1.731         | 0.14                                  |
| 6.00       | 0.0279     | 0.154     | 0.24       | 1.870         | 0.28                                  |
| 9.00       | 0.0249     | 0.134     | 0.34       | 2.012         | 0.42                                  |
| 12.00      | 0.0226     | 0.118     | 0.42       | 2.133         | 0.54                                  |
| 15.00      | 0.0207     | 0.105     | 0.48       | 2.249         | 0.65                                  |
| 18.00      | 0.0187     | 0.092     | 0.54       | 2.381         | 0.79                                  |
| 21.00      | 0.0169     | 0.081     | 0.60       | 2.517         | 0.92                                  |
| 24.00      | 0.0156     | 0.072     | 0.65       | 2.632         | 1.04                                  |
| 27.00      | 0.0143     | 0.063     | 0.69       | 2.766         | 1.17                                  |

# Temperature: 40 °C, Run #1:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate 1 (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 40 °C as internally monitored. The reaction was monitored every 3 minutes until complete conversion. k = 0.027 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0342     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 3.00       | 0.0291     | 0.168     | 0.17       | 1.78          | 0.19                                  |
| 6.00       | 0.0251     | 0.141     | 0.31       | 1.96          | 0.37                                  |
| 9.00       | 0.0219     | 0.119     | 0.42       | 2.13          | 0.54                                  |
| 12.00      | 0.0192     | 0.099     | 0.51       | 2.31          | 0.71                                  |
| 15.00      | 0.0169     | 0.084     | 0.59       | 2.48          | 0.88                                  |
| 18.00      | 0.0153     | 0.073     | 0.64       | 2.62          | 1.02                                  |
| 21.00      | 0.0137     | 0.062     | 0.69       | 2.78          | 1.19                                  |

# Temperature: 40 °C, Run #2:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate 1 (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 40 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.028 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0306     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 2.00       | 0.0276     | 0.180     | 0.11       | 1.72          | 0.12                                  |
| 4.00       | 0.0252     | 0.161     | 0.21       | 1.83          | 0.23                                  |
| 6.00       | 0.0229     | 0.143     | 0.30       | 1.95          | 0.35                                  |
| 8.00       | 0.0208     | 0.127     | 0.38       | 2.07          | 0.47                                  |
| 10.00      | 0.0190     | 0.113     | 0.44       | 2.18          | 0.59                                  |
| 12.00      | 0.0174     | 0.101     | 0.50       | 2.30          | 0.70                                  |
| 14.00      | 0.0160     | 0.090     | 0.56       | 2.41          | 0.81                                  |
| 16.00      | 0.0148     | 0.081     | 0.60       | 2.52          | 0.92                                  |
| 18.00      | 0.0136     | 0.071     | 0.65       | 2.64          | 1.05                                  |
| 20.00      | 0.0128     | 0.065     | 0.68       | 2.729         | 1.134                                 |

# Temperature: 40 °C, Run #3:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate 1 (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 40 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.0266 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0321     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 2.00       | 0.0291     | 0.181     | 0.11       | 1.71          | 0.11                                  |
| 4.00       | 0.0262     | 0.160     | 0.21       | 1.83          | 0.24                                  |
| 6.00       | 0.0239     | 0.143     | 0.30       | 1.94          | 0.35                                  |
| 8.00       | 0.0215     | 0.125     | 0.38       | 2.08          | 0.48                                  |
| 10.00      | 0.0197     | 0.112     | 0.45       | 2.19          | 0.60                                  |
| 12.00      | 0.0181     | 0.100     | 0.51       | 2.30          | 0.70                                  |
| 14.00      | 0.0166     | 0.089     | 0.56       | 2.42          | 0.82                                  |
| 16.00      | 0.0154     | 0.081     | 0.60       | 2.52          | 0.92                                  |
| 18.00      | 0.0145     | 0.074     | 0.64       | 2.60          | 1.01                                  |
| 20.00      | 0.0134     | 0.065     | 0.68       | 2.72          | 1.13                                  |
| 22.00      | 0.0128     | 0.061     | 0.70       | 2.79          | 1.19                                  |

# Temperature: 50 °C, Run #1:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 50 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.0407 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0369     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 2.00       | 0.0302     | 0.160     | 0.21       | 1.84          | 0.24                                  |
| 4.00       | 0.0263     | 0.134     | 0.34       | 2.01          | 0.42                                  |
| 6.00       | 0.0231     | 0.113     | 0.44       | 2.18          | 0.58                                  |
| 8.00       | 0.0206     | 0.097     | 0.52       | 2.33          | 0.73                                  |
| 10.00      | 0.0183     | 0.082     | 0.60       | 2.50          | 0.90                                  |
| 12.00      | 0.0166     | 0.071     | 0.65       | 2.65          | 1.05                                  |
| 14.00      | 0.0148     | 0.059     | 0.71       | 2.82          | 1.23                                  |

# Temperature: 50 °C, Run #2:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate 1 (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 50 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.0385 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0321     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 2.00       | 0.0282     | 0.173     | 0.15       | 1.76          | 0.16                                  |
| 4.00       | 0.0244     | 0.144     | 0.29       | 1.94          | 0.34                                  |
| 6.00       | 0.0217     | 0.124     | 0.39       | 2.09          | 0.49                                  |
| 8.00       | 0.0194     | 0.106     | 0.48       | 2.24          | 0.65                                  |
| 10.00      | 0.0172     | 0.090     | 0.56       | 2.41          | 0.81                                  |
| 12.00      | 0.0155     | 0.077     | 0.62       | 2.56          | 0.97                                  |
| 14.00      | 0.0141     | 0.067     | 0.67       | 2.71          | 1.11                                  |

## Temperature: 50 °C, Run #3:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 50 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.0417 M<sup>-1</sup> min<sup>-1</sup>.

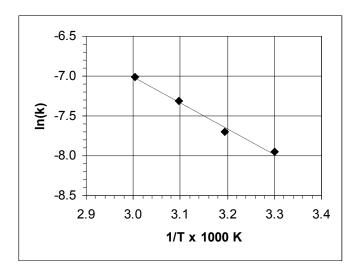
| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0338     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 2.00       | 0.0300     | 0.175     | 0.14       | 1.74          | 0.15                                  |
| 4.00       | 0.0265     | 0.150     | 0.26       | 1.90          | 0.30                                  |
| 6.00       | 0.0231     | 0.125     | 0.38       | 2.08          | 0.49                                  |
| 8.00       | 0.0204     | 0.105     | 0.48       | 2.25          | 0.66                                  |
| 10.00      | 0.0180     | 0.088     | 0.57       | 2.43          | 0.84                                  |
| 12.00      | 0.0160     | 0.073     | 0.64       | 2.61          | 1.02                                  |
| 14.00      | 0.0144     | 0.062     | 0.70       | 2.79          | 1.19                                  |

# Temperature: 60 °C, Run #1:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 60 °C as internally monitored. The reaction was monitored every 2 minutes until complete conversion. k = 0.0550 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0292     | 0.203     | 0.00       | 1.59          | 4.93                                  |
| 2.00       | 0.0246     | 0.164     | 0.19       | 1.81          | 6.11                                  |
| 4.00       | 0.0207     | 0.131     | 0.36       | 2.03          | 7.65                                  |
| 6.00       | 0.0179     | 0.107     | 0.47       | 2.24          | 9.38                                  |
| 8.00       | 0.0153     | 0.085     | 0.58       | 2.47          | 11.83                                 |
| 10.00      | 0.0131     | 0.066     | 0.68       | 2.72          | 15.18                                 |

# Temperature: 60 °C, Run #2:


Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 60 °C as internally monitored. The reaction was monitored every 1 minutes until complete conversion.  $k = 0.0545 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0004     | 0.000     | 0.00       |               |                                       |
| 0.00       | 0.0005     | 0.000     | 0.00       |               |                                       |
| 0.00       | 0.0229     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 1.00       | 0.0208     | 0.184     | 0.09       | 1.69          | 0.10                                  |
| 2.00       | 0.0184     | 0.162     | 0.20       | 1.82          | 0.22                                  |
| 3.00       | 0.0167     | 0.147     | 0.28       | 1.92          | 0.32                                  |
| 4.00       | 0.0147     | 0.129     | 0.36       | 2.05          | 0.45                                  |
| 5.00       | 0.0132     | 0.115     | 0.43       | 2.16          | 0.56                                  |
| 6.00       | 0.0120     | 0.104     | 0.49       | 2.26          | 0.66                                  |
| 7.00       | 0.0105     | 0.091     | 0.55       | 2.39          | 0.80                                  |
| 8.00       | 0.0093     | 0.080     | 0.61       | 2.52          | 0.93                                  |
| 9.00       | 0.0087     | 0.075     | 0.63       | 2.59          | 0.99                                  |
| 10.00      | 0.0079     | 0.067     | 0.67       | 2.70          | 1.11                                  |
| 11.00      | 0.0069     | 0.058     | 0.71       | 2.84          | 1.25                                  |

# Temperature: 60 °C, Run #3:

Using General Procedure 2a, pivalaldehyde (300  $\mu$ L, 2.7 mmol) was added to a solution of enolate **1** (38  $\mu$ L, 0.27 mmol) in 1,2-dichloroethane (1.0 mL) at 60 °C as internally monitored. The reaction was monitored every 1 minutes until complete conversion. k = 0.0532 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | ln([Enolate]) | ln([Enolate]/[Enolate] <sub>0</sub> ) |
|------------|------------|-----------|------------|---------------|---------------------------------------|
| 0.00       | 0.0287     | 0.203     | 0.00       | 1.59          | 0.00                                  |
| 1.00       | 0.0263     | 0.183     | 0.10       | 1.70          | 0.10                                  |
| 2.00       | 0.0238     | 0.161     | 0.21       | 1.83          | 0.23                                  |
| 3.00       | 0.0216     | 0.142     | 0.30       | 1.95          | 0.36                                  |
| 4.00       | 0.0201     | 0.129     | 0.36       | 2.05          | 0.45                                  |
| 5.00       | 0.0182     | 0.113     | 0.44       | 2.18          | 0.59                                  |
| 6.00       | 0.0172     | 0.104     | 0.49       | 2.26          | 0.67                                  |
| 7.00       | 0.0161     | 0.094     | 0.53       | 2.36          | 0.77                                  |
| 8.00       | 0.0149     | 0.084     | 0.58       | 2.47          | 0.88                                  |
| 9.00       | 0.0139     | 0.075     | 0.63       | 2.59          | 0.99                                  |
| 10.00      | 0.0132     | 0.069     | 0.66       | 2.67          | 1.08                                  |
| 11.00      | 0.0121     | 0.060     | 0.70       | 2.81          | 1.22                                  |



**Figure II.** Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -3.25,  $R^2 = 0.99$ ).

# Raw Data. ReactIR Kinetics of Addition of 4 to 5a. Uncatalyzed.

## Temperature: 30 °C, Run #1:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 30 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.741 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0325     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0241     | 0.192     | 0.31       | 5.22        |
| 2.00       | 0.0191     | 0.142     | 0.49       | 7.05        |
| 3.00       | 0.0163     | 0.113     | 0.59       | 8.81        |
| 4.00       | 0.0130     | 0.080     | 0.71       | 12.54       |
| 5.00       | 0.0127     | 0.077     | 0.72       | 13.04       |

## Temperature: 30 °C, Run #2:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 30 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.732 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0352     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0264     | 0.195     | 0.29       | 5.13        |
| 2.00       | 0.0208     | 0.144     | 0.48       | 6.97        |
| 3.00       | 0.0176     | 0.114     | 0.59       | 8.78        |
| 4.00       | 0.0151     | 0.091     | 0.67       | 11.03       |
| 5.00       | 0.0135     | 0.077     | 0.72       | 13.07       |

# Temperature: 30 °C, Run #3:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 30 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.662 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0336     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0259     | 0.200     | 0.28       | 5.00        |
| 2.00       | 0.0205     | 0.146     | 0.47       | 6.83        |
| 3.00       | 0.0175     | 0.117     | 0.58       | 8.55        |
| 4.00       | 0.0153     | 0.095     | 0.66       | 10.50       |
| 5.00       | 0.0131     | 0.074     | 0.73       | 13.54       |

# Temperature: 40 °C, Run #1:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 40 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.816 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0290     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0273     | 0.258     | 0.07       | 3.87        |
| 2.00       | 0.0196     | 0.178     | 0.36       | 5.63        |
| 3.00       | 0.0153     | 0.132     | 0.52       | 7.56        |
| 4.00       | 0.0130     | 0.108     | 0.61       | 9.28        |
| 5.00       | 0.0112     | 0.089     | 0.68       | 11.20       |
| 6.00       | 0.0102     | 0.078     | 0.72       | 12.78       |

## Temperature: 40 °C, Run #2:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 40 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.807 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0317     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0297     | 0.257     | 0.07       | 3.90        |
| 2.00       | 0.0219     | 0.181     | 0.35       | 5.54        |
| 3.00       | 0.0171     | 0.134     | 0.52       | 7.48        |
| 4.00       | 0.0145     | 0.108     | 0.61       | 9.27        |
| 5.00       | 0.0124     | 0.087     | 0.68       | 11.44       |
| 6.00       | 0.0110     | 0.074     | 0.73       | 13.57       |

# Temperature: 40 °C, Run #3:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 40 °C as internally monitored. The reaction was monitored every 1 minute until complete conversion. k = 1.807 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0296     | 0.276     | 0.00       | 3.62        |
| 1.00       | 0.0284     | 0.263     | 0.05       | 3.80        |
| 2.00       | 0.0210     | 0.184     | 0.33       | 5.42        |
| 3.00       | 0.0162     | 0.135     | 0.51       | 7.42        |
| 4.00       | 0.0134     | 0.105     | 0.62       | 9.53        |
| 5.00       | 0.0109     | 0.079     | 0.72       | 12.70       |
| 6.00       | 0.0102     | 0.071     | 0.74       | 14.09       |

# Temperature: 50 °C, Run #1:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 50 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 1.811 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0375     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0326     | 0.222     | 0.19       | 4.50        |
| 1.00       | 0.0294     | 0.187     | 0.32       | 5.36        |
| 1.50       | 0.0269     | 0.159     | 0.42       | 6.28        |
| 2.00       | 0.0250     | 0.139     | 0.50       | 7.20        |
| 2.50       | 0.0236     | 0.123     | 0.55       | 8.12        |
| 3.00       | 0.0222     | 0.108     | 0.61       | 9.22        |
| 3.50       | 0.0215     | 0.100     | 0.64       | 9.96        |
| 4.00       | 0.0209     | 0.093     | 0.66       | 10.72       |
| 4.50       | 0.0198     | 0.082     | 0.70       | 12.21       |

## Temperature: 50 °C, Run #2:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 50 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 2.062 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0288     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0276     | 0.264     | 0.05       | 3.79        |
| 1.00       | 0.0225     | 0.212     | 0.23       | 4.72        |
| 1.50       | 0.0191     | 0.177     | 0.36       | 5.65        |
| 2.00       | 0.0161     | 0.146     | 0.47       | 6.87        |
| 2.50       | 0.0142     | 0.127     | 0.54       | 7.88        |
| 3.00       | 0.0128     | 0.113     | 0.59       | 8.88        |
| 3.50       | 0.0117     | 0.101     | 0.64       | 9.95        |
| 4.00       | 0.0102     | 0.086     | 0.69       | 11.65       |
| 4.50       | 0.0096     | 0.079     | 0.71       | 12.63       |

## Temperature: 50 °C, Run #3:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 50 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 2.227 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0291     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0277     | 0.262     | 0.05       | 3.82        |
| 1.00       | 0.0227     | 0.210     | 0.24       | 4.75        |
| 1.50       | 0.0190     | 0.172     | 0.38       | 5.80        |
| 2.00       | 0.0160     | 0.143     | 0.48       | 7.02        |
| 2.50       | 0.0139     | 0.121     | 0.56       | 8.25        |
| 3.00       | 0.0126     | 0.107     | 0.61       | 9.32        |
| 3.50       | 0.0114     | 0.095     | 0.66       | 10.55       |
| 4.00       | 0.0099     | 0.079     | 0.71       | 12.58       |

### Temperature: 60 °C, Run #1:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 60 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 2.541 M<sup>-1</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0239     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0194     | 0.210     | 0.24       | 4.75        |
| 1.00       | 0.0166     | 0.171     | 0.38       | 5.86        |
| 1.50       | 0.0143     | 0.137     | 0.51       | 7.32        |
| 2.00       | 0.0128     | 0.115     | 0.58       | 8.69        |
| 2.50       | 0.0113     | 0.093     | 0.66       | 10.70       |
| 3.00       | 0.0107     | 0.086     | 0.69       | 11.69       |

# Temperature: 60 °C, Run #2:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 60 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 2.627 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0281     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0255     | 0.249     | 0.10       | 4.02        |
| 1.00       | 0.0197     | 0.186     | 0.33       | 5.37        |
| 1.50       | 0.0160     | 0.146     | 0.47       | 6.84        |
| 2.00       | 0.0129     | 0.114     | 0.59       | 8.78        |
| 2.50       | 0.0111     | 0.095     | 0.66       | 10.57       |
| 3.00       | 0.0100     | 0.082     | 0.70       | 12.12       |

# Temperature: 60 °C, Run #3:

Using General Procedure 2a, benzaldehyde (46  $\mu$ L, 0.45 mmol) was added to a solution of enolate **4** (82  $\mu$ L, 0.45 mmol) in 1,2-dichloroethane (1.5 mL) at 60 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 2.956 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0276     | 0.276     | 0.00       | 3.62        |
| 0.50       | 0.0248     | 0.247     | 0.11       | 4.05        |
| 1.00       | 0.0194     | 0.189     | 0.31       | 5.28        |
| 1.50       | 0.0151     | 0.144     | 0.48       | 6.94        |
| 2.00       | 0.0127     | 0.119     | 0.57       | 8.43        |
| 2.50       | 0.0104     | 0.095     | 0.66       | 10.57       |
| 3.00       | 0.0093     | 0.083     | 0.70       | 12.06       |

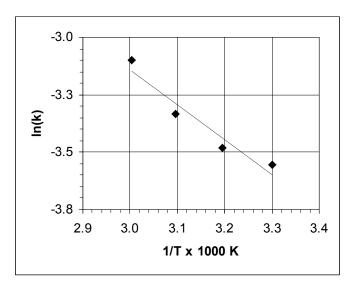



Figure III. Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -1.52,  $R^2 = 0.94$ ).

## Raw Data. ReactIR Kinetics of Addition of 4 to 5a. Catalyzed by (±)-7j.

## Temperature: -49 °C, Run #1:

Using General Procedure 2b, benzaldehyde (62  $\mu$ L, 0.61 mmol) was added to a solution of enolate 4 (111  $\mu$ L, 0.61 mmol) and phosphoramide (±)-7j (15 mg, 0.031 mmol) in methylene chloride (2.3 mL) at -49 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 55.57 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0325     | 0.246     | 0.00       | 4.06        |
| 0.5        | 0.2473     | 0.000     | 0.00       | 0.00        |
| 1.0        | 0.0750     | 0.000     | 0.00       | 0.00        |
| 1.5        | 0.0292     | 0.219     | 0.11       | 4.56        |
| 2.0        | 0.0275     | 0.205     | 0.17       | 4.87        |
| 2.5        | 0.0258     | 0.191     | 0.22       | 5.24        |
| 3.0        | 0.0246     | 0.181     | 0.26       | 5.52        |
| 3.5        | 0.0232     | 0.170     | 0.31       | 5.89        |
| 4.0        | 0.0218     | 0.158     | 0.36       | 6.33        |
| 4.5        | 0.0204     | 0.147     | 0.40       | 6.82        |
| 5.0        | 0.0197     | 0.141     | 0.43       | 7.10        |
| 5.5        | 0.0188     | 0.134     | 0.46       | 7.47        |
| 6.0        | 0.0183     | 0.130     | 0.47       | 7.71        |
| 6.5        | 0.0177     | 0.125     | 0.49       | 8.02        |
| 7.0        | 0.0166     | 0.115     | 0.53       | 8.67        |
| 7.5        | 0.0162     | 0.112     | 0.55       | 8.93        |
| 8.0        | 0.0154     | 0.105     | 0.57       | 9.49        |
| 8.5        | 0.0149     | 0.101     | 0.59       | 9.86        |
| 9.0        | 0.0144     | 0.097     | 0.61       | 10.29       |
| 9.5        | 0.0138     | 0.093     | 0.62       | 10.81       |
| 10.0       | 0.0138     | 0.093     | 0.62       | 10.81       |
| 10.5       | 0.0133     | 0.089     | 0.64       | 11.26       |
| 11.0       | 0.0130     | 0.086     | 0.65       | 11.65       |
| 11.5       | 0.0126     | 0.083     | 0.66       | 12.04       |
| 12.0       | 0.0122     | 0.080     | 0.68       | 12.58       |
| 12.5       | 0.0119     | 0.077     | 0.69       | 12.95       |
| 13.0       | 0.0117     | 0.076     | 0.69       | 13.22       |
| 13.5       | 0.0115     | 0.073     | 0.70       | 13.64       |

## Temperature: -49 °C, Run #2:

Using General Procedure 2b, benzaldehyde (67  $\mu$ L, 0.66 mmol) was added to a solution of enolate 4 (120  $\mu$ L, 0.66 mmol) and phosphoramide (±)-7j (16 mg, 0.033 mmol) in methylene chloride (2.5 mL) at -49 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 77.96 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0347     | 0.245     | 0.00       | 4.08        |
| 0.5        | 0.0305     | 0.215     | 0.12       | 4.65        |
| 1.0        | 0.0278     | 0.196     | 0.20       | 5.11        |
| 1.5        | 0.0255     | 0.179     | 0.27       | 5.58        |
| 2.0        | 0.0240     | 0.168     | 0.31       | 5.94        |
| 2.5        | 0.0219     | 0.153     | 0.37       | 6.53        |
| 3.0        | 0.0205     | 0.144     | 0.41       | 6.96        |
| 3.5        | 0.0193     | 0.135     | 0.45       | 7.42        |
| 4.0        | 0.0180     | 0.125     | 0.49       | 8.00        |
| 4.5        | 0.0170     | 0.118     | 0.52       | 8.45        |
| 5.0        | 0.0161     | 0.112     | 0.54       | 8.95        |
| 5.5        | 0.0155     | 0.108     | 0.56       | 9.29        |
| 6.0        | 0.0145     | 0.100     | 0.59       | 9.98        |
| 6.5        | 0.0139     | 0.096     | 0.61       | 10.43       |
| 7.0        | 0.0128     | 0.088     | 0.64       | 11.33       |
| 7.5        | 0.0126     | 0.087     | 0.65       | 11.54       |
| 8.0        | 0.0119     | 0.082     | 0.67       | 12.20       |
| 8.5        | 0.0115     | 0.079     | 0.68       | 12.70       |
| 9.0        | 0.0109     | 0.074     | 0.70       | 13.46       |
| 9.5        | 0.0103     | 0.071     | 0.71       | 14.16       |

## Temperature: -49 °C, Run #3:

Using General Procedure 2b, benzaldehyde (60  $\mu$ L, 0.59 mmol) was added to a solution of enolate 1 (107  $\mu$ L, 0.59 mmol) and phosphoramide (±)-7j (15 mg, 0.030 mmol) in methylene chloride (2.2 mL) at -49 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 50.93 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0325     | 0.248     | 0.00       | 4.03        |
| 0.5        | 0.0311     | 0.237     | 0.04       | 4.22        |
| 1.0        | 0.0294     | 0.223     | 0.10       | 4.47        |
| 1.5        | 0.0276     | 0.209     | 0.16       | 4.79        |
| 2.0        | 0.0263     | 0.198     | 0.20       | 5.05        |
| 2.5        | 0.0247     | 0.185     | 0.25       | 5.41        |
| 3.0        | 0.0234     | 0.174     | 0.30       | 5.73        |
| 3.5        | 0.0227     | 0.169     | 0.32       | 5.93        |
| 4.0        | 0.0212     | 0.157     | 0.37       | 6.39        |
| 4.5        | 0.0201     | 0.148     | 0.40       | 6.76        |
| 5.0        | 0.0194     | 0.143     | 0.42       | 7.01        |
| 5.5        | 0.0187     | 0.137     | 0.45       | 7.31        |
| 6.0        | 0.0178     | 0.129     | 0.48       | 7.74        |
| 6.5        | 0.0171     | 0.124     | 0.50       | 8.07        |
| 7.0        | 0.0167     | 0.121     | 0.51       | 8.29        |
| 7.5        | 0.0160     | 0.115     | 0.54       | 8.69        |
| 8.0        | 0.0154     | 0.110     | 0.56       | 9.11        |
| 8.5        | 0.0147     | 0.104     | 0.58       | 9.63        |
| 9.0        | 0.0144     | 0.102     | 0.59       | 9.79        |
| 9.5        | 0.0141     | 0.099     | 0.60       | 10.11       |
| 10.0       | 0.0139     | 0.098     | 0.61       | 10.22       |
| 10.5       | 0.0133     | 0.093     | 0.62       | 10.74       |
| 11.0       | 0.0131     | 0.091     | 0.63       | 10.94       |
| 11.5       | 0.0126     | 0.087     | 0.65       | 11.51       |
| 12.0       | 0.0123     | 0.085     | 0.66       | 11.80       |
| 12.5       | 0.0118     | 0.081     | 0.67       | 12.34       |
| 13.0       | 0.0115     | 0.078     | 0.68       | 12.74       |
| 13.5       | 0.0113     | 0.077     | 0.69       | 13.06       |
| 14.0       | 0.0113     | 0.076     | 0.69       | 13.10       |
| 14.5       | 0.0107     | 0.072     | 0.71       | 13.90       |

## Temperature: -32 °C, Run #1:

Using General Procedure 2b, benzaldehyde (62  $\mu$ L, 0.61 mmol) was added to a solution of enolate 4 (111  $\mu$ L, 0.61 mmol) and phosphoramide (±)-7j (15 mg, 0.031 mmol) in methylene chloride (2.3 mL) at -32 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 72.30 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0325     | 0.276     | 0.00       | 3.62        |
| 0.00       | 0.0340     | 0.246     | 0.00       | 4.06        |
| 0.50       | 0.0308     | 0.223     | 0.09       | 4.48        |
| 1.00       | 0.0281     | 0.203     | 0.17       | 4.92        |
| 1.50       | 0.0256     | 0.185     | 0.25       | 5.40        |
| 2.00       | 0.0236     | 0.171     | 0.30       | 5.84        |
| 2.50       | 0.0222     | 0.161     | 0.35       | 6.23        |
| 3.00       | 0.0204     | 0.147     | 0.40       | 6.78        |
| 3.50       | 0.0193     | 0.140     | 0.43       | 7.16        |
| 4.00       | 0.0182     | 0.131     | 0.47       | 7.61        |
| 4.50       | 0.0171     | 0.124     | 0.50       | 8.08        |
| 5.00       | 0.0163     | 0.118     | 0.52       | 8.46        |
| 5.50       | 0.0155     | 0.112     | 0.55       | 8.94        |
| 6.00       | 0.0146     | 0.106     | 0.57       | 9.47        |
| 6.50       | 0.0142     | 0.103     | 0.58       | 9.74        |
| 7.00       | 0.0133     | 0.096     | 0.61       | 10.42       |
| 7.50       | 0.0127     | 0.092     | 0.63       | 10.90       |
| 8.00       | 0.0124     | 0.090     | 0.63       | 11.12       |
| 8.50       | 0.0119     | 0.086     | 0.65       | 11.68       |
| 9.00       | 0.0115     | 0.083     | 0.66       | 12.01       |
| 9.50       | 0.0110     | 0.080     | 0.68       | 12.54       |
| 10.00      | 0.0105     | 0.076     | 0.69       | 13.12       |
| 10.50      | 0.0104     | 0.075     | 0.69       | 13.27       |
| 11.00      | 0.0099     | 0.072     | 0.71       | 13.92       |

## Temperature: -32 °C, Run #2:

Using General Procedure 2b, benzaldehyde (78  $\mu$ L, 0.77 mmol) was added to a solution of enolate 4 (140  $\mu$ L, 0.77 mmol) and phosphoramide (±)-7j (19 mg, 0.038 mmol) in methylene chloride (2.9 mL) at -32 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 63.05 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0327     | 0.246     | 0.00       | 4.06        |
| 0.50       | 0.0302     | 0.226     | 0.08       | 4.42        |
| 1.00       | 0.0277     | 0.208     | 0.16       | 4.82        |
| 1.50       | 0.0257     | 0.191     | 0.22       | 5.22        |
| 2.00       | 0.0240     | 0.178     | 0.28       | 5.60        |
| 2.50       | 0.0224     | 0.166     | 0.33       | 6.02        |
| 3.00       | 0.0211     | 0.156     | 0.37       | 6.40        |
| 3.50       | 0.0199     | 0.147     | 0.40       | 6.82        |
| 4.00       | 0.0191     | 0.141     | 0.43       | 7.12        |
| 4.50       | 0.0179     | 0.131     | 0.47       | 7.63        |
| 5.00       | 0.0173     | 0.126     | 0.49       | 7.92        |
| 5.50       | 0.0165     | 0.120     | 0.51       | 8.30        |
| 6.00       | 0.0157     | 0.114     | 0.54       | 8.77        |
| 6.50       | 0.0151     | 0.109     | 0.56       | 9.14        |
| 7.00       | 0.0143     | 0.103     | 0.58       | 9.69        |
| 7.50       | 0.0139     | 0.100     | 0.59       | 10.03       |
| 8.00       | 0.0134     | 0.096     | 0.61       | 10.41       |
| 8.50       | 0.0128     | 0.091     | 0.63       | 10.93       |
| 9.00       | 0.0123     | 0.088     | 0.64       | 11.43       |
| 9.50       | 0.0123     | 0.087     | 0.65       | 11.44       |
| 10.00      | 0.0118     | 0.083     | 0.66       | 12.00       |
| 10.50      | 0.0112     | 0.079     | 0.68       | 12.71       |
| 11.00      | 0.0110     | 0.078     | 0.69       | 12.90       |
| 11.50      | 0.0107     | 0.075     | 0.69       | 13.28       |
| 12.00      | 0.0106     | 0.074     | 0.70       | 13.54       |
| 12.50      | 0.0102     | 0.071     | 0.71       | 14.06       |

## Temperature: -32 °C, Run #3:

Using General Procedure 2b, benzaldehyde (58  $\mu$ L, 0.57 mmol) was added to a solution of enolate 4 (103  $\mu$ L, 0.57 mmol) and phosphoramide (±)-7j (14 mg, 0.029 mmol) in methylene chloride (2.1 mL) at -32 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 61.46 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.00       | 0.0319     | 0.250     | 0.00       | 4.00        |
| 0.50       | 0.0292     | 0.228     | 0.09       | 4.38        |
| 1.00       | 0.0270     | 0.210     | 0.16       | 4.76        |
| 1.50       | 0.0250     | 0.194     | 0.22       | 5.16        |
| 2.00       | 0.0232     | 0.180     | 0.28       | 5.57        |
| 2.50       | 0.0218     | 0.169     | 0.33       | 5.93        |
| 3.00       | 0.0206     | 0.159     | 0.37       | 6.31        |
| 3.50       | 0.0195     | 0.150     | 0.40       | 6.68        |
| 4.00       | 0.0183     | 0.140     | 0.44       | 7.12        |
| 4.50       | 0.0174     | 0.133     | 0.47       | 7.50        |
| 5.00       | 0.0168     | 0.128     | 0.49       | 7.79        |
| 5.50       | 0.0159     | 0.121     | 0.52       | 8.27        |
| 6.00       | 0.0149     | 0.113     | 0.55       | 8.83        |
| 6.50       | 0.0143     | 0.108     | 0.57       | 9.25        |
| 7.00       | 0.0137     | 0.103     | 0.59       | 9.71        |
| 7.50       | 0.0131     | 0.098     | 0.61       | 10.17       |
| 8.00       | 0.0122     | 0.091     | 0.63       | 10.96       |
| 8.50       | 0.0118     | 0.088     | 0.65       | 11.36       |
| 9.00       | 0.0115     | 0.085     | 0.66       | 11.75       |
| 9.50       | 0.0113     | 0.084     | 0.66       | 11.91       |
| 10.00      | 0.0108     | 0.080     | 0.68       | 12.57       |
| 10.50      | 0.0103     | 0.076     | 0.70       | 13.15       |

## Temperature: -26 °C, Run #1:

Using General Procedure 2b, benzaldehyde (63  $\mu$ L, 0.61 mmol) was added to a solution of enolate **4** (113  $\mu$ L, 0.62 mmol) and phosphoramide (±)-7j (15.3 mg, 0.031 mmol) in methylene chloride (2.3 mL) at -26 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 61.77 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0300     | 0.250     | 0.00       | 4.00        |
| 0.5        | 0.0281     | 0.234     | 0.07       | 4.28        |
| 1.0        | 0.0266     | 0.220     | 0.12       | 4.54        |
| 1.5        | 0.0246     | 0.203     | 0.19       | 4.93        |
| 2.0        | 0.0227     | 0.186     | 0.26       | 5.37        |
| 2.5        | 0.0218     | 0.178     | 0.29       | 5.62        |
| 3.0        | 0.0202     | 0.164     | 0.34       | 6.09        |
| 3.5        | 0.0192     | 0.155     | 0.38       | 6.44        |
| 4.0        | 0.0179     | 0.144     | 0.43       | 6.96        |
| 4.5        | 0.0171     | 0.137     | 0.45       | 7.32        |
| 5.0        | 0.0164     | 0.130     | 0.48       | 7.66        |
| 5.5        | 0.0155     | 0.122     | 0.51       | 8.17        |
| 6.0        | 0.0149     | 0.117     | 0.53       | 8.55        |
| 6.5        | 0.0144     | 0.113     | 0.55       | 8.88        |
| 7.0        | 0.0136     | 0.106     | 0.58       | 9.47        |
| 7.5        | 0.0132     | 0.102     | 0.59       | 9.80        |
| 8.0        | 0.0125     | 0.097     | 0.61       | 10.36       |
| 8.5        | 0.0123     | 0.094     | 0.62       | 10.63       |
| 9.0        | 0.0117     | 0.089     | 0.64       | 11.18       |
| 9.5        | 0.0115     | 0.087     | 0.65       | 11.49       |
| 10.0       | 0.0110     | 0.083     | 0.67       | 12.11       |
| 10.5       | 0.0106     | 0.079     | 0.68       | 12.65       |
| 11.0       | 0.0105     | 0.078     | 0.69       | 12.80       |
| 11.5       | 0.0102     | 0.076     | 0.70       | 13.16       |
| 12.0       | 0.0101     | 0.075     | 0.70       | 13.27       |
| 12.5       | 0.0097     | 0.071     | 0.72       | 14.06       |

## Temperature: -26 °C, Run #2:

Using General Procedure 2b, benzaldehyde (64  $\mu$ L, 0.63 mmol) was added to a solution of enolate **4** (115  $\mu$ L, 0.63 mmol) and phosphoramide (±)-7j (15.6 mg, 0.032 mmol) in methylene chloride (2.3 mL) at -26 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 59.54 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0353     | 0.254     | 0.00       | 3.93        |
| 0.5        | 0.0323     | 0.232     | 0.09       | 4.31        |
| 1.0        | 0.0299     | 0.214     | 0.16       | 4.68        |
| 1.5        | 0.0283     | 0.202     | 0.21       | 4.96        |
| 2.0        | 0.0267     | 0.190     | 0.25       | 5.26        |
| 2.5        | 0.0242     | 0.171     | 0.33       | 5.85        |
| 3.0        | 0.0228     | 0.161     | 0.37       | 6.21        |
| 3.5        | 0.0233     | 0.164     | 0.35       | 6.09        |
| 4.0        | 0.0208     | 0.146     | 0.43       | 6.85        |
| 4.5        | 0.0196     | 0.137     | 0.46       | 7.31        |
| 5.0        | 0.0190     | 0.132     | 0.48       | 7.57        |
| 5.5        | 0.0175     | 0.121     | 0.52       | 8.25        |
| 6.0        | 0.0170     | 0.118     | 0.54       | 8.49        |
| 6.5        | 0.0166     | 0.114     | 0.55       | 8.75        |
| 7.0        | 0.0158     | 0.109     | 0.57       | 9.21        |
| 7.5        | 0.0158     | 0.108     | 0.57       | 9.25        |
| 8.0        | 0.0151     | 0.103     | 0.60       | 9.72        |
| 8.5        | 0.0146     | 0.100     | 0.61       | 10.02       |
| 9.0        | 0.0140     | 0.095     | 0.63       | 10.49       |
| 9.5        | 0.0135     | 0.091     | 0.64       | 10.94       |
| 10.0       | 0.0137     | 0.093     | 0.64       | 10.80       |
| 10.5       | 0.0126     | 0.085     | 0.67       | 11.79       |
| 11.0       | 0.0126     | 0.085     | 0.67       | 11.80       |
| 11.5       | 0.0120     | 0.080     | 0.68       | 12.44       |
| 12.0       | 0.0122     | 0.081     | 0.68       | 12.28       |
| 12.5       | 0.0115     | 0.076     | 0.70       | 13.09       |
| 13.0       | 0.0114     | 0.075     | 0.70       | 13.25       |
| 13.5       | 0.0113     | 0.075     | 0.71       | 13.34       |

## Temperature: -26 °C, Run #3:

Using General Procedure 2b, benzaldehyde (63  $\mu$ L, 0.61 mmol) was added to a solution of enolate **4** (113  $\mu$ L, 0.62 mmol) and phosphoramide (±)-7j (15.6 mg, 0.032 mmol) in methylene chloride (2.3 mL) at -26 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 69.57 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0274     | 0.250     | 0.00       | 4.00        |
| 0.5        | 0.0249     | 0.226     | 0.10       | 4.42        |
| 1.0        | 0.0233     | 0.211     | 0.16       | 4.74        |
| 1.5        | 0.0212     | 0.191     | 0.24       | 5.24        |
| 2.0        | 0.0199     | 0.179     | 0.29       | 5.59        |
| 2.5        | 0.0187     | 0.167     | 0.33       | 5.98        |
| 3.0        | 0.0175     | 0.155     | 0.38       | 6.44        |
| 3.5        | 0.0165     | 0.146     | 0.41       | 6.83        |
| 4.0        | 0.0156     | 0.137     | 0.45       | 7.28        |
| 4.5        | 0.0144     | 0.126     | 0.50       | 7.92        |
| 5.0        | 0.0136     | 0.118     | 0.53       | 8.45        |
| 5.5        | 0.0134     | 0.116     | 0.53       | 8.59        |
| 6.0        | 0.0126     | 0.109     | 0.56       | 9.14        |
| 6.5        | 0.0119     | 0.102     | 0.59       | 9.80        |
| 7.0        | 0.0117     | 0.100     | 0.60       | 9.99        |
| 7.5        | 0.0112     | 0.095     | 0.62       | 10.49       |
| 8.0        | 0.0107     | 0.091     | 0.64       | 11.01       |
| 8.5        | 0.0101     | 0.086     | 0.66       | 11.67       |
| 9.0        | 0.0098     | 0.083     | 0.67       | 12.08       |
| 9.5        | 0.0095     | 0.079     | 0.68       | 12.60       |
| 10.0       | 0.0090     | 0.075     | 0.70       | 13.31       |
| 10.5       | 0.0087     | 0.072     | 0.71       | 13.92       |

## Temperature: -10 °C, Run #1:

Using General Procedure 2b, benzaldehyde (63  $\mu$ L, 0.61 mmol) was added to a solution of enolate **4** (112  $\mu$ L, 0.61 mmol) and phosphoramide (±)-7j (15.2 mg, 0.031 mmol) in methylene chloride (2.3 mL) at -10 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 73.48 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0304     | 0.248     | 0.00       | 4.03        |
| 0.5        | 0.0278     | 0.225     | 0.09       | 4.44        |
| 1.0        | 0.0256     | 0.207     | 0.17       | 4.83        |
| 1.5        | 0.0235     | 0.189     | 0.24       | 5.28        |
| 2.0        | 0.0215     | 0.173     | 0.30       | 5.79        |
| 2.5        | 0.0204     | 0.163     | 0.34       | 6.12        |
| 3.0        | 0.0188     | 0.150     | 0.40       | 6.67        |
| 3.5        | 0.0178     | 0.141     | 0.43       | 7.09        |
| 4.0        | 0.0166     | 0.132     | 0.47       | 7.60        |
| 4.5        | 0.0157     | 0.123     | 0.50       | 8.10        |
| 5.0        | 0.0148     | 0.116     | 0.53       | 8.60        |
| 5.5        | 0.0139     | 0.108     | 0.56       | 9.24        |
| 6.0        | 0.0137     | 0.107     | 0.57       | 9.37        |
| 6.5        | 0.0127     | 0.098     | 0.60       | 10.18       |
| 7.0        | 0.0123     | 0.095     | 0.62       | 10.49       |
| 7.5        | 0.0116     | 0.089     | 0.64       | 11.24       |
| 8.0        | 0.0113     | 0.087     | 0.65       | 11.54       |
| 8.5        | 0.0105     | 0.080     | 0.68       | 12.53       |
| 9.0        | 0.0102     | 0.078     | 0.69       | 12.89       |
| 9.5        | 0.0100     | 0.075     | 0.70       | 13.28       |
| 10.0       | 0.0095     | 0.071     | 0.71       | 14.09       |

## Temperature: -10 °C, Run #2:

Using General Procedure 2b, benzaldehyde (54  $\mu$ L, 0.54 mmol) was added to a solution of enolate 4 (98  $\mu$ L, 0.54 mmol) and phosphoramide (±)-7j (13.2 mg, 0.027 mmol) in methylene chloride (2.0 mL) at -10 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 71.19 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0302     | 0.250     | 0.00       | 4.00        |
| 0.5        | 0.0274     | 0.225     | 0.10       | 4.44        |
| 1.0        | 0.0253     | 0.207     | 0.17       | 4.83        |
| 1.5        | 0.0237     | 0.192     | 0.23       | 5.20        |
| 2.0        | 0.0213     | 0.172     | 0.31       | 5.83        |
| 2.5        | 0.0202     | 0.161     | 0.35       | 6.19        |
| 3.0        | 0.0190     | 0.151     | 0.39       | 6.60        |
| 3.5        | 0.0180     | 0.142     | 0.43       | 7.03        |
| 4.0        | 0.0169     | 0.133     | 0.47       | 7.52        |
| 4.5        | 0.0162     | 0.127     | 0.49       | 7.90        |
| 5.0        | 0.0152     | 0.118     | 0.53       | 8.47        |
| 5.5        | 0.0146     | 0.113     | 0.55       | 8.88        |
| 6.0        | 0.0139     | 0.106     | 0.57       | 9.40        |
| 6.5        | 0.0134     | 0.103     | 0.59       | 9.76        |
| 7.0        | 0.0126     | 0.096     | 0.62       | 10.46       |
| 7.5        | 0.0124     | 0.094     | 0.62       | 10.65       |
| 8.0        | 0.0119     | 0.089     | 0.64       | 11.22       |
| 8.5        | 0.0113     | 0.084     | 0.66       | 11.88       |
| 9.0        | 0.0110     | 0.081     | 0.67       | 12.32       |
| 9.5        | 0.0106     | 0.078     | 0.69       | 12.81       |
| 10.0       | 0.0101     | 0.073     | 0.71       | 13.65       |

## Temperature: -10 °C, Run #3:

Using General Procedure 2b, benzaldehyde (62  $\mu$ L, 0.61 mmol) was added to a solution of enolate 4 (111  $\mu$ L, 0.61 mmol) and phosphoramide (±)-7j (15 mg, 0.030 mmol) in methylene chloride (2.0 mL) at -10 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion. k = 70.97 M<sup>-2</sup> min<sup>-1</sup>.

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0321     | 0.246     | 0.00       | 4.06        |
| 0.5        | 0.0293     | 0.224     | 0.09       | 4.46        |
| 1.0        | 0.0270     | 0.206     | 0.16       | 4.86        |
| 1.5        | 0.0245     | 0.186     | 0.24       | 5.38        |
| 2.0        | 0.0232     | 0.175     | 0.29       | 5.70        |
| 2.5        | 0.0217     | 0.163     | 0.34       | 6.13        |
| 3.0        | 0.0203     | 0.152     | 0.38       | 6.57        |
| 3.5        | 0.0189     | 0.141     | 0.43       | 7.07        |
| 4.0        | 0.0179     | 0.133     | 0.46       | 7.51        |
| 4.5        | 0.0171     | 0.126     | 0.49       | 7.91        |
| 5.0        | 0.0161     | 0.118     | 0.52       | 8.44        |
| 5.5        | 0.0157     | 0.116     | 0.53       | 8.63        |
| 6.0        | 0.0149     | 0.109     | 0.56       | 9.17        |
| 6.5        | 0.0144     | 0.105     | 0.57       | 9.54        |
| 7.0        | 0.0136     | 0.099     | 0.60       | 10.13       |
| 7.5        | 0.0128     | 0.093     | 0.62       | 10.79       |
| 8.0        | 0.0126     | 0.091     | 0.63       | 10.96       |
| 8.5        | 0.0120     | 0.086     | 0.65       | 11.60       |
| 9.0        | 0.0118     | 0.085     | 0.66       | 11.81       |
| 9.5        | 0.0112     | 0.080     | 0.68       | 12.52       |
| 10.0       | 0.0107     | 0.076     | 0.69       | 13.21       |
| 11.0       | 0.0101     | 0.075     | 0.71       | 14.10       |

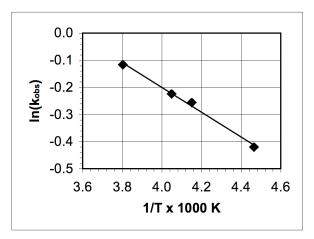



Figure IV. Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -0.46,  $R^2 = 0.99$ ).

## Raw Data. ReactIR Loading Studies on Addition of 4 to 5a Catalyzed by (±)-7j,

## Temperature: -34 °C, 1 mol %:

Using General Procedure 2b, benzaldehyde (66  $\mu$ L, 0.65 mmol) was added to a solution of enolate 4 (118  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7j (3.2 mg, 0.007 mmol) in methylene chloride (2.4 mL) at -34 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion.  $k_{obs} = 0.513 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0344     | 0.250     | 0.00       | 3.99        |
| 0.5        | 0.0326     | 0.238     | 0.05       | 4.21        |
| 1.0        | 0.0309     | 0.225     | 0.10       | 4.44        |
| 1.5        | 0.0295     | 0.215     | 0.14       | 4.65        |
| 2.0        | 0.0276     | 0.201     | 0.20       | 4.98        |
| 2.5        | 0.0265     | 0.193     | 0.23       | 5.17        |
| 3.0        | 0.0253     | 0.184     | 0.26       | 5.43        |
| 3.5        | 0.0240     | 0.175     | 0.30       | 5.73        |
| 4.0        | 0.0234     | 0.170     | 0.32       | 5.87        |
| 4.5        | 0.0221     | 0.161     | 0.36       | 6.22        |
| 5.0        | 0.0210     | 0.153     | 0.39       | 6.53        |
| 5.5        | 0.0206     | 0.150     | 0.40       | 6.68        |
| 6.0        | 0.0197     | 0.144     | 0.43       | 6.95        |
| 6.5        | 0.0186     | 0.135     | 0.46       | 7.38        |
| 7.0        | 0.0184     | 0.134     | 0.46       | 7.44        |
| 7.5        | 0.0177     | 0.129     | 0.48       | 7.74        |
| 8.0        | 0.0170     | 0.124     | 0.51       | 8.07        |
| 8.5        | 0.0167     | 0.122     | 0.51       | 8.23        |
| 9.0        | 0.0159     | 0.116     | 0.54       | 8.64        |
| 9.5        | 0.0156     | 0.113     | 0.55       | 8.82        |
| 10.0       | 0.0152     | 0.111     | 0.56       | 9.00        |
| 10.5       | 0.0149     | 0.109     | 0.57       | 9.20        |
| 11.0       | 0.0143     | 0.104     | 0.58       | 9.61        |
| 11.5       | 0.0140     | 0.102     | 0.59       | 9.81        |
| 12.0       | 0.0137     | 0.100     | 0.60       | 9.98        |
| 12.5       | 0.0132     | 0.096     | 0.62       | 10.40       |
| 13.0       | 0.0125     | 0.091     | 0.64       | 10.97       |
| 13.5       | 0.0128     | 0.093     | 0.63       | 10.71       |
| 14.0       | 0.0122     | 0.089     | 0.64       | 11.24       |
| 14.5       | 0.0121     | 0.088     | 0.65       | 11.31       |
| 15.0       | 0.0118     | 0.086     | 0.66       | 11.67       |
| 15.5       | 0.0115     | 0.083     | 0.67       | 11.98       |
| 16.0       | 0.0113     | 0.082     | 0.67       | 12.15       |
| 16.5       | 0.0110     | 0.080     | 0.68       | 12.50       |
| 17.0       | 0.0109     | 0.079     | 0.68       | 12.60       |
| 17.5       | 0.0108     | 0.079     | 0.68       | 12.67       |

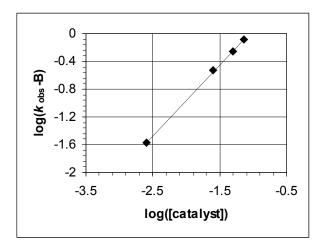
| 18.0 | 0.0102 | 0.074 | 0.70 | 13.44 |
|------|--------|-------|------|-------|
| 18.5 | 0.0104 | 0.076 | 0.70 | 13.15 |
| 19.0 | 0.0102 | 0.074 | 0.70 | 13.49 |

## Temperature: -34 °C, 10 mol %:

Using General Procedure 2b, benzaldehyde (66  $\mu$ L, 0.65 mmol) was added to a solution of enolate 4 (119  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7j (32 mg, 0.065 mmol) in methylene chloride (2.4 mL) at -34 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion.  $k_{obs} = 0.778 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0342     | 0.252     | 0.00       | 3.96        |
| 0.5        | 0.0313     | 0.230     | 0.09       | 4.34        |
| 1.0        | 0.0289     | 0.212     | 0.16       | 4.71        |
| 1.5        | 0.0267     | 0.196     | 0.23       | 5.11        |
| 2.0        | 0.0249     | 0.182     | 0.28       | 5.50        |
| 2.5        | 0.0235     | 0.172     | 0.32       | 5.83        |
| 3.0        | 0.0217     | 0.158     | 0.38       | 6.34        |
| 3.5        | 0.0207     | 0.150     | 0.40       | 6.66        |
| 4.0        | 0.0196     | 0.142     | 0.44       | 7.07        |
| 4.5        | 0.0187     | 0.135     | 0.46       | 7.40        |
| 5.0        | 0.0178     | 0.128     | 0.49       | 7.82        |
| 5.5        | 0.0170     | 0.122     | 0.52       | 8.18        |
| 6.0        | 0.0161     | 0.115     | 0.54       | 8.68        |
| 6.5        | 0.0152     | 0.109     | 0.57       | 9.19        |
| 7.0        | 0.0148     | 0.106     | 0.58       | 9.48        |
| 7.5        | 0.0141     | 0.100     | 0.60       | 10.01       |
| 8.0        | 0.0134     | 0.095     | 0.62       | 10.53       |
| 8.5        | 0.0130     | 0.092     | 0.64       | 10.88       |
| 9.0        | 0.0127     | 0.089     | 0.65       | 11.20       |
| 9.5        | 0.0119     | 0.083     | 0.67       | 12.00       |
| 10.0       | 0.0116     | 0.081     | 0.68       | 12.32       |
| 10.5       | 0.0115     | 0.080     | 0.68       | 12.48       |
| 11.0       | 0.0112     | 0.078     | 0.69       | 12.85       |
| 11.5       | 0.0107     | 0.075     | 0.70       | 13.41       |

## Temperature: -34 °C, 20 mol %:


Using General Procedure 2b, benzaldehyde (67  $\mu$ L, 0.66 mmol) was added to a solution of enolate 4 (120  $\mu$ L, 0.66 mmol) and phosphoramide (±)-7j (65 mg, 0.131 mmol) in methylene chloride (2.4 mL) at -34 °C as internally monitored. The reaction was monitored every 30 seconds until complete conversion.  $k_{obs} = 1.048 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0344     | 0.254     | 0.00       | 3.93        |
| 0.3        | 0.0318     | 0.234     | 0.08       | 4.27        |
| 0.7        | 0.0293     | 0.215     | 0.16       | 4.66        |
| 1.0        | 0.0274     | 0.200     | 0.21       | 5.00        |
| 1.3        | 0.0258     | 0.187     | 0.26       | 5.34        |
| 1.7        | 0.0241     | 0.175     | 0.31       | 5.73        |
| 2.0        | 0.0231     | 0.166     | 0.35       | 6.01        |
| 2.3        | 0.0219     | 0.157     | 0.38       | 6.36        |
| 2.7        | 0.0211     | 0.151     | 0.41       | 6.64        |
| 3.0        | 0.0198     | 0.140     | 0.45       | 7.13        |
| 3.3        | 0.0190     | 0.134     | 0.47       | 7.44        |
| 3.7        | 0.0181     | 0.128     | 0.50       | 7.84        |
| 4.0        | 0.0177     | 0.124     | 0.51       | 8.03        |
| 4.3        | 0.0168     | 0.117     | 0.54       | 8.53        |
| 4.7        | 0.0163     | 0.113     | 0.55       | 8.83        |
| 5.0        | 0.0155     | 0.107     | 0.58       | 9.35        |
| 5.3        | 0.0153     | 0.106     | 0.58       | 9.47        |
| 5.7        | 0.0144     | 0.099     | 0.61       | 10.13       |
| 6.0        | 0.0142     | 0.097     | 0.62       | 10.28       |
| 6.3        | 0.0142     | 0.097     | 0.62       | 10.29       |
| 6.7        | 0.0135     | 0.092     | 0.64       | 10.92       |
| 7.0        | 0.0130     | 0.088     | 0.65       | 11.38       |
| 7.3        | 0.0130     | 0.088     | 0.66       | 11.40       |
| 7.7        | 0.0129     | 0.087     | 0.66       | 11.56       |
| 8.0        | 0.0121     | 0.081     | 0.68       | 12.35       |
| 8.3        | 0.0119     | 0.079     | 0.69       | 12.72       |
| 8.7        | 0.0116     | 0.076     | 0.70       | 13.10       |
| 9.0        | 0.0115     | 0.076     | 0.70       | 13.13       |

## Temperature: -34 °C, 30 mol %:

Using General Procedure 2b, benzaldehyde (63  $\mu$ L, 0.62 mmol) was added to a solution of enolate 4 (112  $\mu$ L, 0.61 mmol) and phosphoramide (±)-7j (88 mg, 0.179 mmol) in methylene chloride (2.3 mL) at -34 °C as internally monitored. The reaction was monitored every 20 seconds until complete conversion.  $k_{obs} = 1.305 \text{ M}^{-1} \text{ min}^{-1}$ .

| Time (min) | Absorbance | [Enolate] | Conversion | 1/[Enolate] |
|------------|------------|-----------|------------|-------------|
| 0.0        | 0.0344     | 0.254     | 0.00       | 3.93        |
| 0.3        | 0.0318     | 0.234     | 0.08       | 4.27        |
| 0.7        | 0.0293     | 0.215     | 0.16       | 4.66        |
| 1.0        | 0.0274     | 0.200     | 0.21       | 5.00        |
| 1.3        | 0.0258     | 0.187     | 0.26       | 5.34        |
| 1.7        | 0.0241     | 0.175     | 0.31       | 5.73        |
| 2.0        | 0.0231     | 0.166     | 0.35       | 6.01        |
| 2.3        | 0.0219     | 0.157     | 0.38       | 6.36        |
| 2.7        | 0.0211     | 0.151     | 0.41       | 6.64        |
| 3.0        | 0.0198     | 0.140     | 0.45       | 7.13        |
| 3.3        | 0.0190     | 0.134     | 0.47       | 7.44        |
| 3.7        | 0.0181     | 0.128     | 0.50       | 7.84        |
| 4.0        | 0.0177     | 0.124     | 0.51       | 8.03        |
| 4.3        | 0.0168     | 0.117     | 0.54       | 8.53        |
| 4.7        | 0.0163     | 0.113     | 0.55       | 8.83        |
| 5.0        | 0.0155     | 0.107     | 0.58       | 9.35        |
| 5.3        | 0.0153     | 0.106     | 0.58       | 9.47        |
| 5.7        | 0.0144     | 0.099     | 0.61       | 10.13       |
| 6.0        | 0.0142     | 0.097     | 0.62       | 10.28       |
| 6.3        | 0.0142     | 0.097     | 0.62       | 10.29       |
| 6.7        | 0.0135     | 0.092     | 0.64       | 10.92       |
| 7.0        | 0.0130     | 0.088     | 0.65       | 11.38       |
| 7.3        | 0.0130     | 0.088     | 0.66       | 11.40       |
| 7.7        | 0.0129     | 0.087     | 0.66       | 11.56       |
| 8.0        | 0.0121     | 0.081     | 0.68       | 12.35       |
| 8.3        | 0.0119     | 0.079     | 0.69       | 12.72       |
| 8.7        | 0.0116     | 0.076     | 0.70       | 13.10       |
| 9.0        | 0.0115     | 0.076     | 0.70       | 13.13       |



**Figure V**. Plot of  $\log(k_{obs}-B)$  versus  $\log([catalyst])$  for the addition of **4** to **5a** catalyzed by **7j** at T = -35 °C. The graph depicts the linear fit to f(x) = mx + b (m = 1.014,  $R^2 = 1.000$ ).

#### Raw Data. RINMR kinetics of Addition of 4 to 5a Catalyzed by (±)-7j

#### Temperature: -27 °C:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7j (8.6 mg, 0.018 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -27 °C as internally monitored. The reaction was monitored every 37 seconds until complete conversion.  $k = 0.4373 \text{ M}^{-2} \text{ s}^{-1}$ .

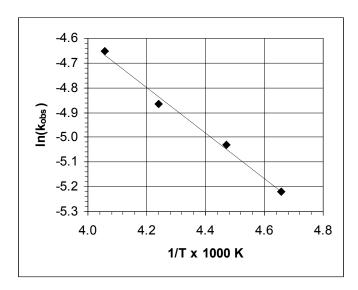
| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 0.00      | 0.00       | 0.437     | 2.289       |
| 11       | 97.17     | 2.83       | 0.425     | 2.355       |
| 48       | 84.61     | 15.39      | 0.370     | 2.705       |
| 85       | 75.20     | 24.80      | 0.329     | 3.043       |
| 122      | 67.69     | 32.31      | 0.296     | 3.381       |
| 159      | 60.95     | 39.05      | 0.266     | 3.755       |
| 196      | 55.60     | 44.40      | 0.243     | 4.116       |
| 233      | 50.65     | 49.35      | 0.221     | 4.519       |

#### Temperature: -37 °C:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide, (±)-7j (8.6 mg, 0.018 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -37 °C as internally monitored. The reaction was monitored every 37 seconds until complete conversion.  $k = 0.353 \text{ M}^{-2} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 0.00      | 0.00       | 0.437     | 2.289       |
| 11       | 97.59     | 2.41       | 0.426     | 2.345       |
| 48       | 86.84     | 13.16      | 0.379     | 2.635       |
| 85       | 78.23     | 21.77      | 0.342     | 2.925       |
| 122      | 70.82     | 29.18      | 0.309     | 3.232       |
| 159      | 64.70     | 35.30      | 0.283     | 3.537       |
| 196      | 59.85     | 40.15      | 0.262     | 3.824       |
| 233      | 55.83     | 44.17      | 0.244     | 4.099       |
| 270      | 52.66     | 47.34      | 0.230     | 4.346       |
| 307      | 49.60     | 50.40      | 0.217     | 4.614       |

#### Temperature: -49 °C:


Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7j (8.6 mg, 0.018 mmol) in methylene chloride- $d_2$  (0.6 mL) at -49 °C as internally monitored. The reaction was monitored every 37 seconds until complete conversion.  $k = 0.300 \text{ M}^{-2} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.437     | 2.289       |
| 180      | 92.84     | 7.16       | 0.406     | 2.465       |
| 217      | 78.84     | 21.16      | 0.345     | 2.903       |
| 254      | 66.58     | 33.42      | 0.291     | 3.437       |
| 291      | 57.47     | 42.53      | 0.251     | 3.982       |
| 328      | 50.49     | 49.51      | 0.221     | 4.532       |
| 365      | 45.32     | 54.68      | 0.198     | 5.050       |

#### Temperature: -58 °C:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate 4 (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7j (8.6 mg, 0.018 mmol) in methylene chloride- $d_2$  (0.6 mL) at -58 °C as internally monitored. The reaction was monitored every 67 seconds until complete conversion.  $k = 0.247 \text{ M}^{-2} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.437     | 2.289       |
| 90       | 83.68     | 16.32      | 0.366     | 2.735       |
| 157      | 73.16     | 26.84      | 0.320     | 3.128       |
| 224      | 64.85     | 35.15      | 0.283     | 3.529       |
| 291      | 58.84     | 41.16      | 0.257     | 3.889       |
| 358      | 54.19     | 45.81      | 0.237     | 4.223       |
| 425      | 50.35     | 49.65      | 0.220     | 4.546       |



**Figure VI.** Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -0.92,  $R^2 = 0.99$ ).

#### Raw Data. RINMR Loading Studies on the Addition of 4 to 5a Catalyzed by (±)-7j.

## Temperature: -53 °C, 5 mol %:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7**j** (8.6 mg, 0.018 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds until complete conversion.  $k_{obs} = 0.012 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.470     | 2.129       |
| 4        | -         | -          | -         | -           |
| 14       | 86.68     | 13.32      | 0.407     | 2.456       |
| 24       | 83.62     | 16.38      | 0.393     | 2.545       |
| 34       | 80.66     | 19.34      | 0.379     | 2.639       |
| 44       | 77.70     | 22.30      | 0.365     | 2.739       |
| 54       | 75.11     | 24.89      | 0.353     | 2.834       |
| 64       | 72.67     | 27.33      | 0.341     | 2.929       |
| 74       | 70.50     | 29.50      | 0.331     | 3.019       |
| 84       | 68.46     | 31.54      | 0.322     | 3.109       |
| 94       | 66.53     | 33.47      | 0.313     | 3.199       |
| 104      | 64.76     | 35.24      | 0.304     | 3.287       |
| 114      | 63.02     | 36.98      | 0.296     | 3.378       |
| 124      | 61.49     | 38.51      | 0.289     | 3.462       |
| 134      | 60.28     | 39.72      | 0.283     | 3.531       |

## Temperature: -53 °C, 3 mol %:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7**j** (5.1 mg, 0.010 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds until complete conversion.  $k_{obs} = 0.011 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.470     | 2.129       |
| 4        | -         | -          | -         | -           |
| 14       | 91.65     | 8.35       | 0.431     | 2.323       |
| 24       | 88.08     | 11.92      | 0.414     | 2.417       |
| 34       | 84.75     | 15.25      | 0.398     | 2.512       |
| 44       | 81.54     | 18.46      | 0.383     | 2.611       |
| 54       | 76.14     | 23.86      | 0.358     | 2.795       |
| 64       | 73.51     | 26.49      | 0.345     | 2.896       |
| 74       | 71.22     | 28.78      | 0.335     | 2.989       |
| 84       | 68.95     | 31.05      | 0.324     | 3.087       |
| 94       | 66.99     | 33.01      | 0.315     | 3.177       |
| 104      | 65.08     | 34.92      | 0.306     | 3.270       |
| 114      | 63.33     | 36.67      | 0.298     | 3.361       |
| 124      | 61.70     | 38.30      | 0.290     | 3.450       |
| 134      | 60.26     | 39.74      | 0.283     | 3.532       |
| 144      | 58.77     | 41.23      | 0.276     | 3.622       |
| 154      | 57.54     | 42.46      | 0.270     | 3.699       |
| 164      | 56.30     | 43.70      | 0.264     | 3.781       |

## Temperature: -53 °C, 2 mol %:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7**j** (3.4 mg, 0.007 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds until complete conversion.  $k_{obs} = 0.009 \text{ M}^{-1} \text{ s}^{-1}$ .

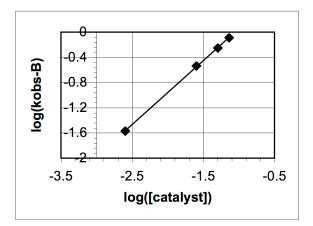
| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.470     | 2.129       |
| 4        | -         | -          | -         | -           |
| 14       | 93.08     | 6.92       | 0.437     | 2.287       |
| 24       | 89.15     | 10.85      | 0.419     | 2.388       |
| 34       | 85.93     | 14.07      | 0.404     | 2.477       |
| 44       | 82.78     | 17.22      | 0.389     | 2.571       |
| 54       | 79.17     | 20.83      | 0.372     | 2.689       |
| 64       | 77.15     | 22.85      | 0.362     | 2.759       |
| 74       | 74.59     | 25.41      | 0.350     | 2.854       |
| 84       | 72.24     | 27.76      | 0.339     | 2.946       |
| 94       | 70.11     | 29.89      | 0.329     | 3.036       |
| 104      | 68.10     | 31.90      | 0.320     | 3.126       |
| 114      | 66.20     | 33.80      | 0.311     | 3.215       |
| 124      | 64.45     | 35.55      | 0.303     | 3.303       |
| 134      | 62.86     | 37.14      | 0.295     | 3.386       |
| 144      | 61.35     | 38.65      | 0.288     | 3.469       |
| 154      | 59.97     | 40.03      | 0.282     | 3.550       |
| 164      | 57.52     | 42.48      | 0.270     | 3.700       |
| 174      | 56.32     | 43.68      | 0.265     | 3.779       |
| 184      | 55.19     | 44.81      | 0.259     | 3.857       |
| 194      | 54.06     | 45.94      | 0.254     | 3.937       |
| 204      | 53.00     | 47.00      | 0.249     | 4.016       |
| 214      | 52.01     | 47.99      | 0.244     | 4.093       |
| 224      | 50.22     | 49.78      | 0.236     | 4.239       |
| 234      | 49.33     | 50.67      | 0.232     | 4.315       |

## Temperature: -53 °C, 1 mol %:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7**j** (1.7 mg, 0.004 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds until complete conversion.  $k_{obs} = 0.007 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.470     | 2.129       |
| 4        | -         | -          | -         | -           |
| 14       | 91.60     | 8.40       | 0.430     | 2.324       |
| 24       | 89.15     | 10.85      | 0.419     | 2.388       |
| 34       | 86.86     | 13.14      | 0.408     | 2.450       |
| 44       | 84.72     | 15.28      | 0.398     | 2.513       |
| 54       | 82.65     | 17.35      | 0.388     | 2.575       |
| 64       | 80.57     | 19.43      | 0.379     | 2.642       |
| 74       | 78.65     | 21.35      | 0.369     | 2.707       |
| 84       | 76.81     | 23.19      | 0.361     | 2.771       |
| 94       | 75.14     | 24.86      | 0.353     | 2.833       |
| 104      | 73.50     | 26.50      | 0.345     | 2.896       |
| 114      | 71.98     | 28.02      | 0.338     | 2.957       |
| 124      | 70.57     | 29.43      | 0.332     | 3.016       |
| 134      | 69.13     | 30.87      | 0.325     | 3.079       |
| 144      | 67.84     | 32.16      | 0.319     | 3.138       |
| 154      | 66.67     | 33.33      | 0.313     | 3.193       |
| 164      | 65.45     | 34.55      | 0.307     | 3.252       |
| 174      | 64.30     | 35.70      | 0.302     | 3.310       |
| 184      | 63.20     | 36.80      | 0.297     | 3.368       |
| 194      | 62.28     | 37.72      | 0.293     | 3.418       |
| 204      | 59.39     | 40.61      | 0.279     | 3.584       |
| 214      | 58.52     | 41.48      | 0.275     | 3.637       |
| 224      | 57.74     | 42.26      | 0.271     | 3.687       |
| 234      | 56.91     | 43.09      | 0.267     | 3.740       |

## Temperature: -53 °C, 0.5 mol %:


Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate **4** (65  $\mu$ L, 0.65 mmol) and phosphoramide (±)-7**j** (0.9 mg, 0.002 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds until complete conversion.  $k_{obs} = 0.006 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.470     | 2.129       |
| 4        | -         | -          | -         | -           |
| 14       | 95.35     | 4.65       | 0.448     | 2.232       |
| 24       | 92.96     | 7.04       | 0.437     | 2.290       |
| 34       | 90.65     | 9.35       | 0.426     | 2.348       |
| 44       | 88.45     | 11.55      | 0.416     | 2.407       |
| 54       | 86.37     | 13.63      | 0.406     | 2.464       |
| 64       | 84.43     | 15.57      | 0.397     | 2.521       |
| 74       | 82.53     | 17.47      | 0.388     | 2.579       |
| 84       | 80.79     | 19.21      | 0.380     | 2.635       |
| 94       | 79.04     | 20.96      | 0.371     | 2.693       |
| 104      | 77.45     | 22.55      | 0.364     | 2.748       |
| 114      | 75.88     | 24.12      | 0.356     | 2.805       |
| 124      | 71.10     | 28.90      | 0.334     | 2.994       |
| 134      | 69.76     | 30.24      | 0.328     | 3.051       |
| 144      | 68.45     | 31.55      | 0.322     | 3.110       |
| 154      | 67.16     | 32.84      | 0.316     | 3.169       |
| 164      | 65.88     | 34.12      | 0.310     | 3.231       |
| 174      | 64.72     | 35.28      | 0.304     | 3.289       |
| 184      | 63.59     | 36.41      | 0.299     | 3.347       |
| 194      | 62.51     | 37.49      | 0.294     | 3.405       |
| 204      | 61.46     | 38.54      | 0.289     | 3.463       |
| 214      | 59.49     | 40.51      | 0.279     | 3.578       |
| 224      | 61.20     | 38.80      | 0.288     | 3.478       |
| 234      | 60.36     | 39.64      | 0.284     | 3.526       |

## Temperature: -53 °C, 0.0 mol %:

Using General Procedure 3a, a solution of benzaldehyde in chloroform (85  $\mu$ L, 0.35 mmol) was injected into an NMR tube containing enolate 4 (65  $\mu$ L, 0.65 mmol) in methylene chloride- $d_2$  (0.6 mL) at -53 °C as internally monitored. The reaction was monitored every 10 seconds for several minutes.  $k = 0.001 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | % Enolate | % Aldolate | [Enolate] | 1/[Enolate] |
|----------|-----------|------------|-----------|-------------|
| 0        | 100.00    | 0.00       | 0.437     | 2.289       |
| 4        | 97.49     | 2.51       | 0.426     | 2.348       |
| 14       | 97.42     | 2.58       | 0.426     | 2.349       |
| 24       | 96.97     | 3.03       | 0.424     | 2.360       |
| 34       | 96.59     | 3.41       | 0.422     | 2.369       |
| 44       | 96.16     | 3.84       | 0.420     | 2.380       |
| 54       | 95.81     | 4.19       | 0.419     | 2.389       |
| 64       | 95.40     | 4.60       | 0.417     | 2.399       |
| 74       | 95.03     | 4.97       | 0.415     | 2.408       |
| 84       | 94.64     | 5.36       | 0.414     | 2.418       |
| 94       | 94.23     | 5.77       | 0.412     | 2.429       |
| 104      | 93.89     | 6.11       | 0.410     | 2.437       |
| 114      | 93.50     | 6.50       | 0.409     | 2.448       |
| 124      | 93.16     | 6.84       | 0.407     | 2.456       |
| 134      | 92.80     | 7.20       | 0.405     | 2.466       |
| 144      | 92.40     | 7.60       | 0.404     | 2.477       |
| 154      | 92.05     | 7.95       | 0.402     | 2.486       |
| 164      | 91.70     | 8.30       | 0.401     | 2.496       |
| 174      | 91.36     | 8.64       | 0.399     | 2.505       |
| 184      | 91.01     | 8.99       | 0.398     | 2.515       |



**Figure VI.** Plot of  $\log(k_{obs}$ -B versus  $\log([catalyst])$  for the addition of **4** to benzaldehyde catalyzed by (±)-7j at T = -35 °C. The graph depicts the linear fit to  $f(x) = mx + b(m = 1.01, R^2 = 0.99)$ .

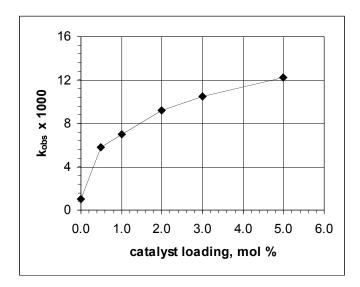



Figure VII. Plot of  $k_{obs}$  versus catalyst loading for the addition of 4 to benzaldehyde catalyzed by (±)-7j.

#### Raw Data. RINMR Kinetics of the Addition of 4 to 5a Catalyzed by (S,S)-7a

#### Series #1, Temperature: -96 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL)at -96 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 48.07 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 9        | 1.00     | 0.075   | 13.338    |
| 14       | 0.90     | 0.067   | 14.953    |
| 19       | 0.81     | 0.060   | 16.603    |
| 24       | 0.73     | 0.054   | 18.374    |
| 29       | 0.69     | 0.052   | 19.377    |
| 34       | 0.65     | 0.049   | 20.603    |
| 39       | 0.63     | 0.047   | 21.428    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #1, Temperature: -91 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL)at -91 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 55.68 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 9        | 0.90     | 0.067   | 14.883    |
| 14       | 0.93     | 0.070   | 14.378    |
| 19       | 0.91     | 0.068   | 14.790    |
| 24       | 0.86     | 0.065   | 15.493    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #1, Temperature: -85 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 9        | 0.87     | 0.065   | 15.402    |
| 14       | 0.75     | 0.056   | 17.957    |
| 19       | 0.64     | 0.048   | 20.802    |
| 24       | 0.58     | 0.043   | 23.106    |
| 29       | 0.53     | 0.040   | 25.244    |
| 34       | 0.47     | 0.035   | 28.656    |
| 39       | 0.44     | 0.033   | 30.701    |

chloroform-*d* (0.05 mL) at -85 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion.  $k = 64.05 \text{ M}^{-2} \text{ s}^{-1}$ .

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #1, Temperature: -80 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -85 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 70.78 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 9        | 0.84     | 0.062   | 16.036    |
| 14       | 0.71     | 0.053   | 18.947    |
| 19       | 0.61     | 0.045   | 21.996    |
| 24       | 0.55     | 0.041   | 24.542    |
| 29       | 0.50     | 0.037   | 26.936    |
| 34       | 0.44     | 0.033   | 30.580    |
| 39       | 0.40     | 0.030   | 33.195    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #2, Temperature: -85 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -85 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 29.72 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 9        | 1.24     | 0.093   | 10.784    |
| 14       | 1.15     | 0.086   | 11.631    |
| 19       | 1.12     | 0.083   | 11.999    |
| 24       | 1.04     | 0.078   | 12.894    |
| 29       | 0.98     | 0.074   | 13.603    |
| 34       | 0.93     | 0.070   | 14.369    |
| 39       | 0.92     | 0.069   | 14.593    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #2, Temperature: -80 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 36.24 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.02     | 0.076   | 13.169    |
| 10       | 1.02     | 0.076   | 13.074    |
| 15       | 1.00     | 0.075   | 13.385    |
| 20       | 0.98     | 0.073   | 13.720    |
| 25       | 0.95     | 0.071   | 14.105    |
| 30       | 0.92     | 0.069   | 14.583    |
| 35       | 0.89     | 0.067   | 14.970    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #2, Temperature: -75 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at –75 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 44.06 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral <sup>†</sup> | [PhCHO] | 1/[PhCHO] |
|----------|-----------------------|---------|-----------|
| 0        | -                     | 0.124   | 8.069     |
| 9        | 1.10                  | 0.082   | 12.194    |
| 14       | 0.94                  | 0.070   | 14.236    |
| 19       | 0.85                  | 0.063   | 15.831    |
| 24       | 0.77                  | 0.057   | 17.441    |
| 29       | 0.68                  | 0.051   | 19.674    |
| 34       | 0.62                  | 0.046   | 21.759    |
| 39       | 0.58                  | 0.043   | 23.262    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #3, Temperature: -70 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -70 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion.  $k = 56.46 \text{ M}^{-2} \text{ s}^{-1}$ .

| Time (s) | Integral <sup>†</sup> | [PhCHO] | 1/[PhCHO] |
|----------|-----------------------|---------|-----------|
| 0        | -                     | 0.124   | 8.069     |
| 9        | 1.08                  | 0.081   | 12.390    |
| 14       | 1.00                  | 0.075   | 13.362    |
| 19       | 0.94                  | 0.070   | 14.254    |
| 24       | 0.86                  | 0.064   | 15.511    |
| 29       | 0.80                  | 0.060   | 16.688    |
| 34       | 0.76                  | 0.057   | 17.515    |
| 39       | 0.73                  | 0.055   | 18.323    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #3, Temperature: -75 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate 4 (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -75 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 46.53 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral <sup>†</sup> | [PhCHO] | 1/[PhCHO] |
|----------|-----------------------|---------|-----------|
| 0        | -                     | 0.124   | 8.069     |
| 9        | 1.30                  | 0.097   | 10.336    |
| 14       | 1.20                  | 0.089   | 11.181    |
| 19       | 1.13                  | 0.084   | 11.904    |
| 24       | 1.05                  | 0.079   | 12.709    |
| 29       | 0.99                  | 0.074   | 13.497    |
| 34       | 0.95                  | 0.071   | 14.142    |
| 39       | 0.90                  | 0.067   | 14.842    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Series #3, Temperature: -75 °C:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate 4 (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -75 °C as internally monitored. The reaction was monitored every 5 seconds until complete conversion. k = 16.47 M<sup>-2</sup> s<sup>-1</sup>.

| Time (s) | Integral <sup>†</sup> | [PhCHO] | 1/[PhCHO] |
|----------|-----------------------|---------|-----------|
| 0        | -                     | 0.124   | 8.069     |
| 9        | 1.15                  | 0.086   | 11.636    |
| 14       | 1.17                  | 0.087   | 11.472    |
| 19       | 1.14                  | 0.085   | 11.779    |
| 24       | 1.14                  | 0.085   | 11.785    |
| 29       | 1.12                  | 0.083   | 11.978    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

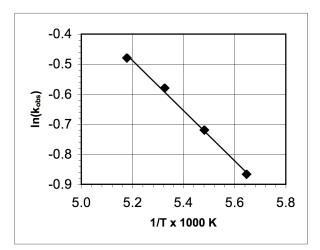



Figure VIII. Arrhenius Plot. The graph depicts a linear fit, f(x) = mx + b (m = -0.84,  $R^2 = 1.00$ ).

# Raw Data. RINMR Loading Studies on the Addition of 4 to 5a Catalyzed by (*S*,*S*)-7a, Temperature: -80 °C, 10 mol %:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate 4 (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (3.2 mg, 0.009 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 2 seconds until complete conversion.  $k_{obs} = 0.513 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.20     | 0.071   | 14.041    |
| 7        | 1.16     | 0.069   | 14.526    |
| 9        | 1.12     | 0.066   | 15.103    |
| 11       | 1.06     | 0.063   | 15.835    |
| 13       | 1.03     | 0.061   | 16.388    |
| 15       | 0.97     | 0.058   | 17.303    |
| 17       | 0.94     | 0.056   | 17.887    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Temperature: -80 °C, 13 mol %:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate 4 (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (4.1 mg, 0.011 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 1 second until complete conversion.  $k_{obs} = 0.810 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.11     | 0.083   | 12.085    |
| 6        | 1.03     | 0.077   | 12.944    |
| 7        | 1.00     | 0.074   | 13.442    |
| 8        | 0.95     | 0.071   | 14.071    |
| 9        | 0.92     | 0.069   | 14.506    |
| 10       | 0.87     | 0.065   | 15.334    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Temperature: -80 °C, 15 mol %:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-

**7a** (4.8 mg, 0.013 mmol) in methylene chloride- $d_2$  (0.6 mL) with a standard solution of TMS in chloroform-d (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 1 second until complete conversion.  $k_{obs} = 1.133 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.02     | 0.076   | 13.156    |
| 6        | 0.88     | 0.066   | 15.195    |
| 7        | 0.80     | 0.059   | 16.846    |
| 8        | 0.69     | 0.052   | 19.402    |
| 9        | 0.65     | 0.048   | 20.711    |
| 10       | 0.59     | 0.044   | 22.756    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Temperature: -80 °C, 16 mol %:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (5.2 mg, 0.014 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 1 second until complete conversion.  $k_{obs} = 1.314 \text{ M}^{-1} \text{ s}^{-1}$ .

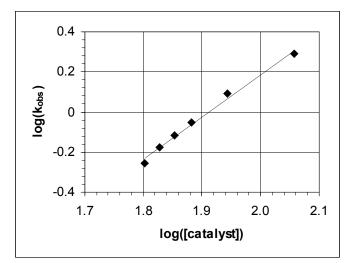
| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.08     | 0.081   | 12.409    |
| 6        | 0.92     | 0.069   | 14.513    |
| 7        | 0.79     | 0.059   | 17.021    |
| 8        | 0.71     | 0.053   | 18.991    |
| 9        | 0.60     | 0.045   | 22.250    |
| 10       | 0.54     | 0.040   | 25.019    |

<sup>†</sup> Area of aldehydic proton relative to internal standard

#### Temperature: -80 °C, 17 mol %:

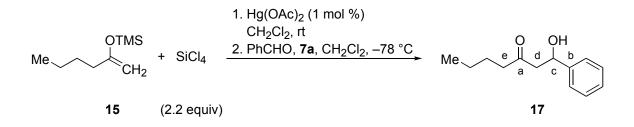
Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (5.5 mg, 0.015 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 1 second until complete conversion.  $k_{obs} = 1.502 \text{ M}^{-1} \text{ s}^{-1}$ .

| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 0.97     | 0.072   | 13.854    |
| 6        | 0.81     | 0.061   | 16.484    |
| 7        | 0.69     | 0.052   | 19.281    |
| 8        | 0.61     | 0.045   | 22.129    |
| 9        | 0.54     | 0.040   | 24.817    |
| 10       | 0.46     | 0.035   | 28.944    |


<sup>†</sup> Area of aldehydic proton relative to internal standard

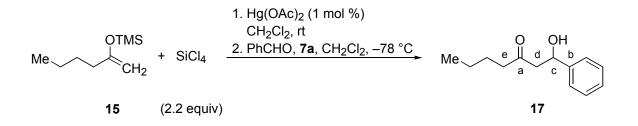
#### Temperature: -80 °C, 18 mol %:

Using General Procedure 3b, a solution of benzaldehyde in chloroform (44  $\mu$ L, 0.086 mmol) was injected into an NMR tube containing enolate **4** (16  $\mu$ L, 0.086 mmol) and phosphoramide (*S*,*S*)-**7a** (5.9 mg, 0.016 mmol) in methylene chloride-*d*<sub>2</sub> (0.6 mL) with a standard solution of TMS in chloroform-*d* (0.05 mL) at -80 °C as internally monitored. The reaction was monitored every 1 second until complete conversion.  $k_{obs} = 1.803 \text{ M}^{-1} \text{ s}^{-1}$ .


| Time (s) | Integral | [PhCHO] | 1/[PhCHO] |
|----------|----------|---------|-----------|
| 0        | -        | 0.124   | 8.069     |
| 5        | 1.05     | 0.078   | 12.757    |
| 6        | 0.85     | 0.064   | 15.722    |
| 7        | 0.72     | 0.054   | 18.570    |
| 8        | 0.63     | 0.047   | 21.312    |
| 9        | 0.54     | 0.040   | 24.916    |
| 10       | 0.48     | 0.036   | 27.915    |

<sup>†</sup> Area of aldehydic proton relative to internal standard




**Figure IX.** Plot of  $log(k_{obs})$  versus log([catalyst]) for the addition of 4 to benzaldehyde catalyzed by (*S*,*S*)-7a at T = -80 °C. The graph depicts the linear fit to f(x) = mx + b (m = 2.11,  $R^2 = 0.99$ ).

## Natural Abundance <sup>13</sup>C NMR Kinetic Isotope Effects Studies Limiting Aldehyde



Silvl enol ether 15 (862 mg, 5.0 mmol) was added quickly to a stirred suspension of silicon tetrachloride (1.1 mL, 10.0 mmol, 2.0 equiv) and mercuric acetate (16 mg, 0.05 mmol, 0.01 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at room temperature. After addition, the mixture was stirred at room temperature for 2 h. The volatile components were then removed under reduced pressure (0.1 mmHg) to give a cloudy oil. A solution of catalyst 7a (184 mg, 0.5 mmol, 0.10 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was then added via cannula and the mixture was cooled to -78 °C. Benzaldehyde (25 µL, 0.25 mmol, 0.05 equiv) was then added dropwise via syringe and the reaction mixture was allowed to stir at -78 °C for 6 h. The reaction mixture was then poured into a rapidly stirring sat. aq. NaHCO<sub>3</sub> solution (30 mL) submerged in an ice bath and was allowed to stir at room temperature for 6 h. The heterogeneous mixture was then filtered through Celite, the organic phase was separated and the aqueous phase was extracted with  $CH_2Cl_2$  (3 × 10 mL). The organic extracts were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to give a crude oil. Purification by silica gel chromatography (SiO<sub>2</sub>, pentane/Et<sub>2</sub>O, 6/1) afforded 35 mg (95%) of 17 as a clear, colorless oil. Parameters for <sup>13</sup>C NMR analysis are as follows: T1 = 6s; pw90 = 8. Spectra suitable for integration were obtained using a  $d1 = 8 \times T1$  and a final signal-to-noise exceeding 250:1.

| Peak | δ      | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Average | Standard | Ratio | KIE   |
|------|--------|-------|-------|-------|-------|-------|---------|----------|-------|-------|
| а    | 211.74 | 1.004 | 1.005 | 1.005 | 1.000 | 1.003 | 1.003   | 1.003    | 1.000 | 1.000 |
| b    | 142.82 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000   | 1.000    | 1.000 | 1.000 |
| c    | 69.89  | 1.988 | 1.992 | 1.987 | 1.979 | 1.993 | 1.988   | 1.988    | 1.000 | 0.997 |
| d    | 50.94  | 1.927 | 1.927 | 1.926 | 1.920 | 1.926 | 1.925   | 1.929    | 0.998 | 0.963 |
| e    | 43.37  | 1.886 | 1.889 | 1.890 | 1.878 | 1.889 | 1.886   | 1.886    | 1.000 | 1.003 |



Silvl enol ether 15 (86 mg, 0.50 mmol, 0.05 equiv) was added quickly to a stirred suspension of silicon tetrachloride (115 µL, 1.0 mmol, 0.10 equiv) and mercuric acetate (1.6 mg, 0.005 mmol, 0.0005 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at room temperature. After addition, the mixture was stirred at room temperature for 2 h. The volatile components were then removed under reduced pressure (0.1 mmHg) to give a cloudy oil. A solution of 7a (368 mg, 1.0 mmol, 0.10 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was then added via cannula and the mixture was cooled to -78 °C. Benzaldehyde (1.0 mL, 10.0 mmol) was then added dropwise via syringe and the reaction mixture was allowed to stir at -78 °C for 10 h. The reaction mixture was then poured into a rapidly stirring sat. aq. NaHCO<sub>3</sub> solution (30 mL) submerged in an ice bath and was allowed to stir at room temperature for 6 h. The heterogeneous mixture was then filtered through Celite, the organic phase was separated and the aqueous phase was extracted with  $CH_2Cl_2$  (3 × 10 mL). The organic extracts were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to give a crude oil. Purification by silica gel chromatography (SiO<sub>2</sub>, pentane/Et<sub>2</sub>O, 6/1) afforded 68 mg (92%) of 17 as a clear, colorless oil. Parameters for  ${}^{13}$ C NMR analysis are as follows: T1 = 6 s; pw90 = 8. Spectra suitable for integration were obtained using a  $d1 = 8 \times T1$  and a final signal-to-noise exceeding 250:1.

| Peak | δ      | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Average | Standard | Ratio | KIE   |
|------|--------|-------|-------|-------|-------|-------|---------|----------|-------|-------|
| а    | 211.74 | 1.005 | 1.002 | 1.002 | 1.004 | 1.004 | 1.003   | 1.003    | 1.000 | 1.002 |
| b    | 142.82 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000   | 1.000    | 1.000 | 1.000 |
| c    | 69.89  | 1.995 | 1.984 | 1.979 | 1.982 | 1.985 | 1.985   | 1.988    | 0.998 | 0.969 |
| d    | 50.94  | 1.931 | 1.930 | 1.925 | 1.928 | 1.930 | 1.929   | 1.929    | 1.000 | 0.995 |
| e    | 43.37  | 1.894 | 1.885 | 1.881 | 1.884 | 1.886 | 1.886   | 1.886    | 1.000 | 1.001 |

#### References

(1) Pikul, S.; Corey, E. J. Org. Syn. 1992, 71, 22.

(2) Denmark, S. E.; Su, X.; Nishigaichi, Y.; Wong, K.-T.; Coe, D. M.; Winter S. B. D.;

Choi, J. Y. J. Org. Chem. 1999, 64, 1958-1967.

(3) Yamashita, J.; Tomiyama, S.; Hashimoto, S.; Kitahara, K.; Sato, H. *Chem. Lett.* **1984**, 749.

(4) (a) Kanemasa, S.; Hayashi, T.; Tanaka, J.; Yamamoto, H.; Sakurai, T. J. Org. CHem.
1991, 56, 4473. (b) Stuhmer, W.; Messwarb, G. Arch. Pharm. 1953, 286, 221 (Chem. Abstr.
1955, 49, 6192b).

(5) Michaelis, A. Liebigs Ann. Chem. 1903, 326, 129.

(6) Otto, P. Ber. 1895, 28, 613.

(7) Mangeney, P.; Grojean, F.; Alexakis, A.; Normant, J.F. *Tetrahedron Lett.* **1988**, *29*, 2675.

(8) Russell, G.B.; Sutherland, G.J.; Topsom, R.D.; Vaughan, J. J. Org. Chem. 1962, 27, 4375.