## Supporting Information

# De Novo Synthesis of Tamiflu ${ }^{\circledR}$ via a Catalytic Enantioselective Ring-Opening Reaction of meso-Aziridines with $\mathrm{TMSN}_{3}$ 

Yuhei Fukuta, Tsuyoshi Mita, Nobuhisa Fukuda, Motomu Kanai, and Masakatsu Shibasaki

General: Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL JNM-LA500 spectrometer, operating at 500 MHz for ${ }^{1} \mathrm{H}$ NMR, 126.65 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts in $\mathrm{CDCl}_{3}$ were reported in the scale relative to $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR. For ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in the scale relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as an internal reference. Chemical shifts in $d$-acetone were reported in the scale relative to $d$-acetone ( 2.05 ppm ) for ${ }^{1} \mathrm{H}$ NMR. For ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in the scale relative to $d$-acetone ( 206.26 ppm ) as an internal reference. Optical rotations were measured on a JASCO P-1010 polarimeter. ESI mass spectra were measured on Water-ZQ4000. FAB mass spectra were measured on JEOL MStation JMS-700. Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM). The enantiomeric excesses (ee's) were determined by HPLC. HPLC analysis was performed on JASCO HPLC systems containing of following: pump, PU-980; detector, UV-970, measured at 254 nm ; column, Daicel Chiralpak AD-H, AS-H, or Daicel Chiralcel OD-H; mobile phase, 2-propanol/hexane; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$. In general, reactions were carried out in dry solvents under an argon atmosphere, unless noted otherwise. Dry solvents of tetrahydrofuran (THF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purchased from Kanto Chemical. Co., Inc. Propionitrile was distilled from calcium hydride. Other reagents were purified by usual methods. $\mathrm{Y}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ was purchased from Kojundo Chemical Laboratory Co., Ltd. (Fax: +81-492-84-1351, sales@kojundo.co.jp). Chiral ligand 2 was prepared by a reported method. ${ }^{1}$ (This ligand is commercially available from Junsei Chemical. Co., Ltd. (Fax: +81-3-3270-5461)) Causion! Azide compounds are potentially explosive, especially when concentrated to dryness.

## (A) Data of Substrates

7-(4-Nitrobenzoyl)-7-azabicyclo[4.1.0]heptane (3a): known compound. ${ }^{2}$ cis-1-(3,5-Dinitrobenzoyl)-2,3-dimethylaziridine (3i): known compound. ${ }^{3}$
7-(3,5-Dinitrobenzoyl)-7-azabicyclo[4.1.0]heptane (3b) was prepared by the following modified method of the reported one. ${ }^{4}$


[^0]To a solution of cyclohexene oxide (11) ( $2 \mathrm{~g}, 20.4 \mathrm{mmol}$ ) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} / 10 \mathrm{~mL}), \mathrm{NaN}_{3}(2.65 \mathrm{~g}$, $40.8 \mathrm{mmol}, 2$ equiv) and $\mathrm{NH}_{4} \mathrm{Cl}(1.64 \mathrm{~g}, 30.6 \mathrm{mmol}, 1.5$ equiv) were added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 13 h . After most of MeOH was removed under reduced pressure, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford $\mathbf{1 2}(2.58 \mathrm{~g})$ as a pale yellow oil in $88 \%$ yield.

To a solution of $12(2.58 \mathrm{~g}, 18.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL}), \mathrm{PPh}_{3}(4.79 \mathrm{~g}, 18.3 \mathrm{mmol}, 1$ equiv) was added and the mixture was stirred at $70-80^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(2.6 \mathrm{~mL}, 18.3 \mathrm{mmol}, 1$ equiv) was added to the mixture and the mixture was cooled to $-30{ }^{\circ} \mathrm{C}$. 3,5-Dinitrobenzoyl chloride ( $4.21 \mathrm{~g}, 18.3 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise at $-30^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at $-30^{\circ} \mathrm{C}$ and for 40 min at $-10^{\circ} \mathrm{C}$. Water was added dropwise and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice and the combined organic layer was washed with brine before dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, $6: 1$ to $2: 1$ ) to afford $\mathbf{3 b}(4.87 \mathrm{~g}, 16.7 \mathrm{mmol})$ as a colorless solid in 92\% yield (2 steps).

8-(3,5-Dinitrobenzoyl)-8-azabicyclo[5.1.0]octane (3d), $N$-(3,5-dinitrobenzoyl)-2,3-iminotetralin (3f), cis-1-(3,5-dinitrobenzoyl)-2,3-dipropylaziridine (3j), cis-1-(3,5-dinitrobenzoyl)-2,3-diphenylaziridine ( $\mathbf{3 k}$ ) were prepared by the method similar to the method for $\mathbf{3 b}$.
7-(3,5-Dinitrobenzoyl)-7-azabicyclo[4.1.0]hept-3-ene (3e) could be prepared by the following two methods.
Method 1 (modification of the reported method ${ }^{5}$ )


To a suspension of mCPBA ( $16.8 \mathrm{~g}, 63.4 \mathrm{mmol}, 1$ equiv) and $\mathrm{NaHCO}_{3}(7.99 \mathrm{~g}, 95.1 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 200 mL ), 1,4-cyclohexadiene (13) ( $6 \mathrm{~mL}, 63.4 \mathrm{mmol}$ ) was added dropwise with cooling in an ice bath. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to stir at room temperature. After stirring for 1 h , saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added and the mixture was stirred for 1 h at room temperature. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford crude epoxide 14.

To a solution of epoxide 14 in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL} / 20 \mathrm{~mL}), \mathrm{NaN}_{3}(8.25 \mathrm{~g}, 126.8 \mathrm{mmol}$, 2 equiv) and

[^1]$\mathrm{NH}_{4} \mathrm{Cl}$ ( $5.09 \mathrm{~g}, 95.1 \mathrm{mmol}$, 1.5 equiv) were added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 13 h . After most of MeOH was removed under reduced pressure, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 3:1) to afford 15 ( $6.61 \mathrm{~g}, 47.5 \mathrm{mmol}$ ) as pale yellow oil in $75 \%$ yield ( 2 steps).

To a solution of $\mathbf{1 5}(6.61 \mathrm{~g}, 47.5 \mathrm{mmol})$ in pyridine ( 30 mL ) was added methanesulfonyl chloride ( 4.04 $\mathrm{mL}, 52.2 \mathrm{mmol}, 1.1$ equiv) dropwise over 15 min at $0{ }^{\circ} \mathrm{C}$. The reaction temperature was allowed to increase to room temperature, and after stirring for 10 h , water was added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was washed with 1 M HCl and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 3:1) to afford $\mathbf{1 6}$ (10.3 g, 47.5 mmol ) in quantitative yield.

To a suspension of $\mathrm{LiAlH}_{4}\left(3.61 \mathrm{~g}, 95.0 \mathrm{mmol}, 2\right.$ mol equiv) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added $16(10.3 \mathrm{~g}$, 47.5 mmol ) dropwise over 30 minutes at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to rise to room temperature and after stirring for 18 h , quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}), 4 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ with cooling in an ice bath. After stirring for 1 h at room temperature, the mixture was filtered and the filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated carefully under reduced pressure to afford crude aziridine $\mathbf{1 7}$ as pale yellow oil.

To a solution of crude aziridine $\mathbf{1 7}$ and $\mathrm{Et}_{3} \mathrm{~N}$ ( 7.9 mL , 57.0 mmol . 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, 3,5 -dinitrobenzoyl chloride ( $11.0 \mathrm{~g}, 47.5 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise at $-30^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $-30^{\circ} \mathrm{C}$ and for 30 min at $-10^{\circ} \mathrm{C}$. Water was added dropwise and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice and the combined organic layer was washed with brine before dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 6:1 to 2:1) to afford $3 \mathbf{e}(10.96 \mathrm{~g}, 37.9 \mathrm{mmol}$ ) as a colorless solid in $80 \%$ yield (2 steps).

## Method 2



Azido alcohol 15 was prepared according to the synthetic scheme of method 1. To a solution of $\mathbf{1 5}$ ( $6.89 \mathrm{~g}, 49.5 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL}), \mathrm{PPh}_{3}(13.0 \mathrm{~g}, 49.6 \mathrm{mmol}, 1$ equiv) was added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(8.3 \mathrm{~mL}, 59.1 \mathrm{mmol}, 1.2$ equiv) was added to the mixture and the mixture was cooled to $-30{ }^{\circ} \mathrm{C} .3,5$-Dinitrobenzoyl chloride ( $11.4 \mathrm{~g}, 49.4 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise at $-30^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at $-30^{\circ} \mathrm{C}$ and for 40 min at $-10^{\circ} \mathrm{C}$. Water was added dropwise and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, 6:1 to $2: 1$ ) to
afford $3 \mathbf{e}$ ( $12.2 \mathrm{~g}, 42.2 \mathrm{mmol}$ ) as a colorless solid in $85 \%$ yield ( 2 steps).
6-(3,5-Dinitrobenzoyl)-6-azabicyclo[3.1.0]hexane (3c) was prepared via acylation of 6-azabicyclo[3.1.0]hexane. ${ }^{4}$
3-Oxa-6-(3,5-dinitrobenzoyl)-6-azabicyclo[3.1.0]hexane (3g) was prepared via acylation of 3 -oxa-6-azabicyclo[3.1.0]hexane. ${ }^{6}$

3-Carbobenzyloxy-6-(3,5-dinitrobenzoyl)-3,6-diazabicyclo[3.1.0]hexane (3h) was prepared via acylation of 3-carbobenzyloxy-3,6-diazabicyclo[3.1.0]hexane. ${ }^{7}$
7-(3,5-Dinitrobenzoyl)-7-azabicyclo[4.1.0]heptane (3b): colorless solid; IR (KBr): 3110, 3061, 2940,
 2861, 1673, 1627, 1540, 1348, 1309, 919, $722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.21(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.04-1.97 (m, 2H), 1.66-1.57 (m, 2H), 1.48-1.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 175.1, 148.6, 137.0, 128.7, 121.8, 38.4, 23.7, 19.8; MS (ESI): m/z 314 [M+Na ${ }^{+}$; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 53.61; H, 4.50; N, 14.43\%. Found: C, 53.68 ; H, 4.58; N, 14.40\%.
6-(3,5-Dinitrobenzoyl)-6-azabicyclo[3.1.0]hexane (3c): colorless solid; IR (KBr): 3114, 3085, 2932,
 2858, 1672, 1540, 1382, 1344, 1315, 1281, 1160, 1072, 730, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H})$, 2.26-2.19 (m, 2H), 1.84-1.75 (m, 3H), 1.50-1.40 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 173.0, 148.6, 137.1, 128.4, 121.7, 44.9, 26.9, 19.4; MS (ESI): m/z $300\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 51.99; H, 4.00; N, 15.16\%. Found: C, 51.90 ; H, 4.17; N, 14.95\%.

8-(3,5-Dinitrobenzoyl)-8-azabicyclo[5.1.0]octane (3d): colorless solid; IR (KBr): 3104, 2925, 2855,
 1672, 1542, 1455, 1346, 1309, 1173, $729 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.19(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 9.10 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.87 (t, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.01(\mathrm{~m}, 4 \mathrm{H})$, 1.77-1.58 (m, 5H), 1.38-1.27 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=174.9,148.7,137.0$, 128.6, 121.7, 43.1, 31.2, 28.7, 25.3; MS (ESI): m/z 328 [M+Na ${ }^{+}$; Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 55.08 ; H, 4.95; N, 13.76\%. Found: C, 55.12; H, 5.04; N, 13.71\%.
7-(3,5-Dinitrobenzoyl)-7-azabicyclo[4.1.0]hept-3-ene (3e): colorless solid; IR (KBr): 3112, 3085, 2908, 2896, 1677, 1537, 1341, 1293, 729, 720, $674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.19(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 2 \mathrm{H})$, 2.63-2.52 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=174.5,148.6,137.1,128.7,122.1,121.8$, 37.5, 23.8; MS (ESI): m/z $312\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 53.98; H, 3.83; N, 14.53\%. Found: C, 54.01; H, 3.98; N, 14.47\%.
$N$-(3,5-Dinitrobenzoyl)-2,3-iminotetralin (3f): colorless solid; IR (KBr): 3100, 2923, 2834, 1681, 1543,
 1419, 1343, 1302, 1284, 729, $719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (dd, $J=5.5,3.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.15 (dd, $J=$ 5.5, 3.4 Hz, 2H), 3.44 (d, $J=16.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.33-3.25 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=173.7,148.3,136.7,131.4,129.0,128.3,127.1,121.5,38.0,29.2 ;$ MS (ESI): m/z $362\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 60.18; H, 3.86; N, 12.38\%. Found: C,

[^2]59.91; H, 4.13; N, 12.44\%.

3-Oxa-6-(3,5-dinitrobenzoyl)-6-azabicyclo[3.1.0]hexane (3g): colorless solid; IR (KBr): 3110, 2912,
 2881, 1669, 1543, 1384, 1347, 1313, 1075, $714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.20(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 3.62 (s, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=171.4,148.6,137.1,128.1,121.8$, 65.9, 41.8; MS (ESI): m/z $302\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{6}$ : C, 47.32; H , 3.25; N, 15.05\%. Found: C, 47.41; H, 3.39; N, 14.83\%.

3-Carbobenzyloxy-6-(3,5-dinitrobenzoyl)-3,6-diazabicyclo[3.1.0]hexane (3h): colorless solid; IR
 (KBr): 3095, 2957, 2890, 1697, 1549, 1429, 1364, 1342, 1290, 742, 728, 720 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.28 (m, 5H), 5.09 (s, 2H), 4.12 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=171.6,154.7$, 148.6, 136.3, 136.0, 128.5, 128.2, 127.8, 122.1, 67.3, 46.1, 45.6, 41.7, 41.6; MS (ESI): m/z $435\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{7}$ : C, 55.34; H, 3.91; N, 13.59\%. Found: C, 55.32; H, 4.03; N, 13.49\%.
cis-1-(3,5-Dinitrobenzoyl)-2,3-dipropylaziridine (3j): colorless solid; IR (KBr): 3082, 2956, 2871, 1679,
 1630, 1552, 1343, 1313, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $9.12(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=175.4,148.6$, 137.2, 128.8, 121.8, 43.5, 29.7, 20.5, 13.9; MS (ESI): m/z $344\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 56.07; H, 5.96; N, 13.08\%. Found: C, 56.25 ; H, 5.94; N, 13.22\%.
cis-1-(3,5-Dinitrobenzoyl)-2,3-diphenylaziridine (3k): colorless solid; IR (KBr): 3081, 1684, 1548,
 1357, 1342, 1322, 1292, 754, 722, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.20-9.15(\mathrm{~m}$, 3H), 7.30-7.21 (m, 10H), $4.22(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=174.9,148.7,136.0$, 132.2, 128.9, 128.4, 128.2, 127.8, 122.2, 47.7; MS (ESI): m/z $412\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ : C, 64.78; H, 3.88; N, 10.79\%. Found: C, 64.89; H, 4.11; N, 10.89\%.

## (B) General Procedure for Enantioselective Ring-Opening Reaction of Aziridine with TMSN ${ }_{3}$



To a solution of ligand $2(4.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ in THF $(0.15 \mathrm{~mL}), \mathrm{Y}\left(\mathrm{O}^{i}{ }^{\mathrm{Pr}}\right)_{3}(0.2 \mathrm{M}$ in THF, 25 $\mu \mathrm{L}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$ ) was added at room temperature. The mixture was stirred at $45-60{ }^{\circ} \mathrm{C}$ for 1 h , and then the solvent was evaporated. After drying the resulting pre-catalyst under reduced pressure ( $<5$ mmHg ) for 2 h , $3 \mathbf{e}(72.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and propionitrile ( 1.25 mL ) was added at room temperature. After $10 \mathrm{~min}, \mathrm{TMSN}_{3}(49.1 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 1.5$ equiv) was added to start the reaction. After 48 h , water was added followed by the addition of AcOEt. The organic layer was separated and the aqueous layer was
extracted with AcOEt twice and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexane-AcOEt, $4: 1$ to $3: 2$ ) to afford the $\mathbf{4 e}(79.6 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) in $96 \%$ yield as colorless solid. The enantiomeric excess of the product was determined by HPLC analysis to be $91 \%$ ee. This reaction was applicable on a 1.45 g scale. ( $92 \%$ ee, $87 \%$ yield). $99 \%$ ee of $4 \mathbf{e}$ was obtained after recrystallization from 2-propanol (recrystallization yield; 72\%).
(4S,5S)-4-Azido-5-[ $N$-(3,5-dinitrobenzoyl)amino]cyclohexene (4e): colorless solid; IR (KBr): 3249,
 3094, 2093, 1640, 1542, 1342, 1244, 1078, 919, 729, 719, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.19(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H ), 5.76-5.68 (m, 2H), 4.35-4.29 (m, 1H), 3.84-3.80 (m, 1H), 2.81-2.70 (m, 1H), 2.66-2.55 (m, 1H), 2.43-2.31 (m, 1H), 2.27-2.16 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 162.9, 148.7, 137.7, 127.3, 124.5, 124.0, 121.2, 59.0, 50.0, 30.7, 29.7; MS (ESI): m/z $355\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 333.0947. Found: 333.0941; $[\alpha]^{22}{ }_{\mathrm{D}}+91.1$ ( $c=1.052$, $\mathrm{CHCl}_{3}$ ) $\left(91 \%\right.$ ee) $[\alpha]^{25}{ }_{\mathrm{D}}+103.2\left(c=1.015, \mathrm{CHCl}_{3}\right)(99 \%$ ee); HPLC (Chiralpak AS-H, 2-propanol/hexane 1/4, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 23.5 \mathrm{~min}$ (minor) and 35.0 min (major).
trans-1-Azido-2-[ $N$-(4-nitrobenzoyl)amino]cyclohexane (4a): colorless solid; IR (KBr): 3276, 2926,
 2860, 2096, 1639, 1601, 1523, 1349, 1257, 869, 833, $707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $=8.27$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.93 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.24$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02-3.90 (m, 1H), 3.35-3.21 (m, 1H), 2.26-2.11 (m, 2H), 1.92-1.823 (m, 1H), $1.817-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=165.4,149.5,140.2$, 128.2, 123.8, 63.8, 53.6, 32.0, 30.7, 24.3, 24.2; MS (ESI): $m / z 312$ [M+Na ${ }^{+}$]; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$290.1253. Found: 290.1264; $[\alpha]^{21}{ }_{\mathrm{D}}+50.9\left(c=0.598, \mathrm{CHCl}_{3}\right)(68 \%$ ee $)$; HPLC (Chiralpak AD-H, 2-propanol/hexane 1/9, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 27.8 \mathrm{~min}$ (minor) and 31.5 min (major).
(1S,2S)-1-Azido-2-[ $N$-(3,5-dinitrobenzoyl)amino]cyclohexane (4b): colorless solid; IR ( KBr ): 3268,
 3108, 3090, 2944, 2861, 2093, 1646, 1547, 1338, 1259, 1078, 918, 730, $711 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.04-3.94 (m, 1H), 3.38-3.27 (m, 1H), 2.29-2.15 (m, 2H), 1.98-1.76 (m, $2 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=162.6,148.6$, 137.9, 127.3, 121.1, 63.6, 54.0, 32.0, 30.7, 24.3, 24.2; MS (ESI): $m / z 357$ [M+Na ${ }^{+}$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$: 335.1104. Found: 335.1089; $[\alpha]^{23}{ }_{\mathrm{D}}+76.8\left(c=0.654, \mathrm{CHCl}_{3}\right)(93 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane 1/9, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 16.8 \mathrm{~min}$ (minor) and 22.7 min (major).
trans-1-Azido-2-[ $N$-(3,5-dinitrobenzoyl)amino]cyclopentane (4c): colorless solid; IR (KBr): 3303,
 3106, 2959, 2874, 2104, 1648, 1544, 1342, 1266, 1077, 917, 729, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (d-acetone): $\delta=9.06$ (s, 3H), 8.56 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.43-4.35 (m, 1H), 4.09-4.02 (m, 1H), 2.25-2.151 (m, 1H), 2.149-2.06 (m, 1H), 1.88-1.65 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (d-acetone): $\delta=163.3,149.6,138.6,128.3,121.7,67.6,58.0,30.43,30.41,21.9$; MS (ESI): $m / z 343\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 321.0947. Found: 321.0937;
$[\alpha]^{21}{ }_{\mathrm{D}}+53.9$ ( $c=1.415$, Acetone) (94\% ee); HPLC (Chiralpak AD-H, 2-propanol/hexane 1/9, flow 1.0 $\mathrm{mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 15.7 \mathrm{~min}$ (minor) and 20.0 min (major).
trans-1-Azido-2-[ $N$-(3,5-dinitrobenzoyl)amino]cycloheptane (4d): colorless solid; IR (KBr): 3296,
 3107, 3089, 2934, 2863, 2096, 1650, 1545, 1344, 1259, 1079, 916, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta=9.14(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.03$ (m, 1H), 3.61-3.54 (m, 1H), 2.09-1.96 (m, 2H), 1.89-1.52 $(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=162.4,148.6,138.0,127.3,121.1,66.5,56.8,31.8$, 30.6, 27.2, 24.0, 23.0; MS (ESI): $m / z 371\left[M+\mathrm{Na}^{+}\right]$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 349.1260. Found: 349.1255; $[\alpha]^{23}{ }_{\mathrm{D}}+55.0\left(c=0.606, \mathrm{CHCl}_{3}\right)(86 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane $1 / 9$, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 15.2 \mathrm{~min}$ (minor) and 23.1 min (major).
trans-2-Azido-3-[ $N$-(3,5-dinitrobenzoyl)amino]tetralin (4f): colorless solid; $\operatorname{IR}(\mathrm{KBr}): 3257,3102$,
 2101, 1642, 1537, 1348, 1298, 1078, 916, 749, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 9.18 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.96 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.25-7.11 (m, 4H), 6.47 (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dd, $J=16.8,5.5 \mathrm{~Hz}$, 1H), 3.31 (dd, $J=16.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.09 (dd, $J=16.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.95 (dd, $J$ $=16.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $d$-acetone): $\delta=163.6,149.7,138.7,134.5,133.9,129.7,129.6,128.4$, 127.4, 127.3, 121.9, 60.9, 51.4, 34.8, 34.5; MS (ESI): $m / z 405\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 383.1104. Found: 383.1102; $[\alpha]^{23}{ }_{\mathrm{D}}+85.6\left(c=0.584, \mathrm{CHCl}_{3}\right)(91 \%$ ee); HPLC (Chiralpak AS-H, 2-propanol/hexane 1/1, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 9.0 \mathrm{~min}$ (minor) and 27.0 min (major).
trans-3-Azido-4-[N-(3,5-dinitrobenzoyl)amino]tetrahydrofuran (4g): colorless solid; IR (KBr): 3309,
 2104, 1674, 1654, 1538, 1349, 1283, 1245, 1058, 918, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta=9.19(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.67-4.59 (m, 1H), 4.28-4.23 (m, 1H), 4.21 (dd, $J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dd, $J=$ $10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.97 (d, $J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.73 (dd, $J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta=162.7,148.8,136.8,127.3,121.5,71.6,71.0,66.2,57.7$; MS (ESI): $m / z 345\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{6}$ : C, 41.00; H, 3.13; N, 26.08\%. Found: C, 41.23; H, 3.32; $\mathrm{N}, 25.68 \%$; $[\alpha]^{21}{ }_{\mathrm{D}}$ +85.3 ( $c=1.420$, Acetone) ( $96 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane 1/4, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 10.8 \mathrm{~min}$ (major) and 16.9 min (minor).
trans-1-Carbobenzyloxy-3-azido-4-[ $N$-(3,5-dinitrobenzoyl)amino]pyrrolidine (4h): colorless solid; IR
 (KBr): 3330, 3094, 2125, 1698, 1662, 1541, 1451, 1425, 1345, 1213, 1097, 921, $731,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $d$-acetone): $\delta=9.11-9.02(\mathrm{~m}, 3 \mathrm{H}), 8.90-8.77(\mathrm{~m}, 1 \mathrm{H})$, 7.44-7.27 (m, 5H), 5.18-5.06 (m, 2H), 4.72-4.60 (m, 1H), 4.49-4.39 (m, 1H), 3.96-3.76 (m, 2H), 3.69-3.57 (m, 1H), 3.56-3.44 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $d$-acetone): $\delta=163.9,155.0,149.6,138.2,138.1,129.4,128.8,128.7,128.5,122.0,67.4,64.9,64.0,56.2,55.4,50.0$, 49.7, 49.6, 49.4; MS (ESI): m/z $478\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 456.1268. Found: 456.1252; $[\alpha]^{21}{ }_{\mathrm{D}}+6.2$ ( $c=0.910$, Acetone) ( $94 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane $1 / 9$, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 45.7 \mathrm{~min}$ (major) and 55.2 min
(minor).
(1S,2S)-2-Azido-3-[N-(3,5-dinitrobenzoyl)amino]butane (4i): colorless solid; IR (KBr): 3284, 3087,
 2985, 2111, 1643, 1548, 1342, 1309, 1261, 1076, 917, 731, 722, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.18(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=162.4,148.6,137.7,127.2,121.2,61.6,49.9,18.9,17.0 ; \mathrm{MS}$ (ESI): m/z $331\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 309.0947. Found: 309.0955; $[\alpha]^{23}{ }_{\mathrm{D}}$ $+46.4\left(c=0.690, \mathrm{CHCl}_{3}\right)(95 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane $1 / 9$, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 13.9 \mathrm{~min}$ (minor) and 15.3 min (major).
anti-4-Azido-5-[ $N$-(3,5-dinitrobenzoyl)amino]octane (4j): colorless solid; IR (KBr): 3312, 2960, 2107,
 1647, 1542, 1344, 1079, 916, 729, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.16(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 1 \mathrm{H})$, 3.64-3.56 (m, 1H), 1.77-1.33 (m, 8H), 0.99-0.91 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 162.6, 148.6, 137.7, 127.2, 121.1, 65.8, 52.4, 35.6, 34.4, 19.5, 19.3, 13.79, 13.77; MS (ESI): $m / z 387\left[M+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 365.1573. Found: 365.1562; $[\alpha]^{23}$ D-20.5 ( $c=1.428, \mathrm{CHCl}_{3}$ ) ( $87 \%$ ee); HPLC (Chiralcel OD-H, 2-propanol/hexane 1/9, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 24.4 \mathrm{~min}$ (minor) and 31.7 min (major).
anti-1-Azido-2-[ $N$-(3,5-dinitrobenzoyl)amino]-1,2-diphenylethane (4k): colorless solid; IR (KBr):
 3320, 3092, 2105, 1642, 1541, 1344, 1077, 919, 730, 721, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.11(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.53$ (dd, $J=8.0,6.7 \mathrm{~Hz} 1 \mathrm{H}), 5.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta=162.8,148.5,137.9,137.4,135.9,128.94,128.92,128.7,128.3$, 127.3, 127.1, 127.0, 121.2, 69.5, 59.1; MS (ESI): m/z $455\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$433.1260. Found: 433.1235; $[\alpha]^{23}{ }_{\mathrm{D}}+42.8\left(c=1.384, \mathrm{CHCl}_{3}\right)(93 \%$ ee); HPLC (Chiralpak AD-H, 2-propanol/hexane 1/9, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 26.5 \mathrm{~min}$ (minor) and 33.0 min (major).

## (C) Transformation into 1,2-Diamine

(1S,2S)-1,2-Diaminocyclohexane dihydrochloride (19):


To a solution of $\mathbf{4 b}(68.8 \mathrm{mg}, 0.21 \mathrm{mmol}, 87 \% \mathrm{ee})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(71 \mu \mathrm{~L}, 0.31 \mathrm{mmol}, 1.5$ equiv) and DMAP ( $5.0 \mathrm{mg}, 0.041 \mathrm{mmol}, 20 \mathrm{~mol} \%$ ) were added and the mixture was stirred at room temperature for $24 \mathrm{~h} .4 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 1 h. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. Combined organic layer was
washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 4:1) to afford 18 ( $49.5 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) as a colorless solid in quantitative yield (2 steps). IR (KBr): 3349, 2942, 2859, 2104, 1683, 1531, 1368, 1319, 1266, 1173, 1049, $661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=4.62-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=155.3,79.6,64.3$, 53.8, 32.2, 30.6, 28.3, 24.3, 24.0; MS (ESI): $m / z 263\left[M+\mathrm{Na}^{+}\right]$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}$ [ $\mathrm{M}+\mathrm{H}^{+}$]: 241.1665. Found: 241.1664.

To a solution of 18 ( $49.5 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) in $\mathrm{MeOH}, 1 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at r.t. for $1 \mathrm{~h} .10 \% \mathrm{Pd} / \mathrm{C}(21.9 \mathrm{mg}, 10 \mathrm{~mol} \%$ (based on Pd)) was added and the mixture was stirred under hydrogen atmosphere ( 1 atm ) at room temperature for 15 h . The mixture was filtered through celite pad and concentrated under reduced pressure to afford (1S,2S)-1,2-diaminocyclohexane dihydrochloride ${ }^{8}$ (19) ( $36.8 \mathrm{mg}, 0.20 \mathrm{mmol}$ ) as a colorless solid in $96 \%$ yield. The absolute configuration was determined to be $1 S, 2 S$ based on the comparison of the optical rotation with the reported value. ${ }^{8}[\alpha]^{21}{ }_{\mathrm{D}}+13.5\left(c=1.840, \mathrm{H}_{2} \mathrm{O}\right)$. $\left[\mathrm{lit} .[\alpha]_{\mathrm{D}}-15.8\left(c=2.53, \mathrm{H}_{2} \mathrm{O}\right)\right.$ for $1 R, 2 R$ enantiomer.]
(2S,3S)-2,3-Diaminobutane dihydrochloride (21):


To a solution of $4 \mathbf{i}(285.9 \mathrm{mg}, 0.93 \mathrm{mmol}, 95 \%$ ee $)$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(320 \mu \mathrm{~L}, 1.39 \mathrm{mmol}, 1.5$ equiv) and DMAP ( $22.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 20 \mathrm{~mol} \%$ ) were added and the mixture was stirred at room temperature for $21 \mathrm{~h} .4 \mathrm{M} \mathrm{NaOH}(3 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 1 h. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. Combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 4:1) to afford 20 ( $193.7 \mathrm{mg}, 0.91 \mathrm{mmol}$ ) as a yellow oil in $97 \%$ yield (2 steps). IR (neat): 3341, 2979, 2934, 2108, 1698, 1520, 1366, 1249, 1168, 1073, 1010, 855 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=4.58-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.27$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=155.5,79.5,61.7,49.8,28.3,18.6$, 16.1; MS (ESI): m/z 237 [M+Na ${ }^{+}$; HRMS (FAB): $m / z$ calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 215.1508$. Found: 215.1509.

To a solution of 20 ( $56.9 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) in $\mathrm{MeOH}, 1 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at r.t. for $1 \mathrm{~h} .10 \% \mathrm{Pd} / \mathrm{C}$ ( $28.3 \mathrm{mg}, 10 \mathrm{~mol} \%$ (based on Pd)) was added and the mixture was stirred under hydrogen atmosphere ( 1 atm ) at room temperature for 13 h . The mixture was filtered through celite pad and concentrated under reduced pressure to afford (2S,3S)-2,3-diaminobutane

[^3]dihydrochloride ${ }^{9}$ (21) ( $42.8 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) as a colorless solid in quantitative yield. The absolute configuration was determined to be $1 S, 2 S$ based on the comparison of the optical rotation with the reported value. ${ }^{9}[\alpha]^{23}{ }_{\mathrm{D}}-10.0(c=0.858, \mathrm{MeOH})$. [lit. $[\alpha]_{\mathrm{D}}-22.9(c=0.8, \mathrm{MeOH})$ for $1 S, 2 S$ enantiomer.]

## (D) Asymmetric Synthesis of Tamiflu ${ }^{\circledR}$

(4S,5S)-4-Azido-5-(tert-butoxycarbonylamino)cyclohexene (22):


4e ( $99 \%$ ee)
To a solution of $4 \mathbf{e}\left(1.48 \mathrm{~g}, 4.45 \mathrm{mmol}, 99 \%\right.$ ee) in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(1.46 \mathrm{~g}, 6.68 \mathrm{mmol}, 1.5$ equiv) and DMAP ( $270 \mathrm{mg}, 2.23 \mathrm{mmol}, 50 \mathrm{~mol} \%$ ) were added and the mixture was stirred at room temperature for $3 \mathrm{~h} .4 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 2 h. Water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography (silica gel, hexane-AcOEt, 5:1) to afford $22(1.03 \mathrm{~g}, 4.34 \mathrm{mmol})$ as a colorless solid in $98 \%$ yield ( 2 steps). IR
 2H), 4.66 (brs, 1H), 3.75 (brs, 1H), 3.61 (brs, 1H), 2.62-2.40 (m, 2H), 2.27-2.12 (m, 1H), 2.09-1.94 (m, $1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=155.3,124.7,123.6,79.7,59.4,49.2,30.4,29.1,28.3 ; \mathrm{MS}$ (ESI): m/z $261\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 55.44; H, 7.61; N, 23.51\%. Found: C, 55.79; H, 7.53; N, 23.64\%. $[\alpha]^{23}{ }_{\mathrm{D}}+36.2$ ( $c=1.890, \mathrm{CHCl}_{3}$ ).
(4S,5S)-4,5-Bis(tert-butoxycarbonylamino)cyclohexene (5):


To a solution of $22(1.03 \mathrm{~g}, 4.34 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL}), \mathrm{PPh}_{3}(1.25 \mathrm{~g}, 4.78 \mathrm{mmol}, 1.1$ equiv) was added and the mixture was stirred at $50-60{ }^{\circ} \mathrm{C}$ for 3 h . Water $(10 \mathrm{~mL})$ was added and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 2 h . After most of $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure, water was removed by azeotropic evaporation with toluene (three times). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 21.7 \mathrm{mmol}$, 5 equiv), and $\mathrm{Boc}_{2} \mathrm{O}(1.9 \mathrm{~g}, 8.69 \mathrm{mmol}$, 2 equiv) were added to the residue, and the mixture was stirred at room temperature. After $2 \mathrm{~h}, 1 \% \mathrm{H}_{2} \mathrm{O}_{2}$ was added dropwise to oxidize the remaining $\mathrm{PPh}_{3}$ and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, 20:1 to $4: 1$ ) to afford 5 ( $1.22 \mathrm{~g}, 3.90 \mathrm{mmol}$ ) as a colorless solid in 90\% yield ( 2 steps). IR (KBr): 3323, 2979, 2908, 1694, 1556, 1363, 1173, 999, 658, 601 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=5.56$ (s, 2H), 4.88 (brs, 2H), 3.65 (brs, 2 H ), 2.46 (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.97

[^4](dd, $J=9.7,16.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.42(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=156.5,125.0,79.3,51.3,32.8,28.4$; MS (ESI): m/z $335\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 61.51; H, 9.03; N, 8.97\%. Found: C, 61.28; H, 8.89; N, 8.81\%. $[\alpha]^{21}{ }_{\mathrm{D}}-34.5\left(c=1.100, \mathrm{CHCl}_{3}\right)$.
(4R,5S)-4,5-Bis(tert-butoxycarbonylamino)cyclohexen-3-one (6):


To a solution of $5(462 \mathrm{mg}, 1.48 \mathrm{mmol})$ in 1,4-dioxane ( 15 mL ), $\mathrm{SeO}_{2}$ ( $164 \mathrm{mg}, 1.48 \mathrm{mmol}, 1$ equiv) and Dess-Martin periodinane ( $941 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.5$ equiv) were added and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$. After 12 h , saturated aqueous $\mathrm{NaHCO}_{3}$ was added to quench the reaction. The product was extracted with AcOEt three times and the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the residue. After cooling to $4{ }^{\circ} \mathrm{C}$ (ice bath), Dess-Martin periodinane ( $941 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.5$ equiv) was added. After 1 h , saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added and the organic layer was separated. The aqueous layer was extracted with AcOEt three times and the combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, 2:1) to afford 6 ( 330 mg , 1.01 mmol ) as a colorless solid in $68 \%$ yield. Recrystallization from diisopropylether-hexane gave enantiomerically pure 6 (>99\% ee, recrystallization yield; 62 \%). IR (KBr): 3323, 2978, 2931, 2250, 1687, $1540,1285,1173,1058,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.99-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=3.1,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=6.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 1 \mathrm{H})$, 2.93 (dt, $J=5.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.39 (dd, $J=10.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.45 (s, 9 H ), 1.42 ( $\mathrm{s}, 9 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=194.7,157.6,155.8,148.5,128.5,80.4,79.4,60.6,54.2,34,5,28.3,28.2 ; \mathrm{MS}$ (ESI): m/z 349 $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ : C, 58.88; H, 8.03; N, 8.58\%. Found: C, 58.68; H, 7.84; N, 8.35\%. $[\alpha]^{20}$ - $116.3\left(c=0.945, \mathrm{CHCl}_{3}\right)$. HPLC (Chiralpak AD-H, 2-propanol/hexane $1 / 20$, flow $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 254 nm .): $\mathrm{t}_{\mathrm{R}} 15.2 \mathrm{~min}$ (minor (no detection)) and 17.0 min (major).
(3R,4R,5S)-4,5-Bis(tert-butoxycarbonylamino)-1-cyano-3-hydroxycyclohexene (9):



A degassed solution of $6(19.7 \mathrm{mg}, 0.060 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(1.7 \mathrm{mg}, 0.006 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and 1,5-cyclooctadiene ( 0.1 M in THF, $60 \mu \mathrm{~L}, 0.006 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ) in THF ( 0.75 mL ) was heated at $60^{\circ} \mathrm{C}$ for 65 h . After filtration on celite pad to remove $\mathrm{Ni}(\operatorname{cod})_{2}$, the filtrate was dissolved in THF and NBS
( $11.3 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.05$ equiv) was added at $4^{\circ} \mathrm{C}$ (ice bath). After $20 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL}, 0.85 \mathrm{mmol}$, 14 equiv) was added dropwise. After 40 min , toluene and $5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}$ were added and the organic layer was separated. The product was extracted with toluene twice and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Most of toluene was removed under reduced pressure (volume of mixture: ca. 1 mL ). The resulting crude $\mathbf{8}$ was used in next step without purification. ( $\beta$-Cyanoenone $\mathbf{8}$ was relatively unstable on silica gel column chromatography. However, 8 can be isolated in $71 \%$ yield.)

To a solution of $\mathrm{LiAlH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}(1 \mathrm{M}$ in THF, $0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}$, 5 equiv) in THF ( 2 mL ), crude 8 (toluene solution) was added and the resulting mixture was stirred at $4{ }^{\circ} \mathrm{C}$ (ice bath). After 30 min , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The product was extracted with AcOEt twice and the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, 2:1 to $3: 2$ ) to afford $9(12.9 \mathrm{mg}, 0.036 \mathrm{mmol})$ as a colorless solid in $60 \%$ yield (3steps). The diastereoselectivity of the product was determined by ${ }^{1} \mathrm{H}$ NMR analysis to be $>20 / 1$. If isolated $\mathbf{8}$ was used as a starting material, the yield of this reduction to give $\mathbf{9}$ was $94 \%$.
(4R,5S)-4,5-Bis(tert-butoxycarbonylamino)-1-cyanocyclohexen-3-one (8): IR (KBr): 3370, 2979, 2934, 1696, 1523, 1367, 1169, 1019, 877, $557 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.61$ (d, $\left.J=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.1,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=4.6$, $18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=192.4,157.3,155.6$, 137.2, 129.6, 115.8, 81.1, 80.1, 60.4, 53.3, 35.8, 28.3, 28.1; MS (ESI): m/z 374 [M+Na $\left.{ }^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 352.1872. Found: 352.1869.
(3R,4R,5S)-4,5-Bis(tert-butoxycarbonylamino)-1-cyano-3-hydroxycyclohexene (9): IR (KBr): 3343, 2979, 2225, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.48(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (brs, 1 H ), 4.75 (brd, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.27-4.20 (m, 1H), 4.06 (brs, 1H), 3.87-3.77 (m, 1H), 3.54-3.45 (m, 1H), 2.65 (dd, J = 5.2, 17.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=158.1,156.5,145.0,117.3$, 110.6, 80.7, 80.6, 72.4, 58.5, 47.9, 33.3, 28.3, 28.2; MS (ESI): $m / z 376\left[M+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 354.2029. Found: 354.2032; $[\alpha]^{22}{ }_{\mathrm{D}}-21.6$ ( $c=1.425, \mathrm{CHCl}_{3}$ ).
(3S,4R,5S)-5-tert-Butoxycarbonylamino-3,4-tert-butoxycarbonylimino-1-cyanocyclohexene (23):


9


23

To a solution of $\mathrm{PPh}_{3}$ ( $124 \mathrm{mg}, 0.47 \mathrm{mmol}, 2.5$ equiv) in THF ( 6.3 mL ), DEAD ( $40 \%$ in toluene, 0.22 $\mathrm{mL}, 0.47 \mathrm{mmol}, 2.5$ equiv) and $9(66.9 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF ( 3.1 mL ) were added and the resulting mixture was stirred at $4{ }^{\circ} \mathrm{C}$ (ice bath). After 1 h , mixture was concentrated and purified by column chromatography (silica gel, hexane-AcOEt, 3:1 to 2:1) to afford $23(55.4 \mathrm{mg}, 0.17 \mathrm{mmol})$ as a colorless amorphous in $87 \%$ yield. IR (KBr): 3369, 2979, 2220, $1715,1526 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.88(\mathrm{t}, \mathrm{J}$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.54 (brs, 1H), 4.46 (brs, 1H), 3.06 (brs, 1H), 2.95 (t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (d, $J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=160.0,154.7,140.3,118.2,112.3$, 82.6, 80.3, 41.4, 41.2, 31.9, 30.1, 28.3, 27.8; MS (ESI): $m / z 358\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 336.1923. Found: 336.1921; $[\alpha]^{20}{ }_{\mathrm{D}}-46.6\left(c=0.635, \mathrm{CHCl}_{3}\right)$.
(3R,4R,5S)-4,5-Bis(tert-butoxycarbonylamino)-1-cyano-3-(1-ethylpropoxy)cyclohexene (10):


To a solution of 23 ( $22.6 \mathrm{mg}, 0.067 \mathrm{mmol}$ ) in 3-pentanol ( 0.5 mL ), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}$ ( 0.1 M in 3-pentanol, 1 $\mathrm{mL}, 0.1 \mathrm{mmol}, 1.5$ equiv) was added dropwise and the resulting mixture was stirred at $4{ }^{\circ} \mathrm{C}$ (ice bath). After 1 h , saturated aqueous $\mathrm{NaHCO}_{3}$ was added to quench the reaction. The product was extracted with AcOEt twice and the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexane-AcOEt, $4: 1$ ) to afford $\mathbf{1 0}(14.9 \mathrm{mg}, 0.035 \mathrm{mmol})$ as a colorless solid in $52 \%$ yield. IR ( KBr ): 3338, 2977, 2223, 1681, $1538 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.45$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 5.24 (brd, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.57 (brd, $J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.90-3.79 (m, 2H), 3.74-3.64 (m, 1H), 3.33 (br quintet, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.60 (dd, $J=4.6$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=156.2,156.0,143.6,117.6,111.8,83.1,79.9,79.7,75.4$, 54.7, 48.6, 32.9, 28.33, 28.30, 26.0, 25.8, 9.3; MS (ESI): $\mathrm{m} / \mathrm{z} 446$ [M+Na $\left.{ }^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 424.2811$. Found: 424.2818; $[\alpha]^{21}{ }_{\mathrm{D}}-41.0\left(c=0.505, \mathrm{CHCl}_{3}\right)$.
(3R,4R,5S)-4-Amino-5-tert-butoxycarbonylamino-1-cyano-3-(1-ethylpropoxy)cyclohexene (24):


To a solution of $\mathbf{1 0}$ ( $96.3 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 mL ), TFA ( $340 \mu \mathrm{~L}, 4.55 \mathrm{mmol}, 20$ equiv) was added at $4{ }^{\circ} \mathrm{C}$ (ice bath). After stirring at room temperature for 3 h , the reaction mixture was concentrated in vacuo and then, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After cooling to $4{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(160 \mu \mathrm{~L}, 1.14 \mathrm{mmol}, 5$ equiv) and $\mathrm{Boc}_{2} \mathrm{O}$ ( $55.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.1$ equiv) were added dropwise. After 30 min , the mixture was concentrated and purified by column chromatography (silica gel, hexane-AcOEt, 2:1 to 0:1) to afford 24 $(46.6 \mathrm{mg}, 0.14 \mathrm{mmol})$ as a colorless oil in $63 \%$ yield. IR (KBr): 3373, 2971, 2221, 1705, $1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta=6.47$ (qlike, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.14 (brs, 1 H ), 3.75 (brs, 1 H ), 3.72-3.65 (m, 1H), 3.31 (quintet, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.90(\mathrm{dd}, J=6.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.77-2.68 (m, 1H), 2.27-2.19 (m, 1H), 1.60-1.42 (m, 4H), $1.41(\mathrm{~s}, 9 \mathrm{H}), 0.901(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.896(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right): \delta=155.5 \text {, }}$ 142.5, 117.9, 111.7, 81.8, 77.5, 54.1, 29.7, 28.3, 26.1, 25.7, 9.6, 9.4; MS (ESI): $m / z 346\left[{ }^{2}+\mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 324.2287. Found: 324.2279; $[\alpha]^{21}{ }_{\mathrm{D}}-15.4\left(c=0.440, \mathrm{CHCl}_{3}\right)$.


To a solution of $24(46.6 \mathrm{mg}, 0.14 \mathrm{mmol})$ in pyridine ( 2 mL ), $\mathrm{Ac}_{2} \mathrm{O}(27 \mu \mathrm{~L}, 0.28 \mathrm{mmol}, 2$ equiv) was added at room temperature. After 1 h , the reaction mixture was directly concentrated in vacuo to remove pyridine. The residue was purified by column chromatography (silica gel, hexane-AcOEt, $4: 1$ to $1: 1$ ) to afford 25 ( $44.3 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) as a colorless solid in $84 \%$ yield. IR ( KBr ): 3335, 3287, 2968, 2220, 1686, $1654,1541 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.47(\mathrm{~s}, 1 \mathrm{H}), 5.66$ (brd, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12$, (brd, $J=8.6 \mathrm{~Hz}$, 1 H ), 4.09-4.01 (m, 1H), 3.95-3.90 (m, 1H), 3.87-3.78 (m, 1H), 3.29 (quintet, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.60 (dd, $J$ $=5.5,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (quintet, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=170.9,156.1,143.7,117.5,111.6,82.6$, 80.0, 75.0, 53.6, 48.3, 32.6, 28.3, 26.0, 25.6, 23.2, 9.4, 9.1; MS (ESI): m/z $388\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 366.2393. Found: 366.2401; $[\alpha]^{21}{ }_{\mathrm{D}}-108.1\left(c=0.660, \mathrm{CHCl}_{3}\right)$.
Ethyl (3R,4R,5S)-4-Acetamide-5-amino-3-(1-ethylpropoxy)cyclohexene-1-carboxylate Phosphate ${ }^{10}$ (1) (Tamiflu ${ }^{\circledR}$ ):


The solution of 25 ( $25.9 \mathrm{mg}, 0.071 \mathrm{mmol}$ ) in $4.2 \mathrm{M} \mathrm{HCl} / \mathrm{EtOH}$ was heated at $60{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $4{ }^{\circ} \mathrm{C}$ (ice bath), water was added to decompose the imino ester and the mixture was stirred for 3 h. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added followed by the slow addition of 2 M NaOH . The organic layer was separated and the product in water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice and AcOEt once. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A filtration and removal of solvent gave the free base ( $11.8 \mathrm{mg}, 0.037 \mathrm{mmol}$ ) in $53 \%$ yield. To the solution of free base ( $10.4 \mathrm{mg}, 0.033 \mathrm{mmol}$ ) in EtOH ( 250 $\mu \mathrm{L}$ ), $\mathrm{H}_{3} \mathrm{PO}_{4}$ ( 1 M in $\mathrm{EtOH}, 33 \mu \mathrm{~L}, 0.033 \mathrm{mmol}$, 1 equiv) was added slowly and the mixture was warmed to $50{ }^{\circ} \mathrm{C}$. Crystallization commenced immediately. The suspension was cooled to room temperature and stirred for 1 h . The crystal was filtered and washed with acetone twice to afford Tamiflu (1) ( 6.9 mg , 0.017 mmol ) as colorless crystal in $50 \%$ yield. IR ( KBr ): 3195, 1718, 1661, 1551, 1246, 1127, $513 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=6.91(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{brd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=8.9,11.6 \mathrm{~Hz}$, 1 H ), 3.69-3.56 (m, 2H), 3.02 (dd, $J=5.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.62-2.53 (m, 1H), 2.14 (s, 3H), 1.64-1.46 (m,

[^5]4H), $1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=178.1$, 170.3, 140.7, 130.5, 87.2, 77.9, 65.3, 55.5, 52.0, 31.0, 28.3, 27.9, 25.2, 16.1, 11.4, 11.3; ${ }^{31} \mathrm{P}$ NMR ( $\mathrm{D}_{2} \mathrm{O}$ ): $\delta=2.85$; mp: 184-186 ${ }^{\circ} \mathrm{C}$; MS (ESI): $\mathrm{m} / \mathrm{z} 313\left[\mathrm{M}-\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}^{+}\right]$; HRMS (FAB): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left[\mathrm{M}-\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}^{+}\right]: 313.2127$. Found: 313.2124; $[\alpha]^{22}{ }_{\mathrm{D}}-30.5\left(c=0.480, \mathrm{H}_{2} \mathrm{O}\right) .\left[\right.$ lit. $[\alpha]_{\mathrm{D}}-32.1\left(c=1, \mathrm{H}_{2} \mathrm{O}\right)$ ${ }^{11}$ ] [lit. $[\alpha]_{\mathrm{D}}-39.9\left(c=1, \mathrm{H}_{2} \mathrm{O}\right)^{10}$ ].
This analytical data completely matched with reported one. ${ }^{10}$

[^6]
[^0]:    ${ }^{1}$ Kato, N.; Tomita, D.; Maki, K.; Kanai, M.; Shibasaki, M. J. Org. Chem. 2004, 69, 6128.
    ${ }^{2}$ Hayashi, M.; Ono, K.; Hoshimi, H.; Oguni, N. Tetrahedron 1996, 52, 7817.
    ${ }^{3}$ Szeimies, G.; MannHardt, K.; Junius, M. Chem. Ber. 1977, 110, 1792.
    ${ }^{4}$ Zhang, Z.; Scheffold, R. Helv. Chim. Acta 1993, 76, 2602.

[^1]:    ${ }^{5}$ Zipperer, B.; Muller, K. H.; Gallenkamp, B.; Hildebrand, R.; Fletschinger, M.; Burger, D.; Pillat, M.; Hunkler, D.; Knothe, L.; Fritz, H.; Prinzbach, H. Chem. Ber. 1988, 121, 757.

[^2]:    ${ }^{6}$ Fanta, P. E.; Walsh, E. N. J. Org. Chem. 1966, 31, 59.
    ${ }^{7}$ Oida, S.; Kuwano, H.; Ohashi, Y.; Ohki, E. Chem. Pharm. Bull. 1970, 18, 2478

[^3]:    ${ }^{8}$ Kawai, M.; Iwase, T.; Butsugan, Y.; Nagai, U. Bull. Chem. Soc. Jpn. 1985, 58, 304.

[^4]:    ${ }^{9}$ Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T. Tetrahedron Asymm. 1997, 8, 2381.

[^5]:    ${ }^{10}$ Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem. 1998, 63, 4545.

[^6]:    ${ }^{11}$ Iding, H.; Wirz, B; Zutter, U. EP Patent 1,146,036, 2001.

