Supporting information ## A High Resolution Solid State NMR Approach for Structural Studies of Bicelles Sergey Dvinskikh, Ulrich Dürr, Kazutoshi Yamamoto and Ayyalusamy Ramamoorthy* ## A. Pulse sequence 2D pulse sequence employed in the measurement of ¹³C-¹H, ¹³C-³¹P and ¹H-³¹P dipolar couplings. In the *t*₁ period, proton magnetization evolves in the presence of homonuclear proton decoupling sequence BLEW48. After the cross polarization from proton to carbon, the ¹³C signal is recorded in the presence of proton decoupling by the FLOPSY sequence. In the PDLF experiment with the two simultaneous 180° pulses, in the middle of the evolution period (*t*₁), ¹H-³¹P, ¹³C-³¹P couplings and ¹H chemical shift are suppressed while the ¹³C-¹H dipolar splittings are obtained in the indirect dimension. On the other hand, in the absence of the proton 180° pulse, the ¹³C-¹H interactions are refocused while the ¹H-³¹P dipolar coupling and ¹H chemical shift are present in the indirect dimension. In both cases the dipolar spectra in the indirect dimension are correlated to the ¹³C chemical shift and ¹³C-³¹P dipolar couplings in the direct dimension. ## B. ³¹P chemical shift spectra of bicelles ³¹P NMR spectra of bicelle samples with different concentrations of MSI-78 peptide: a) 0 mole %, b) 0.5 mole % and c) 2.0 mole % MSI-78. Spectra were obtained by acquiring the FID after a 90° rf pulse in the presence of 10 kHz proton decoupling. 64 transients were accumulated with a recycle delay of 3 s. The chemical shift scale was referenced by setting the isotropic peak observed at 10°C to 0 ppm.