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General Laboratory Methods: The technique of adaptive femtosecond pulse shaping is a 
quantum control methodology1 built around an adaptive learning loop.2-5 In our laboratory this is 
comprised of (1) a computer controlled laser pulse shaper (2) measurement of molecular and 
material responses for feedback and (3) a computer-driven evolutionary algorithm. The input 
laser pulses for the pulse shaping device are derived from a broad-band Ti:Sapphire source 
consisting of a commercial multi-pass amplifier (Quantronix; Odin) seeded by a mode-locked 
Ti:Sapphire oscillator (K&M Labs). The oscillator is pumped by the second harmonic of a cw 
Nd:YVO4 laser (Coherent; Verdi) while the amplifier is pumped by the second harmonic of a 
Nd:YLF laser (Quantronix; Darwin). The system produces a 1 KHz laser pulse train (~ 900 
µJ/pulse) each with a temporal full-width half maximum (FWHM) of ~ 40 fs and a bandwidth of 
~ 26 nm FWHM. The amplified laser pulses (~ 20% of total power) are coupled into a home-
built pulse shaper constructed in the geometry of a zero-dispersion compressor.6-9 A dual-layer 
computer-controlled spatial light modulator (SLM) (CRI Inc; SLM-640) is placed at the Fourier 
plane of the device. For any one pixel number across the Fourier plane, both SLM layers are 
fixed to the same phase retardation value thereby achieving phase shaping as opposed to phase 
and amplitude shaping. The SLM has 640 individually addressable pixels but only 208 of these 
are needed to cover our laser spectrum. The index of refraction at each pixel of the SLM is 
independently varied by application of a drive voltage ranging between 0 – 10 volts with 12-bit 
resolution. Index of refraction is converted to phase values using home-built calibration 
procedures and then phase is modulated modulo 2π (0 – 2 π) over a drive voltage range spanning 
~ 0 to ~ 2.3 V. The total parameter space that can be explored in the learning loop is based on the 
number of phase variables, the pixel-voltage range, and the voltage resolution. In our case it 
consists of > 10620 shaped laser pulses. The background phase acquired from propagation 
through the optics and possible misalignment of the compressor in the amplifier is corrected for 
by measuring the phase necessary to maximize the second harmonic of the laser pulse. Adaptive 
searches are directed by an evolution strategy based on a genetic algorithm.10, 11 The heuristic 
search methodology is based on metaphors common to evolutionary biology and is capable of 
accommodating the massive multidimensional parameter space. Adaptive experiments are 
initialized by randomly coding 60 numerical arrays (termed individuals) of 208 phase values to 
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be applied to the pixels of the SLM. These individuals are thought of as having a genetic code 
made up of the array of applied phase values. For each generation the 60 pulses are ranked in 
terms of their fitness at achieving the user-defined optimization goal. To create a new generation, 
the algorithm renders a new population of 60 individuals by administering evolutionary operators 
which crossover, mutate, and clone the genetic material of a selection of fittest individuals in the 
previous generation. For each crossover operation, two individuals are chosen by tournament 
selection and yield two children; 30 new individuals are produced in this manner. For each 
mutation operation, an individual is randomly selected from among the ten fittest; 20 new 
individuals are produced in this manner. The 10 fittest individuals are also cloned to yield 10 
new individuals. The population size of 60 individuals is held constant throughout the 
experiment.  

Specific Laboratory Methods: The adaptive pulse shaping experiment undertaken for this 
work is similar to one previously pursued by the Gerber group.12 The output of the pulse shaping 
device is split into two pulse trains, one of which (~ 12 mW) impinges on a 298K sample (~ 
9×10-5M; 1 cm path length) of [Ru(dpb)3](PF6)2 in acetonitrile (where dpb = 4,4’-diphenyl-2,2’-
bipyridine). The linear absorption spectrum of this molecule has negligible absorbance at the 
wavelengths contained in the laser pulse but electronic excitation occurs when the molecule 
absorbs two or more photons from the shaped field. The relative multi-photon excitation 
efficiency is monitored by collecting a spontaneous emission signal at 640±5 nm from the 
thermalized triplet 3MLCT (metal-to-ligand charge transfer ) state.13 Wavelength selection is 
achieved using a bandpass filter (Thor Labs Inc.; FB640-10). A negatively biased PMT 
(Hamamatsu; H9305-02) records the emission signal with ~ 1.4 ns time resolution. We ensure 
that the signal results from the 3MLCT state by box-car averaging (SRS) between ~ 0.1 µs and ~ 
1.5 µs after the shaped excitation. This also guarantees that the recorded emission signal is not 
contaminated by any white light generated by the shaped fields passing through the sample cell 
or solvent. It is important to note, however, that we do not observe such white light generation 
with the pulse intensities we are using during this adaptive experiment. The output of the box car 
is sent to a digital lockin amplifier (SRS 810 DSP) locked to the frequency of a mechanical 
chopper (Thor Labs MC1000) that is modulating the output of the pulse shaper. The chopper is 
synched to the amplified laser and modulates the shaped excitation source at ω/2, where ω is the 
pulse-to-pulse frequency of the amplified pulse train. The second pulse train (~ 5mW) is 
transmitted through a 100 µm b-barium borate (BBO) crystal (Type I, 30º) to generate second 
harmonic (SHG) of the fundamental. This is passed through a glass prism to spatially separate 
the SHG from unconverted fundamental. The average intensity of the SHG signal is monitored 
using an amplified photodiode (Also Thor Labs PDA55), the output of which is fed into a second 
digital lockin amplifier (SRS 810 DSP) that is also locked at ω/2. This SHG signal is responsible 
for reporting the relative intensity of each laser pulse tested by the adaptive algorithm.  

Maximizing either SHG or emission with the adaptive pulse shaping experiment results in 
the shortest laser pulse possible because each is an intensity-dependent phenomenon involving 
the interaction of the material or molecule with two photons.12 Gerber’s group has further shown 
that maximizing the ratio of these two signals (emission/SHG) removes the two-photon intensity 
dependence of either separate physical process allowing the adaptive algorithm to take advantage 
of molecule-specific information in order to discover optimal pulse shapes.12 The optimization 
experiment analyzed for this manuscript was run for 195 generations (11700 total laser pulses 
explored) until convergence of the emission/SHG ratio was achieved.  
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PLS Regression Methodology: The salient features of PLS-regression as applied to adaptive 
control experiments is discussed here. The PLS-regression is implemented using The 
Unscrambler® (CAMO) software package.  

In our analysis the spectral phase or phase function characterizing each laser pulse shape can 
be represented as a row vector, iP

r
, of a 11700-row matrix, ijp=P ; where ijp  is a number 

corresponding to the applied phase (0 – 2π) at the jth pixel of the SLM for the ith laser pulse. As 
alluded to, the phase functions, iP

r
 are unwrapped by numerical algorithm to remove 

discontinuities. The resulting row vectors u
iP
r

 form a matrix uP . We note that at this point, one 
could numerically differentiate the unwrapped phase functions if it is desirable to consider only 
the relative phase of each pulse. uP is autoscaled to center and normalize the variance along each 
column according to the following expression, 

[ ] 2/11

0
2)()( ∑ −

= −− −−=
N

i
u

avej
u
ij

u
avej

u
ijik ppppa  Eq. S1 

where u
avejp −  is the numerical average of the jth column of uP and N is the number of pixels. The 

covariance matrix ijc=C  is calculated by multiplying the autoscaled matrix by its transpose. 

AAC '=  Eq. S2 

The observed fitness for each pulse can be represented as a column vector, if=F
v

, where if is 
the fitness of the ith pulse. The observed fitness is also autoscaled and the variance calculated in a 
manner analogous to Eqs. S1 and S2 to yield the vector cF

v
. The PLS-regression assumes a 

linear model relating the variance of the fitness to the covariance of the phase functions:  
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In this expression the jβ  are termed the regression coefficients and the iε  is the residual not 
accounted for by the model. The covariance of the phase functions is described by the so-called 
outer relationship: 
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 In this expression the iku are orthogonal basis functions that define a hyperplane which models 
the phase data, the kjb  are termed the loadings, N’ is the dimensionality of the hyperplane, and 

ije  is the residual error in ijc  not accounted for by the model. The variance of the fitness is 
described by the so-called inner relationship, which is also a linear combination of the basis 
functions iku : 
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Here, the kρ are termed the regression coefficients of orthogonal basis functions and i∆  is the 
residual error in c

if  not accounted for by the model. The jβ , iku , kjb , and kρ , as well as, the 
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residuals are iteratively calculated using the NIPALS algorithm developed by Wold which is 
described in detail elsewhere in the literature.14, 15 
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