Supporting Information No.1

Synthesis of (Z)-Alkene and (E)-Fluoroalkene Containing Diketopiperazine Mimetics Utilizing Organocopper-mediated Reduction-alkylation and Diastereoselectivity Examination Using DFT Calculations

Ayumu Niida[†], Makiko Mizumoto[†], Tetsuo Narumi[†], Eriko Inokuchi[†], Shinya Oishi[†], Hiroaki Ohno[†], Akira Otaka^{†,‡}, Kazuo Kitaura[†] and Nobutaka Fujii^{*,†}. [†]Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan [‡]Graduate School of Pharmaceutical Science, The University of Tokushima, Tokushima 770-8205, Japan *nfujii@pharm.kyoto-u.ac.jp

Table of contents	
Synthesis of alanine-derived substrate 41.	$S2 \sim S5$
Structure determination of 42 .	
Synthesis of acetate 14.	$S5 \sim S7$
¹ H NMR charts of 19 , 20 , 27 , 28 , 42 .	$S8 \sim S17$

Synthesis of alanine-derived substrates 41 and structure determination of compound 42.

Scheme S1.

Reagents: (i) 4 M HCl in dioxane; (ii) Ns-Cl, 2,4,6-collidine, CHCl₃; (iii) TBS-OTF, 2,6-lutidine, CH₂Cl₂; (iv) Bn-Br, K₂CO₃, DMF; (v) HSCH₂CO₂H, LiOH·H₂O, DMF; (vi) CH₂=CHCOCl, Et₃N, CH₂Cl₂; (vii) TBAF, THF; (viii) Grubbs' catalyst second generation, CH₂Cl₂; (ix) Ac₂O, pyridine, DMAP, CH₂Cl₂; (x) ClP(O)(OPh)₂, pyridine, CH₂Cl₂; (xi) MeCu·Lil·LiBr, THF.

The acetate **41** was synthesized from the known allylic alcohol derivative **S1**¹ by use of a procedure identical with that described for the preparation of acetate **2** from the allylic alcohol derivative **7** (Scheme S1). The phosphate derivative **S6** was also synthesized by treatment of lactam **S5** with (PhO)₂P(O)Cl in the presence of pyridine. Treatment of the phosphate **S6** with MeCu·LiI·LiBr in THF gave a S_N2' derivative **42** as a single diastereomer, <u>which was identical to the minor product of organocoppermediated reduction/alkylation of acetate **41**</u>. In our previous study², it was confirmed that the S_N2' reactions of phenylalanine-derived γ -phosphoryloxy- α , β -unsaturated- δ lactam with organocopper reagent prepared from equimolar amount of copper salt and organometallic reagent proceed in an *anti*-S_N2' manner without exception.² Organocopper-mediated *anti*-S_N2' reactions of allylic phosphate derivatives have been well documented by other groups.³ Therefore, the relative configuration of **42** obtained from phosphate **S6** was presumed to be 3,6-*trans*.

References: (1) Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. *J. Org. Chem.* **1991**, *56*, 4370. (2) Niida, A.; Oishi, S.; Sasaki, Y.; Mizumoto, M.; Tamamura, H.; Fujii, N.; Otaka, A. *Tetrahedron Lett.* **2005**, *46*, 4183. (3) (a) Torneiro, M.; Fall, Y.; Castedo, L.; Mouriño, A. *J. Org. Chem.* **1997**, *62*, 6344. (b) Belelie, J. L.; Chong, J. M. *J. Org. Chem.* **2001**, *66*, 5552. (c) Calaza, M. I.; Hupe, E.; Knochel, P. Org. Lett. **2003**, *5*, 1059. (d) Soorukram, D.; Knochel, P. Org. Lett. **2004**, *6*, 2409.

(3*S*,4*S*)-3-[(*tert*-Butyl)dimethylsiloxy]-4-[*N*-(2-nitrobenzenesulfonyl)amino]pent-1en (S2). By use of a procedure identical with that described for the preparation of the sulfonamide **8** from **7**, the the allylic alcohol derivative **S1** (4.0 g, 12.7 mmol) was converted into the title compound **S2** (3.28 g, 64.5% yield) as colorless crystals: mp 98–99 °C; $[\alpha]_{D}^{23}$ –40.5 (c 0.87, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.05 (s, 3H), 1.16 (d, *J* = 6.6 Hz, 3H), 3.50–3.63 (m, 1H), 4.00–4.08 (m, 1H), 4.86 (dt, *J* = 10.5, 1.5 Hz, 1H), 5.09 (dt, *J* = 17.3, 1.5 Hz, 1H), 5.58 (ddd, *J* = 17.1, 10.5, 5.9 Hz, 1H), 5.67 (d, *J* = 8.3 Hz, 1H), 7.69–7.75 (m, 2H), 7.81–7.88 (m, 1H), 8.07–8.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ –5.0, –4.4, 18.0, 18.9, 25.7, 55.3, 75.8, 116.4, 125.2, 130.3, 132.7, 133.1, 135.4, 137.5, 147.8. Anal. Calcd for C₁₇H₂₈N₂O₅SSi: C, 50.97; H, 7.05; N, 6.99. Found: C, 50.69; H, 6.81; N, 6.97.

(3S,4S)-4-[N-Benzyl-N-(2-nitrobenzenesulfonyl)]amino-3-[(tert-

Butyl)dimethylsiloxy]pent-1-en (S3). By use of a procedure identical with that described for the preparation of the *N*-methyl sulfonamide **9a** from **8**, the sulfonamide **S2** (2.54 g, 6.34 mmol) was converted into the title compound **S3** (2.86 g, 91.9% yield) as colorless oil: $[\alpha]_{D}^{25}$ –134.2 (c 1.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.03 (s, 3H), 0.85 (s, 9H), 1.25 (d, *J* = 6.6 Hz, 3H), 4.10–4.22 (m, 2H), 4.62 (d, *J* = 16.0 Hz, 1H), 4.67 (d, *J* = 16.3 Hz, 1H), 5.04 (dd, *J* = 10.5, 0.7 Hz, 1H), 5.17 (d, *J* = 17.1 Hz, 1H), 5.80 (ddd, *J* = 17.1, 10.2, 6.3 Hz, 1H), 7.04–7.13 (m, 3H), 7.16–7.27 (m, 3H), 7.41–7.50 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ –4.8, –4.3, 16.4, 18.0, 25.8, 48.9, 58.7, 77.3, 116.9, 123.5, 127.1, 128.0, 128.2, 131.0, 131.2, 125.5, 135.0, 137.2, 138.3, 147.3; HRMS (FAB), *m*/*z* calcd for C₂₄H₃₅N₂O₅SSi (MH⁺) 491.2036, found 491.2037.

(3*S*,4*S*)-4-(*N*-Acryloyl-*N*-benzyl)aminopent-1-en-3-ol (S4) By use of a procedure identical with that described for the preparation of the acrylamide **10a** from **9a**, the sulfonamide S3 (2.76 g, 5.62 mmol) was converted into the title compound S4 (1.14 g, 82.6% yield) as colorless oil (rotamer mixture: ca. 1:0.1): $[\alpha]^{25}_{D}$ –21.3 (c 0.69, CHCl₃); ¹H NMR (400 MHz, CDCl₃, main rotamer) δ 1.24 (*d*, *J* = 6.8 Hz, 3H), 4.00–4.16 (m, 2H), 4.52 (d, *J* = 17.6 Hz, 1H), 4.68 (d, *J* = 17.6 Hz, 1H), 5.15 (d, *J* = 10.5 Hz, 1H), 5.32 (d, *J* = 17.1 Hz, 1H), 5.67 (dd, *J* = 9.5, 2.7 Hz, 1H), 5.81 (ddd, *J* = 17.1, 10.3, 5.9 Hz, 1H), 6.36–6.52 (m, 2H), 7.16–7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 51.2, 58.7, 75.3, 115.9, 126.4, 127.4, 128.3, 128.6, 129.1, 137.0, 138.5, 168.6; HRMS (FAB), *m*/*z* calcd for C₁₅H₂₀NO₂ (MH⁺) 246.1494, found 246.1486.

(5*S*,6*S*)-1-Benzyl-5,6-dihydro-5-hydroxy-6-methylpyridin-2-one (S5). By use of a procedure identical with that described for the preparation of the lactam 11a from 10a, the acrylamide S4 (1.05 g, 4.28 mmol) was converted into the title compound S5 (832 mg, 89.5% yield) as colorless crystals: mp 141–142 °C; $[\alpha]_{D}^{21}$ +21.8 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.17 (d, *J* = 6.8 Hz, 3H), 3.30–3.42 (m, 1H), 3.44–3.56 (m, 1H), 3.84 (d, *J* = 15.1 Hz, 1H), 4.59–4.68 (m, 1H), 5.24 (d, *J* = 15.1 Hz, 1H), 5.83 (dd, *J* = 10.0, 2.2 Hz, 1H), 6.35 (dt, *J* = 11.7, 1.7 Hz, 1H), 7.19–7.35 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 10.8, 47.2, 55.0, 67.1, 123.5, 127.4, 127.6, 128.6, 137.6, 142.6, 163.4. Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.84; H, 6.91; N,

6.45.

(5*S*,6*S*)-5-Acetoxy-1-Benzyl-5,6-dihydro-6-methylpyridin-2-one (41). By use of a procedure identical with that described for the preparation of the acetate **2** from **11a**, the the lactam **S5** (100 mg, 0.460 mmol) was converted into the title compound **41** (99.0 mg, 82.9% yield) as colorless oil: $[\alpha]_{D}^{25}$ +46.4 (c 1.19, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.15 (d, *J* = 6.6 Hz, 3H), 2.08 (s, 3H), 3.66–3.79 (m, 1H), 4.02 (d, *J* = 15.1 Hz, 1H), 5.23 (d, *J* = 15.1 Hz, 1H), 5.59 (dt, *J* = 6.1, 2.4 Hz, 1H), 6.03 (dd, *J* = 10.0, 2.2 Hz, 1H), 6.32 (dt, *J* = 11.7, 1.7 Hz, 1H), 7.24–7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 20.8, 47.3, 52.5, 69.1, 125.5, 127.5, 127.7, 128.7, 137.4, 137.6, 162.8, 169.9; HRMS (FAB), *m/z* calcd for C₁₅H₁₈NO₃ (MH⁺) 260.1287, found 260.1292.

(**5***S*,**6***S*)-**1**-Benzyl-**5**,**6**-dihydro-**6**-methyl-**5**-(diphenylphosphoryloxy)pyridin-2-one (**86**). To a solution of the alcohol **S5** (30.2 mg, 0.139 mmol) and pyridine (89.8 μL, 1.11 mmol) in CH₂Cl₂ (1 mL), was added dropwise diphenylphosphoryl chloride (116 μL, 0.556 mmol) at 0 °C, and the mixture was stirred at 0 °C for 2 h. H₂O (1 mL) was added to the above mixture, and the whole was extracted with EtOAc. The extract was washed successively with saturated citric acid, brine, saturated NaHCO₃, and brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (1:1) gave the title compound **S6** (56.1 mg, 89.8% yield) as colorless oil: $[\alpha]^{20}_{D}$ +27.8 (c 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.48 (d, *J* = 6.6 Hz, 3H), 3.61–3.72 (m, 1H), 3.96 (d, *J* = 15.1 Hz, 1H), 5.21 (d, *J* = 15.1 Hz, 1H), 5.38–5.45 (ddt, *J* = 8.3, 6.1, 2.2 Hz, 1H), 6.00 (dd, *J* = 10.0, 1.5 Hz, 1H), 6.35 (dt, *J* = 10.0, 2.0 Hz, 1H), 7.06–7.37 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 11.6, 47.3, 53.6, 73.9, 119.8, 119.9, 125.6, 125.7, 127.6, 127.8, 128.8, 129.9, 130.0, 137.1, 137.4, 150.2, 162.5; HRMS (FAB), *m/z* calcd for C₂₅H₂₅NO₅P (MH⁺) 450.1470, found 450.1467.

Organocopper-mediated *anti*-S_N2' reaction of phosphate S6. Synthesis of (3*S*,6*S*)-1-Benzyl-3,6-dihydro-3,6-dimethylpyridine-2-one (*trans*-42). To a suspension of CuI (33.5 mg, 0.176 mmol) in THF (0.75 mL), was added dropwise a solition of MeLi·LiBr in Et₂O (1.5 M, 117 μ L, 0.176 mmol) at – 78 °C under argon, and the mixture was stirred for 10 min at 0 °C. To the above mixture, was added dropwise a solution of the phosphate S6 (26.3 mg, 0.0585 mmol) in THF (0.75 mL) at – 78 °C, and the mixture was stirred for 20 min at – 78 °C. The reaction was quenched at – 78 °C by addition of a 1:1 saturated NH₄Cl-28%NH₄OH solution (2 mL) with additional stirring at room temperature for 30 min. The mixture was extracted with Et₂O and the extract was washed with H₂O and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (1:1) gave the title compound *trans*-42 (11.2 mg, 88.9% yield) as colorless oil.

Synthesis of acetate 14

By use of a procedure identical with that described for the preparation of the acetate 2 from the allilic alcohol 7, the acetate 14 was synthesized from the allylic alcohol 13 as shown in the above scheme.

(3R,4S)-3-[(tert-Butyl)dimethylsiloxy]-4-[N-(2-nitrobenzenesulfonyl)amino]-5-

phenylpent-1-en (S7). By use of a procedure identical with that described for the preparation of **8** from **7**, the allylic alcohol **13** (1.70 g, 6.13 mmol) was converted into the title compound **S7** (2.64 g, 90.4% yield) as colorless oil: $[\alpha]^{28}{}_{\rm D}$ +110.0 (c 0.41, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.08 (s, 3H), 0.89 (s, 9H), 2.67 (dd, J = 14.4, 10.0 Hz, 1H), 2.89 (dd, J = 14.4, 4.8 Hz, 1H), 3.66–3.80 (m, 1H), 4.40–4.48 (m, 1H), 5.28 (dt, J = 10.4, 1.6 Hz, 1H), 5.37 (dt, J = 16.8, 1.6 Hz, 1H), 5.50 (d, J = 8.0 Hz, 1H), 5.91 (ddd, J = 17.2, 10.8, 5.2 Hz, 1H), 6.88–7.00 (m, 5H), 7.44–7.80 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ –4.9, –4.5, 18.2, 25.8, 35.6, 62.3, 76.0, 117.2, 125.4, 126.4, 128.0, 128.1, 129.0, 129.8, 132.4, 132.9, 135.0, 137.2, 137.6, 146.9; HRMS (FAB), m/z calcd for C₂₃H₃₃N₂O₅SSi (MH⁺) 477.1879, found 477.1885.

(3R,4S)-3-[(tert-Butyl)dimethylsiloxy]-4-[N-methyl-N-(2-

nitrobenzenesulfonyl)amino]-5-phenylpent-1-en (S8). By use of a procedure identical with that described for the preparation of **9a** from **8**, the sulfonamide **S7** (600 mg, 1.25 mmol) was converted into the title compound **S8** (585 mg, 95.4% yield) as colorless crystals: mp 95–97 °C; $[\alpha]^{29}_{D}$ +22.1 (c 1.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H), 0.10 (s, 3H), 0.94 (s, 9H), 2.80 (dd, *J* = 14.6, 10.7 Hz, 1H), 3.05 (s, 3H), 3.08 (dd, *J* = 14.8, 3.6 Hz, 1H), 4.13 (dt, *J* = 10.9, 4.0 Hz, 1H), 4.44 (m, 1H), 5.19 (dd, *J* = 10.5, 0.9 Hz, 1H), 5.29 (dd, *J* = 17.1, 1.2 Hz, 1H), 5.88 (ddd, *J* = 17.1, 10.2, 6.8 Hz, 1H), 6.97-7.12 (m, 5H), 7.20-7.35 (m, 2H), 7.37-7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ –4.9, –3.8, 18.0, 25.9, 30.8, 32.3, 64.8, 77.8, 116.8, 123.6, 128.2, 129.0, 130.1, 131.3, 132.5, 133.4, 138.2, 138.9, 147.8. Anal. Calcd for C₂₄H₃₄N₂O₅SSi: C, 58.75; H, 6.98; N, 5.71. Found: C, 58.57; H, 7.13; N, 5.66.

(3R,4S)-4-(N-Acryloyl-N-methylamino)-3-[(tert-butyl)dimethylsiloxy]-5-

phenylpent-1-en (S9). By use of a procedure identical with that described for the

preparation of *O*-TBS-**10a** from **9a**, the sulfonamide **S8** (510 mg, 1.03 mmol) was converted into the title compound **S9** (256 mg, 90.4% yield) as colorless oil (rotamer mixture): $[\alpha]_{D}^{21}$ -59.7 (c 1.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ -0.13--0.02 (m, 6H), 0.75-0.89 (m, 9H), 2.52-3,15 (m, 5H), 3,70-4.50 (m, 2H), 4.96-6.26 (m, 6H), 6.90-7.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ -4.8, -4.0, -3.9, -3.6, 18.0, 18.1, 25.6, 25.8, 28.5, 32.7, 34.5, 64.8, 75.4, 115.9, 117.2, 126.0, 126.5, 127.1, 128.2, 128.4, 128.5, 128.6, 128.8, 129.0, 138.1, 138.9, 139.3, 167.1, 168.2; HRMS (FAB), *m/z* calcd for C₂₁H₃₄NO₂Si (MH⁺) 360.2359, found 360.2365.

(3*R*,4*S*)-4-(*N*-Acryloyl-*N*-methylamino)-5-phenylpent-1-en-3-ol (S10). By use of a procedure identical with that described for the preparation of 10a from *O*-TBS-10a, the acrylamide S9 (103 mg, 0.286 mmol) was converted into the title compound S10 (69.9 mg, 99.6% yield) as colorless oil (rotamer mixture): $[\alpha]^{29}_{D}$ –100.8 (c 1.92, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 2.73 (s, 3H), 2.81 (dd, *J* = 14.1, 10.9 Hz, 0.6H), 2.90 (s, 1.8H), 3.02 (dd, *J* = 14.5, 4.3 Hz, 1H), 3.18 (dd, *J* = 14.5, 11.5 Hz, 1H), 3.24 (dd, *J* = 14.1, 3.2 Hz, 0.6H), 3.81–3.86 (m, 0.2H), 3.98 (ddd, *J* = 10.8, 8.0, 3.0 Hz, 0.4H), 4.15 (m, 1H), 4.24 (t, *J* = 7.4 Hz, 0.5H), 4.48 (m, 1H), 5.21 (d, *J* = 10.4 Hz, 0.3H), 5.23 (dt, *J* = 11.8, 1.1 Hz, 1H), 5.34 (m, 1H), 5.40 (dt, *J* = 16.5, 10.4, 5.8 Hz, 1H), 6.04 (dd, *J* = 16.9, 10.7 Hz, 0.4H), 6.26 (dd, *J* = 16.7, 1.9 Hz, 1H), 6.35 (dd, *J* = 16.7, 10.4 Hz, 0.4H), 6.36 (dd, *J* = 16.8, 10.4 Hz, 1H), 7.10–7.30 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 27.9, 28.5, 29.6, 31.7, 34.4, 36.1, 63.7, 65.8, 74.0, 74.2, 75.0, 116.3, 117.4, 126.2, 126.3, 126.5, 128.0, 128.2, 128.4, 128.5, 128.7, 128.8, 128.9, 137.6, 137.9, 138.2, 138.5, 168.2, 168.3; HRMS (FAB), *m/z* calcd for C₁₅H₂₀NO₂ (MH⁺) 246.1494, found 246.1495.

(*5R*,6*S*)-6-Benzyl-5,6-dihydro-1-methyl-5-hydroxypyridin-2-one (S11). By use of a procedure identical with that described for the preparation of **11a** from **10a**, the acrylamide **S10** (31 mg, 0.126 mmol) was converted into the title compound **S11** (23.1 mg, 84.3% yield) as colorless crystals: mp 129–131 °C; $[\alpha]^{24}_{D}$ –301.5 (c 0.47, CHCl₃); ¹H NMR (270 MHz, CDCl₃) δ 2.63 (dd, *J* = 13.5, 8.6 Hz, 1H), 2.88 (s, 3H), 2.91 (dd, *J* = 13.5, 8.7 Hz, 1H), 3.65–3.78 (m, 1H), 3.92–4.00 (m, 1H), 5.99 (d, *J* = 9.5 Hz, 1H), 6.57 (ddd, *J* = 9.5, 5.6, 1.4 Hz, 1H), 7.06–7.36 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 34.4, 37.6, 63.6, 67.4, 126.8, 126.9, 128.8, 129.1, 136.9, 137.0, 162.5. Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.71; H, 6.97; N, 6.26.

(5*R*,6*S*)-5-Acetoxy-6-benzyl-5,6-dihydro-1-methylpyridin-2-one (14). By use of a procedure identical with that described for the preparation of **2** from **11a**, the lactam **S11** (366 mg, 1.68 mmol) was converted into the title compound **14** (435 mg, 99.9% yield) as colorless crystals: mp 71–73 °C; $[\alpha]_{D}^{26}$ –353.8 (c 0.96, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 2.00 (s, 3H), 2.76 (dd, *J* = 13.8, 8.3 Hz, 1H), 2.90 (s, 3H), 2.97 (dd, *J* = 13.8, 6.3 Hz, 1H), 3.69–3.74 (m, 1H), 5.04 (dd, *J* = 5.7, 0.9 Hz, 1H), 6.14 (d, *J* = 9.6 Hz, 1H), 6.51 (ddd, *J* = 9.6, 5.7, 1.2 Hz, 1H), 7.13–7.17 (m, 2H), 7.24–7.35 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 34.2, 37.5, 64.1, 65.7, 127.2, 128.9, 129.1, 129.7, 132.3,

136.4, 161.9, 170.1. Anal. Calcd for $C_{15}H_{17}NO_3$: C, 69.48; H, 6.61; N, 5.40. Found: C, 69.42; H, 6.68; N, 5.28.

S12

S13

S17