Supporting Information

No. 1

Synthesis of (Z)-Alkene and (E)-Fluoroalkene Containing Diketopiperazine Mimetics Utilizing Organocopper-mediated Reduction-alkylation and Diastereoselectivity Examination Using DFT Calculations

Ayumu Niida ${ }^{\dagger}$, Makiko Mizumoto ${ }^{\dagger}$, Tetsuo Narumi ${ }^{\dagger}$, Eriko Inokuchi ${ }^{\dagger}$, Shinya Oishi †, Hiroaki Ohno^{\dagger}, Akira Otaka ${ }^{\dagger, \frac{\hbar}{,}}$, Kazuo Kitaura ${ }^{\dagger}$ and Nobutaka Fujii ${ }^{*}{ }^{\dagger}$.
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan ${ }^{\ddagger}$ Graduate School of Pharmaceutical Science, The University of Tokushima, Tokushima 770-8205, Japan *nfujii@pharm.kyoto-u.ac.jp

Table of contents

Synthesis of alanine-derived substrate 41.
S2~S5
Structure determination of $\mathbf{4 2}$.

Synthesis of acetate 14.
S5 ~ S7
${ }^{1} \mathrm{H}$ NMR charts of 19, 20, 27, 28, 42.
S8~S17

Synthesis of alanine-derived substrates 41 and structure determination of compound 42.

Scheme S1.

Reagents: (i) 4 M HCl in dioxane; (ii) Ns-Cl, 2,4,6-collidine, CHCl_{3}; (iii) TBS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{Bn}-\mathrm{Br}, \quad \mathrm{K}_{2} \mathrm{CO}_{3}, \quad \mathrm{DMF}$; (v) $\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, DMF; (vi) $\mathrm{CH}_{2}=\mathrm{CHCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) TBAF, THF; (viii) Grubbs' catalyst second generation, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ix) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;(\mathrm{x}) \mathrm{ClP}(\mathrm{O})(\mathrm{OPh})_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ (xi) $\mathrm{MeCu} \cdot \mathrm{LiI} \cdot \mathrm{LiBr}, \mathrm{THF}$

The acetate $\mathbf{4 1}$ was synthesized from the known allylic alcohol derivative $\mathbf{S} 1^{1}$ by use of a procedure identical with that described for the preparation of acetate $\mathbf{2}$ from the allylic alcohol derivative 7 (Scheme S1). The phosphate derivative S6 was also synthesized by treatment of lactam $\mathbf{S 5}$ with $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$ in the presence of pyridine. Treatment of the phosphate $\mathbf{S 6}$ with $\mathrm{MeCu} \cdot \mathrm{LiI} \cdot \mathrm{LiBr}$ in THF gave a $\mathrm{S}_{\mathrm{N}} 2$ ' derivative $\mathbf{4 2}$ as a single diastereomer, which was identical to the minor product of organocoppermediated reduction/alkylation of acetate 41. In our previous study ${ }^{2}$, it was confirmed that the $S_{\mathrm{N}} 2$ ' reactions of phenylalanine-derived γ-phosphoryloxy- α, β-unsaturated- δ lactam with organocopper reagent prepared from equimolar amount of copper salt and organometallic reagent proceed in an anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ manner without exception. ${ }^{2}$ Organocopper-mediated $a n t i-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions of allylic phosphate derivatives have been well documented by other groups. ${ }^{3}$ Therefore, the relative configuration of $\mathbf{4 2}$ obtained from phosphate $\mathbf{S 6}$ was presumed to be 3,6-trans.
References: (1) Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. J. Org. Chem. 1991, 56, 4370. (2) Niida, A.; Oishi, S.; Sasaki, Y.; Mizumoto, M.; Tamamura, H.; Fujii, N.; Otaka, A. Tetrahedron Lett. 2005, 46, 4183. (3) (a) Torneiro, M.; Fall, Y.; Castedo, L.; Mouriño, A. J. Org. Chem. 1997, 62, 6344. (b) Belelie, J. L.; Chong, J. M. J. Org. Chem. 2001, 66, 5552. (c) Calaza, M. I.; Hupe, E.; Knochel, P. Org. Lett. 2003, 5, 1059. (d) Soorukram, D.; Knochel, P. Org. Lett. 2004, 6, 2409.
(3S,4S)-3-[(tert-Butyl)dimethylsiloxy]-4-[N-(2-nitrobenzenesulfonyl)amino]pent-1-
en (S2). By use of a procedure identical with that described for the preparation of the
sulfonamide 8 from 7, the the allylic alcohol derivative $\mathbf{S} 1(4.0 \mathrm{~g}, 12.7 \mathrm{mmol})$ was converted into the title compound $\mathbf{S} 2(3.28 \mathrm{~g}, 64.5 \%$ yield) as colorless crystals: mp $98-99{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}-40.5\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.00(\mathrm{~s}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.50-3.63(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dt}, J$ $=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{ddd}, J=17.1,10.5,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.14(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-4.4,18.0,18.9,25.7,55.3,75.8,116.4,125.2$, 130.3, 132.7, 133.1, 135.4, 137.5, 147.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 50.97$; H, 7.05 ; N, 6.99. Found: C, 50.69; H, 6.81; N, 6.97.

(3S,4S)-4-[N-Benzyl- N-(2-nitrobenzenesulfonyl)]amino-3-[(tert-

Butyl)dimethylsiloxy]pent-1-en (S3). By use of a procedure identical with that described for the preparation of the N-methyl sulfonamide $\mathbf{9 a}$ from $\mathbf{8}$, the sulfonamide $\mathbf{S 2}(2.54 \mathrm{~g}, 6.34 \mathrm{mmol})$ was converted into the title compound $\mathbf{S 3}(2.86 \mathrm{~g}, 91.9 \%$ yield) as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}-134.2$ (c 1.18, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.00$ (s, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (ddd, $J=17.1,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.27$ (m, $3 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.3,16.4,18.0,25.8$, 48.9, 58.7, 77.3, 116.9, 123.5, 127.1, 128.0, 128.2, 131.0, 131.2, 125.5, 135.0, 137.2, 138.3, 147.3; HRMS (FAB), m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$491.2036, found 491.2037.
(3S,4S)-4-(N-Acryloyl- N-benzyl)aminopent-1-en-3-ol (S4) By use of a procedure identical with that described for the preparation of the acrylamide 10a from 9a, the sulfonamide $\mathbf{S 3}(2.76 \mathrm{~g}, 5.62 \mathrm{mmol})$ was converted into the title compound $\mathbf{S 4}(1.14 \mathrm{~g}$, 82.6% yield) as colorless oil (rotamer mixture: ca. 1:0.1): $[\alpha]^{25}-21.3$ (c $0.69, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, main rotamer) $\delta 1.24(d, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.00-4.16(\mathrm{~m}$, $2 \mathrm{H}), 4.52(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.1,10.3,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36-6.52(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.7$, 51.2, 58.7, 75.3, 115.9, 126.4, 127.4, 128.3, 128.6, 129.1, 137.0, 138.5, 168.6; HRMS (FAB), m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$246.1494, found 246.1486.
(5S,6S)-1-Benzyl-5,6-dihydro-5-hydroxy-6-methylpyridin-2-one (S5). By use of a procedure identical with that described for the preparation of the lactam 11a from 10a, the acrylamide $\mathbf{S 4}$ ($1.05 \mathrm{~g}, 4.28 \mathrm{mmol}$) was converted into the title compound $\mathbf{S 5}$ (832 $\mathrm{mg}, 89.5 \%$ yield) as colorless crystals: $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C}$; $[\alpha]^{21}{ }_{\mathrm{D}}+21.8$ (c $0.45, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.30-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.56(\mathrm{~m}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.68(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (dd, J $=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dt}, J=11.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.8,47.2,55.0,67.1,123.5,127.4,127.6,128.6,137.6,142.6,163.4$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.84; H, 6.91; N,
6.45.
(5S,6S)-5-Acetoxy-1-Benzyl-5,6-dihydro-6-methylpyridin-2-one (41). By use of a procedure identical with that described for the preparation of the acetate 2 from 11a, the the lactam S5 ($100 \mathrm{mg}, 0.460 \mathrm{mmol}$) was converted into the title compound $41(99.0 \mathrm{mg}$, 82.9% yield) as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+46.4\left(\mathrm{c} 1.19, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.79(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.32 (dt, $J=11.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0$, 20.8, 47.3, 52.5, 69.1, 125.5, 127.5, 127.7, 128.7, 137.4, 137.6, 162.8, 169.9; HRMS (FAB), m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$260.1287, found 260.1292.
(5S,6S)-1-Benzyl-5,6-dihydro-6-methyl-5-(diphenylphosphoryloxy)pyridin-2-one
(S6). To a solution of the alcohol $\mathbf{S 5}(30.2 \mathrm{mg}, 0.139 \mathrm{mmol})$ and pyridine ($89.8 \mu \mathrm{~L}, 1.11$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, was added dropwise diphenylphosphoryl chloride ($116 \mu \mathrm{~L}$, $0.556 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to the above mixture, and the whole was extracted with EtOAc. The extract was washed successively with saturated citric acid, brine, saturated NaHCO_{3}, and brine and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (1:1) gave the title compound $\mathbf{S 6}$ ($56.1 \mathrm{mg}, 89.8 \%$ yield) as colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+27.8\left(\mathrm{c} 0.84, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.61-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38-5.45$ (ddt, $J=8.3,6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (dd, $J=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (dt, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.37(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.6,47.3$, 53.6, 73.9, 119.8, 119.9, 125.6, 125.7, 127.6, 127.8, 128.8, 129.9, 130.0, 137.1, 137.4, 150.2, 162.5; HRMS (FAB), m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{P}\left(\mathrm{MH}^{+}\right) 450.1470$, found 450.1467.

Organocopper-mediated anti- $\mathbf{S}_{\mathrm{N}}{ }^{2}$ ' reaction of phosphate S6. Synthesis of (3S,6S)-1-Benzyl-3,6-dihydro-3,6-dimethylpyridine-2-one (trans-42). To a suspension of CuI ($33.5 \mathrm{mg}, 0.176 \mathrm{mmol}$) in THF (0.75 mL), was added dropwise a solition of $\mathrm{MeLi} \cdot \mathrm{LiBr}$ in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{M}, 117 \mu \mathrm{~L}, 0.176 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ under argon, and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. To the above mixture, was added dropwise a solution of the phosphate $\mathbf{S 6}(26.3 \mathrm{mg}, 0.0585 \mathrm{mmol})$ in THF $(0.75 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched at $-78^{\circ} \mathrm{C}$ by addition of a 1:1 saturated $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution (2 mL) with additional stirring at room temperature for 30 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (1:1) gave the title compound trans-42 ($11.2 \mathrm{mg}, 88.9 \%$ yield) as colorless oil.

Synthesis of acetate 14

Reagents: (i) 4 M HCl in dioxane; (ii) $\mathrm{Ns}-\mathrm{Cl}, 2,4,6$-collidine, CHCl_{3}; (iii) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (v) $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{LiOH}$, DMF; (vi) $\mathrm{CH}_{2}=\mathrm{CHCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vii) TBAF, THF; (viii) Grubbs' catalyst second generation; (ix) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, CHCl_{3}.

By use of a procedure identical with that described for the preparation of the acetate $\mathbf{2}$ from the allilic alcohol 7, the acetate $\mathbf{1 4}$ was synthesized from the allylic alcohol $\mathbf{1 3}$ as shown in the above scheme.
(3R,4S)-3-[(tert-Butyl)dimethylsiloxy]-4-[N-(2-nitrobenzenesulfonyl)amino]-5-
phenylpent-1-en (S7). By use of a procedure identical with that described for the preparation of $\mathbf{8}$ from 7, the allylic alcohol $\mathbf{1 3}(1.70 \mathrm{~g}, 6.13 \mathrm{mmol})$ was converted into the title compound $\mathbf{S 7}$ ($2.64 \mathrm{~g}, 90.4 \%$ yield) as colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}+110.0$ (c 0.41 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 2.67$ (dd, $J=14.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.48$ $(\mathrm{m}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dt}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.91 (ddd, $J=17.2,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-7.00(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.80(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,-4.5,18.2,25.8,35.6,62.3,76.0,117.2,125.4$, 126.4, 128.0, 128.1, 129.0, 129.8, 132.4, 132.9, 135.0, 137.2, 137.6, 146.9; HRMS (FAB), m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}\left(\mathrm{MH}^{+}\right) 477.1879$, found 477.1885.
(3R,4S)-3-[(tert-Butyl)dimethylsiloxy]-4-[N-methyl- N-(2-
nitrobenzenesulfonyl)amino]-5-phenylpent-1-en (S8). By use of a procedure identical with that described for the preparation of $\mathbf{9 a}$ from 8, the sulfonamide $\mathbf{S 7}$ ($600 \mathrm{mg}, 1.25$ mmol) was converted into the title compound $\mathbf{S 8}(585 \mathrm{mg}, 95.4 \%$ yield) as colorless crystals: mp 95-97 ${ }^{\circ} \mathrm{C} ;[\alpha]^{29}{ }_{\mathrm{D}}+22.1$ (c $1.77, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 2.80(\mathrm{dd}, J=14.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, 3.08 (dd, $J=14.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (dt, $J=10.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (m, 1H), 5.19 (dd, J $=10.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=17.1,10.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.9,-3.8,18.0,25.9,30.8,32.3,64.8,77.8,116.8,123.6,128.2,129.0,130.1$, 131.3, 132.5, 133.4, 138.2, 138.9, 147.8. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 58.75$; H, 6.98; N, 5.71. Found: C, 58.57; H, 7.13; N, 5.66.
(3R,4S)-4-(N-Acryloyl- N-methylamino)-3-[(tert-butyl)dimethylsiloxy]-5-
phenylpent-1-en (S9). By use of a procedure identical with that described for the
preparation of O-TBS-10a from 9a, the sulfonamide $\mathbf{S 8}(510 \mathrm{mg}, 1.03 \mathrm{mmol}$) was converted into the title compound $\mathbf{S 9}(256 \mathrm{mg}, 90.4 \%$ yield) as colorless oil (rotamer mixture): $[\alpha]^{21}{ }_{\mathrm{D}}-59.7$ (c 1.36, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.13-0.02$ (m, $6 \mathrm{H}), 0.75-0.89(\mathrm{~m}, 9 \mathrm{H}), 2.52-3,15(\mathrm{~m}, 5 \mathrm{H}), 3,70-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.96-6.26(\mathrm{~m}, 6 \mathrm{H})$, $6.90-7.20(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.0,-3.9,-3.6,18.0,18.1$, $25.6,25.8,28.5,32.7,34.5,64.8,75.4,115.9,117.2,126.0,126.5,127.1,128.2,128.4$, $128.5,128.6,128.8,129.0,138.1,138.9,139.3,167.1,168.2$; HRMS (FAB), m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 360.2359$, found 360.2365 .
(3R,4S)-4-(N-Acryloyl- N-methylamino)-5-phenylpent-1-en-3-ol (S10). By use of a procedure identical with that described for the preparation of 10a from O-TBS-10a, the acrylamide $\mathbf{S 9}$ ($103 \mathrm{mg}, 0.286 \mathrm{mmol}$) was converted into the title compound $\mathbf{S 1 0}$ (69.9 $\mathrm{mg}, 99.6 \%$ yield) as colorless oil (rotamer mixture): $[\alpha]^{29}{ }_{\mathrm{D}}-100.8$ (c 1.92, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=14.1,10.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.90(\mathrm{~s}$, 1.8 H), 3.02 (dd, $J=14.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (dd, $J=14.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dd, $J=$ $14.1,3.2 \mathrm{~Hz}, 0.6 \mathrm{H}$), $3.81-3.86$ (m, 0.2H), 3.98 (ddd, $J=10.8,8.0,3.0 \mathrm{~Hz}, 0.4 \mathrm{H}$), 4.15 $(\mathrm{m}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.23(\mathrm{dt}, J$ $=11.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=10.4,1.9$ Hz, 1H), 5.79-5.88 (m, 0.75H), 5.96 (ddd, $J=16.5,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (dd, $J=$ $16.9,10.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.26(\mathrm{dd}, J=16.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=16.7,10.4 \mathrm{~Hz}, 0.4 \mathrm{H})$, 6.36 (dd, $J=16.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.9,28.5,29.6,31.7,34.4,36.1,63.7,65.8,74.0,74.2,75.0,116.3,117.4,126.2$, $126.3,126.5,128.0,128.2,128.4,128.5,128.7,128.8,128.9,137.6,137.9,138.2,138.5$, 168.2, 168.3; HRMS (FAB), m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 246.1494$, found 246.1495.
(5R,6S)-6-Benzyl-5,6-dihydro-1-methyl-5-hydroxypyridin-2-one (S11). By use of a procedure identical with that described for the preparation of 11a from 10a, the acrylamide $\mathbf{S 1 0}$ ($31 \mathrm{mg}, 0.126 \mathrm{mmol}$) was converted into the title compound $\mathbf{S 1 1}$ (23.1 $\mathrm{mg}, 84.3 \%$ yield) as colorless crystals: $\mathrm{mp} 129-131^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}-301.5$ (c $0.47, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.63(\mathrm{dd}, J=13.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J$ $=13.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.00(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.57 (ddd, $J=9.5,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.4,37.6,63.6,67.4,126.8,126.9,128.8,129.1,136.9,137.0,162.5$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.71; H, 6.97; N, 6.26.
(5R,6S)-5-Acetoxy-6-benzyl-5,6-dihydro-1-methylpyridin-2-one (14). By use of a procedure identical with that described for the preparation of $\mathbf{2}$ from 11a, the lactam $\mathbf{S 1 1}$ ($366 \mathrm{mg}, 1.68 \mathrm{mmol}$) was converted into the title compound 14 ($435 \mathrm{mg}, 99.9 \%$ yield) as colorless crystals: mp $71-73{ }^{\circ} \mathrm{C} ;[\alpha]^{26}{ }_{\mathrm{D}}-353.8\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=13.8$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.74(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=5.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.51 (ddd, $J=9.6,5.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.17$ (m, 2H), 7.24-7.35 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,34.2,37.5,64.1,65.7,127.2,128.9,129.1,129.7,132.3$,
136.4, 161.9, 170.1. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 69.48 ; \mathrm{H}, 6.61 ; \mathrm{N}, 5.40$. Found: C, 69.42; H, 6.68; N, 5.28.

NMR charts of representative compounds

