Single atom (Pd/Pt) supported on graphitic carbon nitride as efficient photocatalyst for visible-light reduction of carbon dioxide Guoping Gao¹, Yan Jiao², Eric R. Waclawik¹ and Aijun Du^{1*} Table S1 the adsorption energy for Pt and Pd on different deposition sites of Figure 1a | Binding sites (see Figure | E _{binding} for Pd/g- | E _{binding} for Pt/g- | |---------------------------|--------------------------------|--------------------------------| | 1a) | $C_3N_4(eV)$ | $C_3N_4(eV)$ | | 1 | -2.17 | -2.95 | | 2 | Move to position 1 | Move to position 1 | | 3 | Move to position 1 | Move to position 1 | | 4 | -1.36 | -2.05 | | 5 | Move to position 4 | -1.29 | The binding energy of metal atom on g-C₃N₄ is calculate by eq(1) $$E_{binding} = E_{M/g-C_3N_4} - E_M - E_{g-C_3N_4}$$ (1) Where $E_{M/g-C_3N_4}$, E_M , and $E_{g-C_3N_4}$ is the total energies of single metal atom binded on the $g-C_3N_4$, single metal atom, and $g-C_3N_4$, respectively. ## Formation of HCOOH The pathway of formation HCOOH on Pd/g-C₃N₄, Pt/g-C₃N₄ and Cu/g-C₃N₄ are the same. The overall formula of Formation of HCOOH can be written as: $$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH \tag{2}$$ Which is divided into two element steps: $$CO_2 + H^+ + e^- \to HCOO^*$$ (3) $$HCOO^* + H^+ + e^- \rightarrow HCOOH$$ (4) ¹School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia ²School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia ## Formation of CH₃OH The overall formula of formation of CH₃OH can be written $$CO_2 + 6H^+ + 6e^- \rightarrow CH_2OH + H_2O$$ (5) The pathway of CH₃OH formation on Pd/g-C₃N₄, and Pt/g-C₃N₄ is the same, but different from that on Cu/g-C₃N₄. On the Pd/g-C₃N₄, and Pt/g-C₃N₄, the pathway following these six element steps: $$CO_2 + H^+ + e^- \to HCOO^*$$ (6) $$HCOO^* + H^+ + e^- \rightarrow HCOOH^*$$ (7) $$HCOOH^* + H^+ + e^- \rightarrow HCO^* + H_2O^*$$ (8) $$HCO^* + H^+ + e^- \rightarrow CH_2O^*$$ (9) $$CH_2O^* + H^+ + e^- \rightarrow CH_2OH^*$$ (10) $$CH_2OH^* + H^+ + e^- \rightarrow CH_3OH^*$$ (1) The details of pathway of CH₃OH on Cu/g-C₃N₄ are: $$CO_2 + H^+ + e^- \to HCOO^*$$ (2) $$HCOO^* + H^+ + e^- \to HCOOH^*$$ (3) $$HCOOH^* + H^+ + e^- \rightarrow H_2COOH^*$$ (4) $$H_2COOH^* + H^+ + e^- \rightarrow H_2C(OH)_2^*$$ (5) $$H_2C(OH)_2^* \to CH_2O^* + H_2O^*$$ (6) $$CH_2O^* + H^+ + e^- \to CH_3O^*$$ (7) $$CH_3O^* + H^+ + e^- \rightarrow CH_3OH^*$$ (8) ## Formation of CH₄ The overall formula of formation of CH₄ can be written as: $$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$ (9) Which is only investigated on Pt/g-C₃N₄ and processes through eight element steps: $$CO_2 + H^+ + e^- \to HCOO^*$$ (20) $$HCOO^* + H^+ + e^- \to HCOOH^*$$ (10) $$HCOOH^* + H^+ + e^- \rightarrow HCO^* + H_2O^*$$ (11) $$HCO^* + H^+ + e^- \rightarrow CH_2O^*$$ (12) $$CH_2O^* + H^+ + e^- \rightarrow CH_2OH^*$$ (13) $$CH_2OH^* + H^+ + e^- \rightarrow CH_2^{\ *} + H_2O^*$$ (14) $$CH_2^* + H^+ + e^- \rightarrow CH_3^*$$ (15) $$CH_3^* + H^+ + e^- \rightarrow CH_4^*$$ (16) Figure S1 The reaction pathway for CO_2 reduction to HCOOH and CH_3OH on Cu/g- C_3N_4 . Under standard conditions (pH=0, $p(H_2)$ =1 bar, U=0 V_{SHE}), the total energies of $H^+(aq) + e^-$ and $\frac{1}{2}H_2(g)$ are equal. The reference energy (the total free energy of catalyst, isolated CO_2 and three H_2) is set to zero. The important intermediates and products are shown as well. The substrate is displayed partly in stick model. The colour codes for the catalyst and small molecules: Copper, orange; Carbon, grey; Oxygen, red; and hydrogen, white.