Single atom (Pd/Pt) supported on graphitic carbon nitride as efficient photocatalyst for visible-light reduction of carbon dioxide

Guoping Gao¹, Yan Jiao², Eric R. Waclawik¹ and Aijun Du^{1*}

Table S1 the adsorption energy for Pt and Pd on different deposition sites of Figure 1a

Binding sites (see Figure	E _{binding} for Pd/g-	E _{binding} for Pt/g-
1a)	$C_3N_4(eV)$	$C_3N_4(eV)$
1	-2.17	-2.95
2	Move to position 1	Move to position 1
3	Move to position 1	Move to position 1
4	-1.36	-2.05
5	Move to position 4	-1.29

The binding energy of metal atom on g-C₃N₄ is calculate by eq(1)

$$E_{binding} = E_{M/g-C_3N_4} - E_M - E_{g-C_3N_4}$$
 (1)

Where $E_{M/g-C_3N_4}$, E_M , and $E_{g-C_3N_4}$ is the total energies of single metal atom binded on the $g-C_3N_4$, single metal atom, and $g-C_3N_4$, respectively.

Formation of HCOOH

The pathway of formation HCOOH on Pd/g-C₃N₄, Pt/g-C₃N₄ and Cu/g-C₃N₄ are the same.

The overall formula of Formation of HCOOH can be written as:

$$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH \tag{2}$$

Which is divided into two element steps:

$$CO_2 + H^+ + e^- \to HCOO^*$$
 (3)

$$HCOO^* + H^+ + e^- \rightarrow HCOOH$$
 (4)

¹School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia

²School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia

Formation of CH₃OH

The overall formula of formation of CH₃OH can be written

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_2OH + H_2O$$
 (5)

The pathway of CH₃OH formation on Pd/g-C₃N₄, and Pt/g-C₃N₄ is the same, but different from that on Cu/g-C₃N₄. On the Pd/g-C₃N₄, and Pt/g-C₃N₄, the pathway following these six element steps:

$$CO_2 + H^+ + e^- \to HCOO^*$$
 (6)

$$HCOO^* + H^+ + e^- \rightarrow HCOOH^*$$
 (7)

$$HCOOH^* + H^+ + e^- \rightarrow HCO^* + H_2O^*$$
 (8)

$$HCO^* + H^+ + e^- \rightarrow CH_2O^*$$
 (9)

$$CH_2O^* + H^+ + e^- \rightarrow CH_2OH^*$$
 (10)

$$CH_2OH^* + H^+ + e^- \rightarrow CH_3OH^*$$
 (1)

The details of pathway of CH₃OH on Cu/g-C₃N₄ are:

$$CO_2 + H^+ + e^- \to HCOO^*$$
 (2)

$$HCOO^* + H^+ + e^- \to HCOOH^*$$
 (3)

$$HCOOH^* + H^+ + e^- \rightarrow H_2COOH^*$$
 (4)

$$H_2COOH^* + H^+ + e^- \rightarrow H_2C(OH)_2^*$$
 (5)

$$H_2C(OH)_2^* \to CH_2O^* + H_2O^*$$
 (6)

$$CH_2O^* + H^+ + e^- \to CH_3O^*$$
 (7)

$$CH_3O^* + H^+ + e^- \rightarrow CH_3OH^*$$
 (8)

Formation of CH₄

The overall formula of formation of CH₄ can be written as:

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 (9)

Which is only investigated on Pt/g-C₃N₄ and processes through eight element steps:

$$CO_2 + H^+ + e^- \to HCOO^*$$
 (20)

$$HCOO^* + H^+ + e^- \to HCOOH^*$$
 (10)

$$HCOOH^* + H^+ + e^- \rightarrow HCO^* + H_2O^*$$
 (11)

$$HCO^* + H^+ + e^- \rightarrow CH_2O^*$$
 (12)

$$CH_2O^* + H^+ + e^- \rightarrow CH_2OH^*$$
 (13)

$$CH_2OH^* + H^+ + e^- \rightarrow CH_2^{\ *} + H_2O^*$$
 (14)

$$CH_2^* + H^+ + e^- \rightarrow CH_3^*$$
 (15)

$$CH_3^* + H^+ + e^- \rightarrow CH_4^*$$
 (16)

Figure S1 The reaction pathway for CO_2 reduction to HCOOH and CH_3OH on Cu/g- C_3N_4 . Under standard conditions (pH=0, $p(H_2)$ =1 bar, U=0 V_{SHE}), the total energies of $H^+(aq) + e^-$ and $\frac{1}{2}H_2(g)$ are equal. The reference energy (the total free energy of catalyst, isolated CO_2 and three H_2) is set to zero. The important intermediates and products are shown as well. The substrate is displayed partly in stick model. The colour codes for the catalyst and small molecules: Copper, orange; Carbon, grey; Oxygen, red; and hydrogen, white.