Single atom ($\mathrm{Pd} / \mathrm{Pt}$) supported on graphitic carbon nitride as efficient photocatalyst for visible-light reduction of carbon dioxide

Guoping Gao ${ }^{1}$, Yan Jiao ${ }^{2}$, Eric R. Waclawik ${ }^{1}$ and Aijun Du ${ }^{1 *}$
${ }^{1}$ School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia
${ }^{2}$ School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia

Table S1 the adsorption energy for $P t$ and $P d$ on different deposition sites of Figure 1a

Binding sites (see Figure la)	$\mathrm{E}_{\text {binding }}$ for $\mathrm{Pd} / \mathrm{g}-$ $\mathrm{C}_{3} \mathrm{~N}_{4}(\mathrm{eV})$	$\mathrm{E}_{\text {binding }}$ for $\mathrm{Pt} / \mathrm{g}-$ $\mathrm{C}_{3} \mathrm{~N}_{4}(\mathrm{eV})$
1	-2.17	-2.95
2	Move to position 1	Move to position 1
3	Move to position 1	Move to position 1
4	-1.36	-2.05
5	Move to position 4	-1.29

The binding energy of metal atom on $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ is calculate by eq(1)

$$
\begin{equation*}
E_{\text {binding }}=E_{M / g-C_{3} N_{4}}-E_{M}-E_{g-C_{3} N_{4}} \tag{1}
\end{equation*}
$$

Where $E_{M / g-C_{3} N_{4}}, E_{M}$, and $E_{g-C_{3} N_{4}}$ is the total energies of single metal atom binded on the $g-C_{3} N_{4}$, single metal atom, and $g-C_{3} N_{4}$, respectively.

Formation of $\mathbf{H C O O H}$

The pathway of formation HCOOH on $\mathrm{Pd} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}, \mathrm{Pt} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{Cu} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ are the same.
The overall formula of Formation of HCOOH can be written as:

$$
\begin{equation*}
\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{HCOOH} \tag{2}
\end{equation*}
$$

Which is divided into two element steps:

$$
\begin{gather*}
\mathrm{CO}_{2}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOO}^{*} \tag{3}\\
\mathrm{HCOO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOOH}^{2} \tag{4}
\end{gather*}
$$

Formation of $\mathbf{C H}_{3} \mathbf{O H}$

The overall formula of formation of $\mathrm{CH}_{3} \mathrm{OH}$ can be written

$$
\begin{equation*}
\mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \tag{5}
\end{equation*}
$$

The pathway of $\mathrm{CH}_{3} \mathrm{OH}$ formation on $\mathrm{Pd} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$, and $\mathrm{Pt} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ is the same, but different from that on $\mathrm{Cu} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$. On the $\mathrm{Pd} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$, and $\mathrm{Pt} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$, the pathway following these six element steps:

$$
\begin{gather*}
\mathrm{CO}_{2}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOO}^{*} \tag{6}\\
\mathrm{HCOO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOOH}^{*} \tag{7}\\
\mathrm{HCOOH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*} \tag{8}\\
\mathrm{HCO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{O}^{*} \tag{9}\\
\mathrm{CH}_{2} \mathrm{O}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{OH}^{*} \tag{10}\\
\mathrm{CH}_{2} \mathrm{OH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{*} \tag{1}
\end{gather*}
$$

The details of pathway of $\mathrm{CH}_{3} \mathrm{OH}$ on $\mathrm{Cu} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ are:

$$
\begin{gather*}
\mathrm{CO}_{2}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOO}^{*} \tag{2}\\
\mathrm{HCOO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOOH}^{*} \tag{3}\\
\mathrm{HCOOH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{H}_{2} \mathrm{COOH}^{*} \tag{4}\\
\mathrm{H}_{2} \mathrm{COOH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}^{*} \tag{5}\\
\mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}^{*} \rightarrow \mathrm{CH}_{2} \mathrm{O}^{*}+\mathrm{H}_{2} \mathrm{O}^{*} \tag{6}\\
\mathrm{CH}_{2} \mathrm{O}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{O}^{*} \tag{7}\\
\mathrm{CH}_{3} \mathrm{O}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}^{*} \tag{8}
\end{gather*}
$$

Formation of CH_{4}

The overall formula of formation of CH_{4} can be written as:

$$
\begin{equation*}
\mathrm{CO}_{2}+8 \mathrm{H}^{+}+8 e^{-} \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{9}
\end{equation*}
$$

Which is only investigated on $\mathrm{Pt} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$, and processes through eight element steps:

$$
\begin{gather*}
\mathrm{CO}_{2}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOO}^{*} \tag{20}\\
\mathrm{HCOO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCOOH}^{*} \tag{10}\\
\mathrm{HCOOH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{HCO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*} \tag{11}\\
\mathrm{HCO}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{O}^{*} \tag{12}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{CH}_{2} \mathrm{O}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{OH}^{*} \tag{13}\\
\mathrm{CH}_{2} \mathrm{OH}^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{2}{ }^{*}+\mathrm{H}_{2} \mathrm{O}^{*} \tag{14}\\
\mathrm{CH}_{2}{ }^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{3}{ }^{*} \tag{15}\\
\mathrm{CH}_{3}{ }^{*}+\mathrm{H}^{+}+e^{-} \rightarrow \mathrm{CH}_{4}{ }^{*} \tag{16}
\end{gather*}
$$

Figure S1 The reaction pathway for CO_{2} reduction to HCOOH and $\mathrm{CH}_{3} \mathrm{OH}$ on $\mathrm{Cu} / g-\mathrm{C}_{3} \mathrm{~N}_{4}$. Under standard conditions $\left(\mathrm{pH}=0, p\left(\mathrm{H}_{2}\right)=1\right.$ bar, $\mathrm{U}=0 \mathrm{~V}_{\mathrm{SHE}}$), the total energies of $H^{+}(a q)+e^{-}$and $\frac{1}{2} H_{2}(g)$ are equal. The reference energy (the total free energy of catalyst, isolated CO_{2} and three H_{2}) is set to zero. The important intermediates and products are shown as well. The substrate is displayed partly in stick model. The colour codes for the catalyst and small molecules: Copper, orange; Carbon, grey; Oxygen, red; and hydrogen, white.

