Supplemental Information

Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides

Wansun Kim, Jae-Chul Lee, Jae-Ho Shin, Kyung-Hyun Jin, Hun-Kuk Park*, Samjin Choi*

Department of Biomedical Engineering,
College of Medicine,
Kyung Hee University,
Seoul 130-701,
South Korea

*Address for correspondence:

Samjin Choi, Ph.D., and Hun-Kuk Park, M.D., Ph.D.,
Department of Biomedical Engineering,
College of Medicine,
Kyung Hee University,
1 Hoegi-dong
Dongdaemun-gu,
Seoul 130-701,
South Korea
Tel: +82 29610290
Fax: +82 260085535
E-mail: medchoi@khu.ac.kr

Raman spectrum of 2-NAT molecule

Figure S1. (A) The molecular structure of 2-naphthalenethiol (2-NAT) and (B) Raman spectra of a $1 \mu \mathrm{M}$ 2-NAT molecule for GNPs deposited on paper with optimal SILAR condition. The prominent Raman peaks of the 2-NAT molecule were obtained at $767 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{H}$ wag), $842 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{H}$ twist), $1064 \mathrm{~cm}^{-1}$ (symmetric C-H bend), $1378 \mathrm{~cm}^{-1}$ (ring stretch), and $1621 \mathrm{~cm}^{-1}$ (ring stretch).

Distribution of GNPs with number of SILAR cycles (10 mM SILAR reagents)

Figure S2. Distributions of SILAR-synthesized GNPs deposited on paper with (A) two, (B) four, (C) six, (D) eight, and (E) 10 SILAR cycles (top: SEM. Scale bar=250 nm; middle: GNP distribution; bottom: schematic distribution). The surface density of GNP was represented by the number of GNP per unit area (no. $/ \mu \mathrm{m}^{-2}$). RMSE indicates the root mean square error between the Gaussian-predicted data and experimental data.

Distribution of SILAR reagent-concentrated GNPs with number of SILAR cycles

Figure S3. Distributions of SILAR-synthesized GNPs deposited on paper with (A) two, (B) four, (C) six, (D) eight, and (E) 10 SILAR using $1 \mathrm{mM} \mathrm{HAuCl}{ }_{4}$ and NaBH_{4} SILAR reagents. (top: SEM. Scale bar=250 nm ; bottom: GNP distribution). The surface density of GNP was represented by the number of GNP per unit area (no. $/ \mathrm{um}^{-2}$). RMSE indicates the root mean square error between the Gaussian-predicted data and experimental data.

Figure S4. Distributions of SILAR-synthesized GNPs deposited on paper with (A) two, (B) four, (C) six, (D) eight, and (E) 10 SILAR using $5 \mathrm{mM} \mathrm{HAuCl} I_{4}$ and NaBH_{4} SILAR reagents. (top: SEM. Scale bar=250 nm ; bottom: GNP distribution). The surface density of GNP was represented by the number of GNP per unit area ($\mathrm{no} . / \mathrm{\mu m}^{-2}$). RMSE indicates the root mean square error between the Gaussian-predicted data and experimental data.

Figure S5. Distributions of SILAR-synthesized GNPs deposited on paper with (A) two, (B) four, (C) six, (D) eight, and (E) 10 SILAR using $20 \mathrm{mM} \mathrm{SILAR} \mathrm{HAuCl}_{4}$ and NaBH_{4} reagents. (top: SEM. Scale bar=250 nm; bottom: GNP distribution). The surface density of GNP was represented by the number of GNP per unit area (no. $/ \mathrm{mm}^{-2}$). RMSE indicates the root mean square error between the Gaussian-predicted data and experimental data.

- Computational modeling

Figure S6. (A) Finite element model of GNPs with SILAR cycles and computational results of GNP diameter and interparticle gap distance-dependent LSPR effect with (B) two, (C) four, (D) six, (E) eight, and (F) 10 SILAR cycles on the electromagnetic field (EF).

Sensitivity

Figure S7. Representative SERS spectra with (A) different 2-NAT concentrations ($10^{-12} \sim 10^{-6} \mathrm{M}$) and (B) low concentrations of 2-NAT on SILAR-synthesized GNPs deposited on SERS paper. Gray indicates a 2-NAT molecule-characterized peak at $1378 \mathrm{~cm}^{-1}$.

Enhancement factor

Figure S8. Raman spectra of 1 mM 2-NAT on bare paper and 1 pM 2-NAT and no analyte on SILARsynthesized GNP paper strip.

The enhancement factor (EF) was calculated as the difference in Raman intensity between two different substrates as

$$
\begin{equation*}
E F=\left(\frac{I_{\text {SERS }}}{I_{\text {bare }}}\right)\left(\frac{N_{\text {bare }}}{N_{\text {SERS }}}\right) \tag{S1}
\end{equation*}
$$

where $I_{\text {SERS }}$ and $I_{\text {bare }}$ are the Raman intensity of the molecule on the SERS and bare papers, respectively, and $N_{\text {SERS }}$ and $N_{\text {bare }}$ are the average number of adsorbed molecules in the scattering volume for SERS and non-SERS areas, respectively. ${ }^{1}$ Assuming that the probe molecules were uniformly distributed on the substrates, the number of adsorbed molecules can be estimated as

$$
\begin{equation*}
N=\left(N_{A} \cdot c \cdot \frac{V_{\text {droplet }}}{A_{\text {spot }}}\right) A_{\text {laser }} \tag{S2}
\end{equation*}
$$

where N_{A} is Avogadro's constant, c is the concentration of the probe molecule, V is the volume of the molecule droplet, $A_{\text {spot }}$ is the size of the substrate, and $A_{\text {laser }}$ is the size of the laser spot. ${ }^{2}$ Since the same methods for assessing the Raman measurement were applied to two substrates, the parameters of N_{A} for $2-\mathrm{NAT}, V, A_{\text {spot }}$, and $A_{\text {laser }}$ were the same.

Therefore, Eq. (S2) can be written as

$$
\begin{equation*}
E F=\left(\frac{I_{\text {SERS }}}{I_{\text {bare }}}\right)\left(\frac{c_{\text {bare }}}{c_{\text {SERS }}}\right) \tag{S3}
\end{equation*}
$$

where $c_{\text {SERS }}$ and c_{R} are the concentration of 2-NAT molecule on the GNP and bare papers, respectively.

Bio-applications

Figure S9. PCA-SVM scores ($n=15$, each): (A) to detect the presence of keratoconjunctivitis using SVM classifier with linear kernel and to classify the normal eye and keratoconjunctivitides using SVM classifier with (B) the second-order polynomial kernel ($d=2$, Eq. S4), (C) Gaussian kernel ($\sigma=2$, Eq. S5), and (D) Hilbert transform radial basis function kernel ($\rho=\mathbf{2}, \boldsymbol{a}=1, \boldsymbol{b}=\mathbf{2}$, Eq. S6). ${ }^{3,4}$

$$
\begin{align*}
& K_{\text {poly }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\left\langle\mathbf{x}_{1} \cdot \mathbf{x}_{2}\right\rangle+1\right)^{d} \tag{S4}\\
& K_{\text {Gaussian }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|^{2} / 2 \sigma^{2}\right) \tag{S5}\\
& K_{\text {HtBRF }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\rho \sum_{i}\left|\mathbf{x}_{1 i}^{a}-\mathbf{x}_{2 i}^{a}\right|^{b}\right) \tag{S6}
\end{align*}
$$

References

(1) Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. J. Phys. Chem. C 2007, 111 (37), 13794-13803.
(2) Liu, X.; Shao, Y.; Tang, Y.; Yao, K.-F. Sci. Rep. 2014, 4, 5835.
(3) Choi, S.; Jiang, Z. Comput. Biol. Med. 2010, 40 (1), 8-20.
(4) Jung, G. B.; Nam, S. W.; Choi, S.; Lee, G.-J.; Park, H.-K. Biomed. Opt. Express 2014, 5 (9), 3238.

