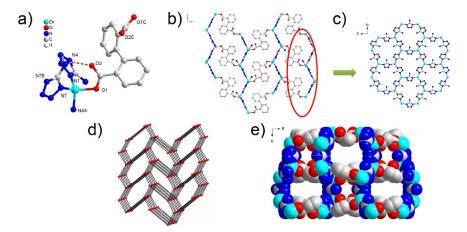

Supporting Information


Stitching 2D polymeric layers into flexible 3D metal-organic frameworks via the sequential self-assembly approach

Hao Zhang^{†,‡}, Tianlu Sheng[†], Shengmin Hu[†], Chao Zhuo^{†,‡}, Haoran Li^{†,‡}, Ruibiao Fu[†], Yuehong Wen[†], and Xintao Wu^{†,*}

^{*}State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China [‡]Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China *E-mail:* <u>wxt@fjirsm.ac.cn</u> Tel: +86-591- 83719238. Fax: +86-591- 83719238.

Figure S1. (a) Zn (II) coordination environments of A3. Symmetry codes: (A) -x, -y, 1-z; (B) x, 0.5-y, z; (C) 0.5-x, -y, 0.5+z. Part of hydrogen atoms are omitted for clarity. (b) View of the 3D framework from the bc plane layer. (c) 2D layer of A3. (d) 3D uninodal 4-connected network with a 'lon' topology with point symbol {66} of A3. (e) Space-filling model of A3 along *b* crystallographic axis. (f) Space-filling model of A3 along crystallographic *c* axis.

Figure S2. (a) Zn (II) coordination environments of A4. Symmetry codes: (A) -x, -0.5-y, z; (B) 0.5-x, -y, -0.5+z; (C) -x, -y, -z. Part of hydrogen atoms are omitted for clarity. (b) View of the 3D framework from the *bc* plane layer. (c) 2D layer of A4. (d) 3D uninodal 4-connected network with a 'lon' topology with point symbol {66} of A4. (e) Space-filling model of A4 along crystallographic *b* axis.

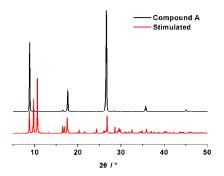
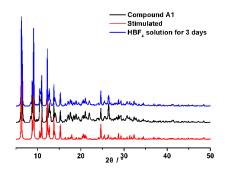
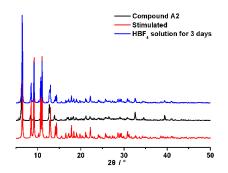




Figure S3. PXRD patterns of simulated from the single-crystal data of compound A (red); as-synthesized (black).

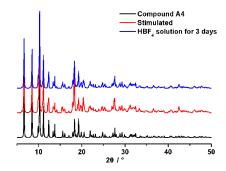

Figure S4. PXRD patterns of simulated from the single-crystal data of compound **A1** (red); as-synthesized (black); the sample soaked in HBF₄ solution for 3 days (blue). Note: 10 drops 50% HBF₄ is added into 15 ml DMF to obtain the HBF₄ solution.

Figure S5. PXRD patterns of simulated from the single-crystal data of compound **A2** (red); as-synthesized (black); the sample soaked in HBF₄ solution for 3 days (blue). Note: 10 drops 50% HBF₄ is added into 15 ml DMF to obtain the HBF₄ solution.

Figure S6. PXRD patterns of simulated from the single-crystal data of compound A3(red); as-synthesized (black); the sample soaked in HBF₄ solution for 3 days (blue). Note: 10 drops 50% HBF₄ is added into 15 ml DMF to obtain the HBF₄ solution.

Figure S7. PXRD patterns of simulated from the single-crystal data of compound **A4** (red); as-synthesized (black); the sample soaked in HBF₄ solution for 3 days (blue). Note: 10 drops 50% HBF₄ is added into 15 ml DMF to obtain the HBF₄ solution.

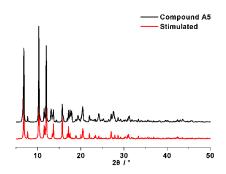


Figure S8. PXRD patterns of simulated from the single-crystal data of compound A5 (red); as-synthesized (black).

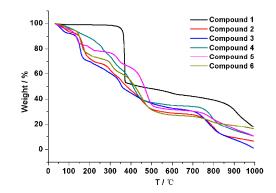
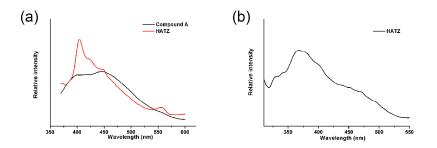



Figure S9. TGA curves for compounds 1-6.

formula Formula weight Crystal	C ₂ H ₄ N ₁₀ Zn 233.54 Orthorhombic <i>Cmcm</i>	C _{6.5} H ₉ N ₈ O ₂ Zn 296.59 Orthorhombic <i>Pnma</i>	C _{6.5} H _{9.5} N _{8.5} O ₂ Zn 304.10 Orthorhombic	C ₁₀ H _{15.5} N _{8.5} O _{3.5} Zn 319.60 Orthorhombic	C _{9.5} H ₁₁ N ₈ O ₂ Zn 334.63 Orthorhombic	C ₁₅ H ₁₀ N ₅ O ₄ Zn 389.67 Orthorhombic
weight Crystal system Space group	Orthorhombic Cmcm	Orthorhombic				
Space group	Cmcm		Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
group		Pnma				
$a(\mathbf{\hat{A}})$			Pnma	Pnma	Pnnm	Pbca
<i>u</i> (11)	17.949(7)	28.13(3)	27.250(15)	31.928(17)	20.818(9)	22.954(11)
<i>b</i> (Å)	10.453(4)	14.427(16)	16.002(9)	16.003(8)	9.887(4)	10.328(5)
c (Å)	19.881(9)	10.380(12)	10.292(5)	10.329(5)	17.281(7)	25.873(11)
α (°)	90.00	90.00	90.00	90.00	90.00	90.00
$V(\text{\AA}^3)$	3730(3)	4212(8)	4488(4)	5278(5)	3557(3)	6134(5)
Ζ	16	8	8	8	8	8
$Dc (g/cm^3)$	1.663	0.935	0.900	0.804	1.250	0.844
μ (mm ⁻¹)	2.609	1.170	1.100	0.937	1.394	0.817
F(000)	1855	1200	1232	1288	1360	1576
θ range (°) 2	2.48 - 27.51	2.02 - 25.00	2.35 - 27.44	2.35 - 27.38	2.28 - 27.48	2.30 - 25.00
R(int)	0.0662	0.0884	0.0621	0.0768	0.0772	0.0742
R_{l} , ^{<i>a</i>} wR_{2} ^{<i>b</i>}	0.0721,	0.0863 ,	0.0549,	0.0744,	0.0833,	0.0884,
$(I > 2\sigma(I))$	0.1841	0.2113	0.1681	0.2254	0.1974	0.2103
GOF on F^2	0.984	0.967	1.022	0.934	1.001	0.922

Table S1. Crystallographic Data for compounds A and A1-A5.

Figure S10. (a) Solid-state emission spectra for the HATZ ligand and Compound A, excited at 330 nm; (b) Solid-state emission spectra for the HATZ ligand, excited at 288 nm.

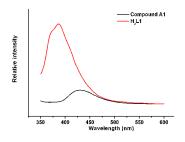


Figure S11. Solid-state emission spectra for the H₂L1 ligand and Compound A1, excited at 330 nm.



Figure S12. Solid-state emission spectra for the H₂L2 ligand (b) and Compound A2, excited at 330 nm.

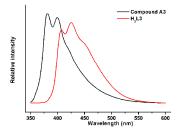


Figure S13. Solid-state emission spectra for the H2L3 ligand and Compound A3, excited at 330 nm.

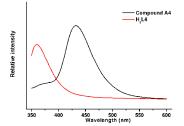


Figure S14. Solid-state emission spectra for the H₂L4 ligand and Compound A4, excited at 330 nm.

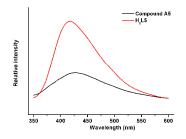


Figure S15. Solid-state emission spectra for the H₂L5 ligand and Compound A5, excited at 330 nm.