## **Supporting Information**

## Induced Crystallization of Perovskites by Perylene Underlayer For High-Performance Solar Cells

Zhao-Kui Wang<sup>#</sup>, Xiu Gong<sup>‡#</sup>, Meng Li<sup>†</sup>, Yun Hu<sup>†</sup>, Jin-Miao Wang<sup>†</sup>, Heng Ma<sup>‡</sup>, and Liang-Sheng Liao<sup>†\*</sup>

<sup>†</sup>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China

<sup>‡</sup>College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007, China

<sup>#</sup>Z.K. and X.G. contributed equally to this work.

\*Address correspondence to lsliao@suda.edu.cn (L. S. Liao)

KEYWORDS: perovskite solar cells; interface engineering; perylene underlayer; induced crystallization; stability.

## **Table of Contents**

**Table S1**. A brief summary of the morphology and the crystallization controls of the perovskite films by different underlayers.

Figure S1. SEM images of solvent-dependent perylene films.

Figure S2. J-V curves of PHJ PSCs with solvent-dependent perylene films.

**Table S1.** Cell parameters of PHJ PSCs with solvent-dependent perylene underlayers.

Figure S3. *J-V* curves of PHJ PSCs with perylene under different annealing temperature.

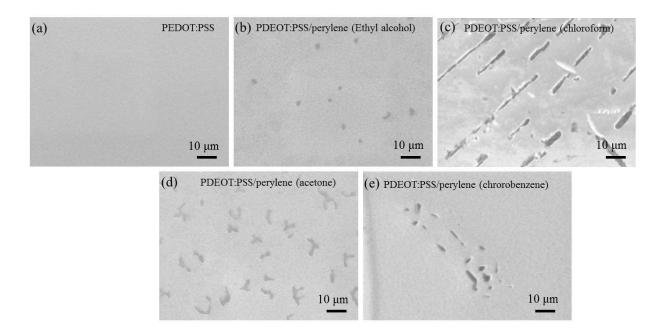
**Table S2.** Cell parameters of PHJ PSCs with perylene under different annealing temperature.

**Table S3.** The film coverage of  $CH_3NH_3PbI_{3-x}Cl_x$  with different underlayers.

Figure S4. Forward and reverse scans of *J-V* curves of perylene based PHJ PSC.

Figure S5. *J-V* curves of PHJ PSCs with different active area.

**Table S4.** Cell parameters of PHJ PSCs with different active area.


**Figure S6.** Absorption spectra of  $CH_3NH_3PbI_{3-x}Cl_x$  films deposited on different underlayers.

**Table S5.** EIS parameters of PHJ PSCs based on different underlayers.

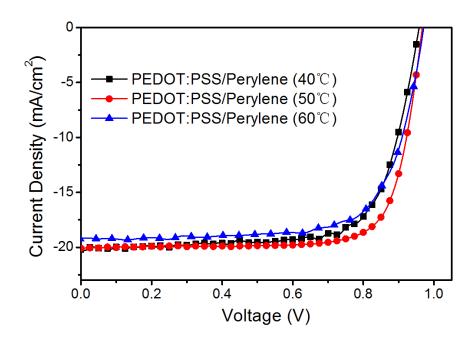
Figure S7. Steady state PCE operated at the maximum power point of the PHJ PSCs.

**Table S1**. A brief summary of the morphology and the crystallization controls of the perovskitefilms by different underlayers.

| Underlayer            | Cell Configuration                                                                       | J <sub>sc</sub><br>(mA/cm²) | V <sub>oc</sub><br>(V) | FF   | PCE<br>(%) | Ref.                               |
|-----------------------|------------------------------------------------------------------------------------------|-----------------------------|------------------------|------|------------|------------------------------------|
|                       | NiO <sub>x</sub> /MAPbI <sub>3</sub> /PCBM                                               | 16.27                       | 0.88                   | 0.63 | 9.1        | 2014 Angew. Chem. 126, 12779       |
|                       | NiO <sub>x</sub> /MAPbI <sub>3</sub> /ZnO                                                | 21.0                        | 1.01                   | 0.76 | 16.1       | 2016 Nat. Nanotechnol. 11, 75      |
|                       | NiO+Cu/MAPb(I <sub>0.8</sub> Br <sub>0.2</sub> ) <sub>3</sub> /PCBM/C <sub>60</sub> -bis | 18.50                       | 1.11                   | 0.72 | 15.0       | 2015, Adv. Mater. 27, 695          |
| D                     | rGO/MAPbI <sub>3</sub> /PCBM/C <sub>60</sub> /BCP                                        | 14.81                       | 0.95                   | 0.71 | 10.8       | 2015 Nano Energy 12, 96            |
| P-type contact        | NiMgLiO/MAPbI <sub>3</sub> /PCBM/Ti(Nb)O <sub>x</sub>                                    | 20.62                       | 1.07                   | 0.75 | 16.2       | 2015, Science 350, 944             |
|                       | Poly-TPD/MAPbI <sub>3</sub> /PCBM/C <sub>60</sub> /BCP                                   | 22.0                        | 1.10                   | 0.69 | 15.3       | 2015 Adv. Energy Mater. 5, 1401855 |
|                       | PTAA/MAPbI <sub>3</sub> /PCBM/C <sub>60</sub> /BCP                                       | 22.0                        | 1.07                   | 0.77 | 18.12      | 2015 Nat. Commun. 6, 7747          |
|                       | PTAA:F4TCNQ/MAPbI3/PCBM/C60/BCP                                                          | 21.6                        | 1.09                   | 0.74 | 17.5       | 2015 Nano Energy 15, 275           |
| Additive in PEDOT:PSS | PEDOT:PSS (DMSO additive)/MAPbI <sub>3</sub> /PTCDI/Cr <sub>2</sub> O <sub>3</sub> /Cr   | 17.5                        | 0.93                   | 0.80 | 12.5       | 2015, Nat. Mater. 14, 1032         |
| Interfacial layer     | PEDOT:PSS/Poly-TPD/MAPbI <sub>3</sub> /PCBM                                              | 16.12                       | 1.05                   | 0.67 | 12.0       | 2014 Nat. Photonics. 8, 128        |
|                       | PEDOT:PSS/Perylene/MAPbI <sub>3-x</sub> Cl <sub>x</sub> /PCBM/Bphen                      | 22.61                       | 0.98                   | 0.77 | 17.0       | This work                          |



**Figure S1**. SEM images of (a) pristine PEDOT:PSS, (b) PEDOT:PSS/perylene (Ethyl alcohol), (c) PEDOT:PSS/perylene (chloroform), (d) PEDOT:PSS/perylene (Acetone), and (e) PEDOT:PSS/perylene (chlorobenzene) with fixed concentration of 1 mg/mL.




**Figure S2**. *J-V* curves of PHJ PSCs based on perylene layers with different solvent and fixed concentration of 1 mg/mL measured under simulated AM 1.5 sunlight of 100 mW/cm<sup>2</sup>.

 Table S2. Cell parameters of PHJ PSCs based on perylene layers with different solvent and fixed

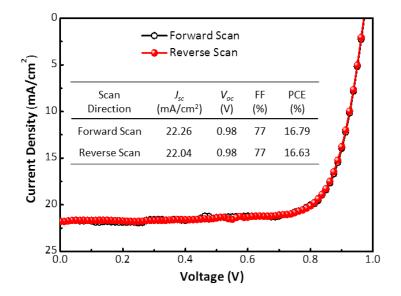
 concentration of 1 mg/mL.

| Underlayer                         | $J_{sc}$ (mA/cm <sup>2</sup> ) | V <sub>oc</sub> (V) | FF (%) | PCE (%) |
|------------------------------------|--------------------------------|---------------------|--------|---------|
| PEDOT:PSS                          | 19.73                          | 0.91                | 72     | 12.93   |
| PEDOT:PSS/Perylene (Ethyl alcohol) | 20.02                          | 0.94                | 73     | 13.73   |
| PEDOT:PSS/Perylene (Chloroform)    | 20.09                          | 0.96                | 77     | 14.85   |
| PEDOT:PSS/Perylene (Acetone)       | 20.36                          | 0.95                | 74     | 14.31   |
| PEDOT:PSS/Perylene (Chlorobenzene) | 19.44                          | 0.96                | 72     | 13.43   |



**Figure S3**. *J-V* curves of PHJ PSCs based on perylene (4 mg/mL) layers with different annealing temperatures measured under simulated AM 1.5 sunlight of 100 mW/cm<sup>2</sup>.

| Table S3.   | Cell         | parameters | of PH | J PSCs | based | on | perylene | layers | with | different | annealing |
|-------------|--------------|------------|-------|--------|-------|----|----------|--------|------|-----------|-----------|
| temperature | <del>.</del> |            |       |        |       |    |          |        |      |           |           |


| Underlayer                 | $J_{sc}$ (mA/cm <sup>2</sup> ) | V <sub>oc</sub> (V) | FF (%) | PCE (%) |
|----------------------------|--------------------------------|---------------------|--------|---------|
| PEDOT:PSS/Perylene (40 °C) | 0.96                           | 20.20               | 72     | 13.93   |
| PEDOT:PSS/Perylene (50 °C) | 0.96                           | 20.09               | 77     | 14.85   |
| PEDOT:PSS/Perylene (60 °C) | 0.97                           | 19.16               | 73     | 13.48   |

|                                                                                           | Total | Cover | Coverage |
|-------------------------------------------------------------------------------------------|-------|-------|----------|
| Samples                                                                                   | pixel | pixel | (%)      |
| ITO/CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3-x</sub> Cl <sub>x</sub>                    | 67902 | 47123 | 69.4     |
| ITO/perylene/CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3-x</sub> Cl <sub>x</sub>           | 68852 | 56114 | 81.5     |
| ITO/PEDOT:PSS/CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3-x</sub> Cl <sub>x</sub>          | 68542 | 62853 | 91.7     |
| ITO/PEDOT:PSS/perylene/CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3-x</sub> Cl <sub>x</sub> | 66895 | 63015 | 94.2     |

Table S4. The film coverage of  $CH_3NH_3PbI_{3-x}Cl_x$  perovskites with different underlayers.

The total pin-holes' area (or non-covered area) in the active surface area of all samples were calculated by using the method reported in the ref: T. Matsushima *et al.*, *J. Mater. Chem. A* **2015**, *3*, 17780.

This method separates the RGB tricolor gray value from the picture, so the area covered by perovskite was determined by measuring the proportion of every perovskite pixel. The coverage can be calculated by image pixels' regional distribution. Here we used photoshop CS5 software to calculate the image pixels.



**Figure S4**. Forward and reverse scans of *J-V* curves of PHJ PSCs based on perylene deposited from 4 mg/mL solution. The inset is the table of key cell parameters.

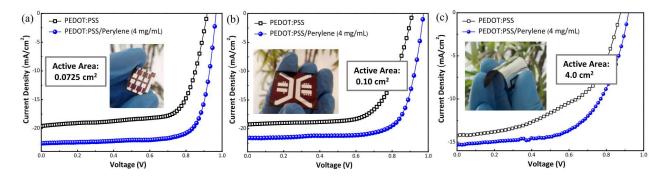
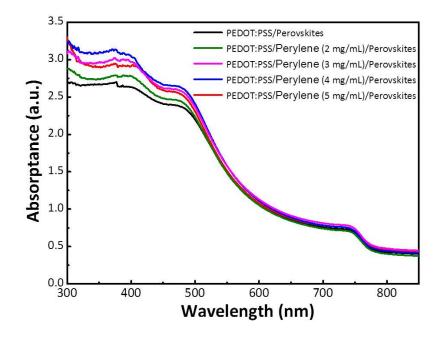
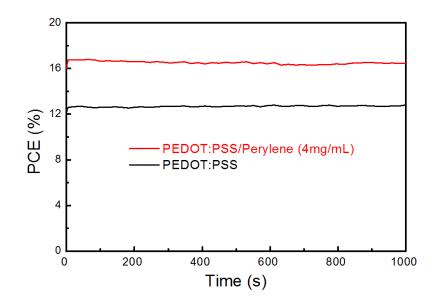




Figure S5. *J-V* curves of PEDOT:PSS and PEDOT:PSS/Perylene based PHJ PSCs with active area of (a)  $0.0725 \text{ cm}^2$ , (b)  $0.10 \text{ cm}^2$ , and (c)  $4.0 \text{ cm}^2$ .

| Device                                       | $J_{SC}$ (mA/cm <sup>2</sup> ) | $V_{OC}(\mathbf{V})$ | FF | PCE (%) |
|----------------------------------------------|--------------------------------|----------------------|----|---------|
| PEDOT:PSS (0.0725 cm <sup>2</sup> )          | 19.61                          | 0.91                 | 71 | 12.67   |
| PEDOT:PSS/Perylene (0.0725 cm <sup>2</sup> ) | 22.61                          | 0.98                 | 77 | 17.06   |
| PEDOT:PSS $(0.10 \text{ cm}^2)$              | 19.29                          | 0.91                 | 67 | 11.67   |
| PEDOT:PSS/Perylene (0.10 cm <sup>2</sup> )   | 21.80                          | 0.97                 | 74 | 15.75   |
| PEDOT:PSS $(4.0 \text{ cm}^2)$               | 14.22                          | 0.87                 | 52 | 6.43    |
| PEDOT:PSS/Perylene (4.0 cm <sup>2</sup> )    | 15.33                          | 0.91                 | 60 | 8.47    |

 Table S5. Cell parameters of PEDOT:PSS and PEDOT:PSS/Perylene based PHJ PSCs with


 different active area.



**Figure S6**. Absorption spectra of  $CH_3NH_3PbI_{3-x}Cl_x$  perovskite films deposited on PEDOT:PSS and PEDOT:PSS/perylene with different concentration.

|                            | PEDOT:PSS            | PEDOT:PSS/perylene   |
|----------------------------|----------------------|----------------------|
|                            | Based Device         | Based Device         |
| $R_{s}\left( \Omega ight)$ | 62.3                 | 31.2                 |
| $R_{CT}(\Omega)$           | 1356                 | 957                  |
| $C\left(\mathrm{F}\right)$ | 2.3×10 <sup>-6</sup> | 2.3×10 <sup>-6</sup> |

**Table S6**. Electrical impedance spectroscopy (EIS) parameters of PEDOT:PSS andPEDOT:PSS/perylene (4 mg/mL) based PHJ PSCs.



**Figure S7**. Steady state power conversion efficiency (PCE) operated at the maximum power point of PHJ PSCs using PEDOT:PSS and PEDOT:PSS/perylene as the underlayers.