Supporting Information for: Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy

M. Khorasaninejad* ${ }^{1}$, W. T. Chen* ${ }^{1}$, J. Oh ${ }^{1,2}$ and F. Capasso ${ }^{1}$
${ }^{1}$ Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{2}$ University of Waterloo, Waterloo, ON N2L 3G1, Canada
*These authors contributed equally to this work.
Corresponding author: capasso@seas.harvard.edu

S1. Schematic of a unit cell of the meta-lens

Figure S1. Nanofins parameters. (a) Schematic of a unit cell of the meta-lens consisting of a silicon nanofin on a glass substrate. (b) Top-view of the unit cell showing the width (W) and length (L) of the nanofin. Unit cell is a square with side-length $S=500 \mathrm{~nm}$. (c) Schematic diagram showing the height of the silicon nanofin. For all meta-lens designs, height (H) of the nanofins is 1500 nm . (d) Required phase is achieved via rotated nanofins.

S2. Measurements set-up

Figure S2. Sketch of the experimental setup. The laser beam from a fiber-coupled tunable laser is collimated by means of a fiber collimator (Thorlabs RC12APC-P01) with a beam size of $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. Objectives with $20 \times$ and $50 \times$ from Mitutoyo were selectively used in the experiments. For spectral resolution and beam profile characterizations, we used a tunable laser (HP-Agilent, 8168-F) with linewidth of $\sim 1 \mathrm{pm}$. Circularly polarized incident light was generated by pairing a linear polarizer and a quarterwaveplate. For the efficiency measurements, the tunable laser was replaced by a supercontinuum laser with a linewidth of $\sim 15 \mathrm{~nm}$.

S3. Simulated efficiency for different diffraction angles

Figure S3. Simulated efficiency for different diffraction angles. For these simulations, nanofins are arranged in such a way that they act as a blazed grating with diffraction angles noted in the legend. Efficiency remains high (more than 70\%) even for a large angle of 50 degrees.

S4. Dispersive characteristics: experiment versus simulation

Figure S4. Dispersive characteristics. Displacement of the focal line along the x^{\prime}-axis as a function of wavelength. Color map (experiment) and dashed line (simulation) are overlaid for the entire wavelength range.

S5. Focal length as a function of wavelength

Figure S5. Focal length of the meta-lens at different wavelengths. Focal length as a function of wavelength for the meta-lens with $f=1.5 \mathrm{~mm}$ and $\alpha=45^{\circ}$. Each experimental point is an average over 10 measurements.

S6. Curve fitting example

Figure S6. Beam profile along x^{\prime}-axis at focal line. Intensity profile of the focal line at wavelength $\lambda=$ 1550 nm . Symmetric focal line is achieved despite focusing at a very large angle of 80°. The fit is an Airy disk function.

S7. Ray-tracing for meta-lens designed at $\alpha=80^{\circ}$

Chromatic aberration broadens the focal spot, which restricts the bandwidth of operation. The bandwidth of operation can be increased by either stitching several meta-lenses together or adding extra optical components to correct the aberrations ${ }^{1}$.

Figure S7. Ray-tracing simulation for the meta-lens with $f=6.1 \mathrm{~mm}$ and $\alpha=\mathbf{8 0}{ }^{\circ}$. For wavelengths away from the design wavelength ($\lambda_{d}=1550 \mathrm{~nm}$) chromatic aberrations manifest themselves in broadening the focal spot.

S8. Definition of numerical aperture

Figure S8. Definition of numerical aperture of an off-axis focusing meta-lens. Numerical aperture is given by $N A=\sin \left(\frac{\beta}{2}\right)$. The angle β can be easily deduced using trigonometry once the lens dimensions, focal length, and focusing angle are given.

Reference

1. McClure, J., Anastigmatic imaging spectrograph. US Patent 8,773,659: 2014.
