Supporting Information for

"Co^{III}(cyclam) Oligoynyls: Monomeric Oligoynyl Complexes and Dimeric Complexes with an Oligoyn-diyl Bridge"

Timothy D. Cook, Sean N. Natoli, Phillip E. Fanwick and Tong Ren*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

*tren@purdue.edu

Figure S1. UV-vis plot of [1a-d]Cl in MeOH.

Figure S2. UV-vis plot of [2a-d]Cl₂ in MeOH.

Figure S3. Differential pulse voltammagram showing the 1^{st} reduction (Co^{III}/Co^{II}) of [**2a**](**PF**₆)₂ in MeCN with 0.1 M NBu₄BF₄ under Taube-Richardson conditions (pulse amplitude = 10 mV).

Figure S4. Differential pulse voltammagram showing the 1st reduction (Co^{III}/Co^{II}) of [**2b**](**PF**₆)₂ in MeCN with 0.1 M NBu₄BF₄ under Taube-Richardson conditions (pulse amplitude = 10 mV).

Figure S5. Differential pulse voltammagram showing the 1st reduction (Co^{III}/Co^{II}) of [**2c**](**PF**₆)₂ in MeCN with 0.1 M NBu₄BF₄ under Taube-Richardson conditions (pulse amplitude = 10 mV).

Figure S6. Differential pulse voltammagram showing the 1^{st} reduction (Co^{III}/Co^{II}) of [2d](PF₆)₂ in MeCN with 0.1 M NBu₄BF₄ under Taube-Richardson conditions (pulse amplitude = 10 mV).

Figure S7. Cyclic Voltammagram showing the 1^{st} and 2^{nd} reductions of **[2a]Cl₂** in MeCN with 0.1 M NBu₄PF₆ at 0.010 V/s.

Computational Details

Figure S8. Fully optimized structure of **[2a]**²⁺ using DFT method at the LanL2DZ level.

Table S1. Relevant bond lenghts (Å) and angles (deg) computed for $[2a]^{2+}$.

Co1-N1	2.0174
Co1-N2	2.0084
Co1-N3	2.0084
Co1-N4	2.0174

Co1-Cl1	2.3689
Co1-C1	1.9200
C1-C2	1.2457
C2-C3	1.3848
C3-C4	1.2457
Cl1-Co1-C1	179.025

Figure S9. Fully optimized structure of $[2b]^{2+}$ using DFT method at the LanL2DZ level.

Table S2. Relevant bond lenghts (Å) and angles (deg) computed for $[2b]^{2+}$.

Co11-N11	2.0082
Co11-N12	2.0184
Co11-N13	2.0184
Co11-N14	2.0082

Co11-Cl11	2.3677
Co11-C11	1.9111
C11-C12	1.2461
C12-C13	1.3707
C13-C13'	1.2386
Cl11-Co11-C11	178.802

Figure S10. Fully optimized structure of $[2c]^{2+}$ using DFT method at the LanL2DZ level.

Table S3. Relevant bond lenghts (Å) and angles (deg) computed for $[2c]^{2+}$.

Co1-N11	2.0082
Co1-N12	2.0082
Co1-N13	2.0188
Co1-N14	2.0188

Col-Cll	2 3680
Col-Cl	1.9069
C1-C2	1.2466
C2-C3	1.3669
C3-C4	1.2400
	1.25(0)
C4-C5	1.3569
05.00	1.2400
05-06	1.2400
<u>C6 C7</u>	1 3660
0-07	1.3009
C7-C8	1 2466
	1.2.00
Cl1-Co1-C1	178.701

Figure S11. Fully optimized structure of $[2d]^{2+}$ using DFT method at the LanL2DZ level.

Table S4. Relevant bond lenghts (Å) and angles (deg)) computed for $[2d]^{2+}$.
-----------------------------------	---------------------	------------------------------

Co11-N11	2.0082
Co11-N12	2.0082

Co11-N13	2.0188
Co11-N14	2.0188
Co11-Cl1	2.3694
Co11-C1	1.9038
C11-C12	1.2468
C12-C13	1.3644
C13-C14	1.2416
C14-C15	1.3509
C15-C16	1.2434
C16-C16'	1.3487
Cl11-Co11-C11	178.635

Table S5. Crystal data for [1a-d]Cl.

	[1a]Cl · MeOH	[1b]Cl · MeOH	[1c]Cl · MeOH	[1d]Cl · 2 MeOH
molecular formula	C23H53Cl2CoN4OSi	C ₁₉ H ₃₀ ClCoN ₄ O	C ₁₅ H ₂₉ Cl ₂ CoN ₄ O	C ₁₈ H ₃₃ Cl ₂ CoN ₄ O ₂
fw, g mol ⁻¹	575.61	424.85	411.25	467.31
space group	C2/c	$P2_1/n$	C2/c	$P2_1/n$
<i>a</i> , Å	38.735	12.196	24.824	10.746
b, Å	8.678	12.107	7.639	17.410
<i>c</i> , Å	18.452	14.984	19.786	12.714
α , °	90.00	90.00	90.00	90.00
β , °	90.87	107.90	96.77	100.50
γ, °	90.00	90.00	90.00	90.00
$V, Å^3$	6201.5	2105.40	3725.87	2338.90
Ζ	8	4	8	4
$\rho_{\rm calcd}$, g cm ⁻³	1.233	1.340	1.466	1.327
<i>T</i> , K	150	200	150	150
final R indicies	R1 = 0.0411	R1 = 0.0547	R1 = 0.0373	R1 = 0.0362
$(I > 2\sigma(I))$	wR2 = 0.0977	wR2 = 0.153	wR2 = 0.0860	wR2 = 0.0827
GOF on F^2	1.057	1.055	1.066	1.030

	$[2a]Cl_2$	$[2b]Cl_2 \cdot 4$ MeOH	$[2c]Cl_2 \cdot 5$ MeOH	$[2d]Cl_2 \cdot EtOAc \cdot 2$
				MeOH
molecular formula	C ₂₆ H ₅₆ Cl ₄ Co ₂ N ₈ O ₂	C30H64Cl4Co2N8O4	C33H68Cl4Co2N8O5	C38H64Cl4Co2N8O4
fw, g mol ⁻¹	772.44	860.567	916.61	956.63
space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
<i>a</i> , Å	8.020	10.789	9.844	7.939
b, Å	9.862	14.391	15.481	14.889
<i>c</i> , Å	11.87	15.047	15.963	19.981
α , °	105.88	63.56	96.647	100.89
β , °	106.44	73.33	91.394	90.70
γ, °	93.77	75.37	108.290	92.01
$V, Å^3$	855.47	1982.64	2289.7	2317.6
Ζ	1	2	2	2
$\rho_{\rm calcd}$, g cm ⁻³	1.499	1.442	1.330	1.371
<i>T</i> , K	150	150	200	150
final R indicies	R1 = 0.0442	R1 = 0.0531	R1 = 0.1084	R1 = 0.0587
$(I > 2\sigma(I))$	wR2 = 0.0891	wR2 = 0.1562	wR2 = 0.2906	wR2 = 0.1618
GOF on F^2	1.078	0.958	1.041	1.040

Table S6. Crystal data for [2a-d]Cl₂.