Supporting Information

Four-Electron Oxidation of Phenols to *p*-Benzoquinone Imines by a (Salen)ruthenium(VI) Nitrido Complex

Jianhui Xie,[†] Wai-Lun Man,[†] Chun-Yuen Wong,[†] Xiaoyong Chang,[‡] Chi-Ming Che[‡] and Tai-Chu Lau^{*,†}

[†]Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China, [‡]Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

E-mail: <u>bhtclau@cityu.edu.hk</u>

Table of Contents

Table S1	Crystal data and structure refinement details for 2b and 3	<i>S</i> 7
Table S2	$E_{1/2}$ values of 2a , 2b and $[Ru^{III}(L)(py)_2]^+$ in CH ₃ CN	<i>S</i> 7
Table S3	Second-order rate constants and KIEs of the reaction of 1 and phenol in the presence of py in CH_3OH at 25 °C	<i>S</i> 8
Table S4	Second-order rate constants for the first phase of the reaction of 1 with 2,6- disubstituted phenols in the presence of 0.1 M py in CH_3OH	<i>S</i> 8
Figure S1	UV–vis spectral changes for the reaction of 1 with C ₆ H ₅ OH in CH ₃ OH	<i>S</i> 9
Figure S2	ESI mass spectrum of the green solution for the reaction of 1 with excess phenol in CH ₃ OH	
Figure S3	ESI mass spectrum for the reaction of 1 with C_6H_5OH in 0.1 M py in CH_3OH .	<i>S11</i>
Figure S4	Molecular structure of 2a	<i>S12</i>
Figure S5	400 MHz ¹ H NMR and (<i>H</i> , <i>H</i>) COSY spectra of 2a in DMSO- d_6	S13
Figure S6	400 MHz ¹ H NMR spectrum of 2b in DMSO- d_6	S14
Figure S7	ESI mass spectrum of 2a in CH ₃ OH	S15
Figure S8	IR spectra of 2a and 3	S16
Figure S9	UV/vis spectra of 2a and 2b in CH ₃ OH.	<i>S17</i>
Figure S10	Plots of k_{obs} vs [phenol] for the first phase of the reaction of 1 with phenol in the presence of 0.1 M py in methanol at 25.0 0 C	S18
Figure S11	Plots of k_{obs} vs [py] for the second phase of the reaction of 1 (5.00 × 10 ⁻⁵ M) with phenol (0.06 M) in 0.1 M py in methanol at 25.0 0 C	S19
Figure S12	Product analysis by ESI–MS for the reaction of 1 with 2,6-disubstituted phenols in the presence of 0.1 M py in CH_3OH	S20
Figure S13	Spectral changes at 1000 s intervals for the reaction between 1 and <i>p</i> -MeO- C_6H_4OH in the presence of 0.1 M py in CH ₃ OH	S21
Figure S14	Product analysis for the reaction of 1 with <i>p</i> -MeO-C ₆ H ₄ OH in the presence of py in CH ₃ OH	<i>S21</i>
Figure S15	Spectral changes of the reaction of 1 with py in CH ₃ OH at 25.0 0 C	S22

Materials. [Ru^{VI}(N)(L)(MeOH)](PF₆) (1) was prepared by a literature method.¹ Phenol and 2,6di-*tert*-butylphenol (Sigma-Aldrich) were recrystallized from petroleum ether and ethanol, respectively. Pyridine (Sigma-Aldrich) was dried with KOH and freshly distilled before use under argon atmosphere. Methanol was dried with magnesium turnings and iodine and distilled under argon atmosphere.² Other substituted phenols and d_6 -phenol (98 atom% D, Sigma-Aldrich) and d_4 -methanol (99.8 atom % D, Cambridge Isotope) were used as received.

Instrumentation. Infrared spectra were obtained from KBr plates using a Nicolet 360 FT-IR spectrophotometer. ¹H NMR spectra were recorded on a Bruker (400 MHz) FT NMR spectrometer. The chemical shifts (δ ppm) were reported with reference to tetramethylsilane (TMS). Elemental analyses were done on an Elementar Vario EL analyzer. Electrospray ionization mass spectra (ESI–MS) were obtained on a PE SCIEX API 2000 mass spectrometer. Cyclic voltammetry (CV) was performed with a CH Instruments Electrochemical Workstation CHI660C. A glassy carbon working electrode, a Ag/AgNO₃ (0.1 M in CH₃CN) reference electrode, and a Pt wire counter electrode with ferrocene (Cp₂Fe) as the internal standard. The $E_{1/2}$ values were reported with reference to Cp₂Fe^{+/0}. Magnetic measurements were performed at room temperature using a Sherwood magnetic balance (Mark II). The kinetics of the reactions were studied by using an Agilent 8453 diode-array spectrophotometer. The temperature of the solutions were maintained with a PolyScience digital temperature controller connected to a circulating water bath.

X-ray crystallography.

Measurements were collected on a Bruker Proteum X8 X-ray single crystal diffractometer with a multilayer mirror-monochromated Cu-K_a radiation ($\lambda = 1.54178$ Å). Details of the intensity data

collection and crystal data are given in Table S1. Absorption corrections were done by the multiscan method. The structures were resolved by the heavy-atom Patterson method or direct methods and refined by full-matrix least-squares using SHELX-97 and expanded using Fourier techniques.^{3,4} All non-hydrogen atoms were refined anisotropically. H atoms were generated by the program SHELXL-97. The positions of H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times or 1.5 times that of the associated C atoms and 1.2 times that of the associated N atoms, all these were participated in the calculation of final R-indices. All calculations were performed using the teXsan crystallographic software.⁵

Kinetics. The concentrations of phenol were at least in 10-fold excess to that of **1**. The reaction progress was monitored by observing absorbance changes at 616 and 665 nm for the first and second phases, respectively. Pseudo-first-order rate constants, k_{obs} , were obtained by nonlinear least-square fits of A_t vs t according to the equation $A_t = A_{\infty} + (A_0 - A_{\infty})\exp(-k_{obs}t)$, where A_0 and A_{∞} are the initial and final absorbance, respectively.

Synthesis.

[**Ru**^{II}(**HN**-*p*-**C**₆**H**₄**O**)(**L**)(**py**)]·**CH**₃**OH** (**2a**). A solution of **1** (20 mg, 0.033 mmol) in CH₃OH (20 mL) was slowly added into a solution of phenol (940 mg, 10 mmol) and py (1 ml, 12.5 mmol) in CH₃OH (200 mL) with continuously stirring in 10 min. The mixture was stirred at ambient condition for 5 h. The solvent was then evaporated under vacuum and the resulting green oil was loaded onto a silica-gel column (20×3 cm). The column was flushed with CH₂Cl₂ (300 mL) and followed by CH₂Cl₂-acetone (v/v, 5:1) to remove the first green band. Elution with CH₂Cl₂-CH₃OH (v/v, 10:1) and recrystallization from CH₂Cl₂ afforded **2a** as a green solid. Yield: 40 %. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et₂O into a

solution of **2a** in CH₃OH-py (v/v, 1:3) at 5 °C. IR (KBr, cm⁻¹): v(N–H) 3173; v(C=N) 1590. Anal. calcd. (found) for C₃₂H₃₄N₄O₄Ru: C, 60.08 (60.37); H, 5.36 (5.41); N, 8.76 (9.00). ¹H NMR (400 MHz, *d*₆-DMSO): δ 13.21 (s, 1H, NH), 8.81 (d, *J* = 11.0 Hz, 1H, CH of benzoquinone imine), 8.62 (s, 1H, N=CH), 8.42 (s, 1H, N=CH), 7.78 (t, *J* = 7.6 Hz, 1H), 7.49–7.30 (m, 4H), 7.25 (d, *J* = 5.3 Hz, 2H), 7.12 (dd, *J* = 16.5, 8.4 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.85 (*J* = 9.4 Hz, 1H, CH of benzoquinone imine), 6.50 (d, *J* = 10.0 Hz, 1H, CH of benzoquinone imine), 6.43 (dd, *J* = 11.7, 6.7 Hz, 2H), 6.10 (d, *J* = 9.5 Hz, 1H, CH of benzoquinone imine), 4.38 (t, *J* = 9.2 Hz, 1 H, N–CH), 3.27 (t, *J* = 10.4 Hz, 1 H, N–CH), 3.14 (d, *J* = 6.0 Hz, 1H), 2.91 (d, *J* = 9.6 Hz, 1H), 1.98–1.84 (m, 3H), 1.55–1.36 (m, 3H). UV–vis (CH₃OH): λ_{max} [nm] (ϵ [mol⁻¹ dm³ cm⁻¹]) 201 (43000), 226 (39800), 251sh (31100), 354 (12700), 383 (19400), 428 (13000), 665 (20000).

[**Ru^{II}(HN-***p***-Cl₂C₆H₂O)(L)(py**)]·**H**₂O (2**b**). This green solid was prepared by a procedure similar to that for **2a** except 2,6-dichlorophenol was used and the respective green band was eluted by CH₂Cl₂-acetone (v/v, 5:1). Yield: 70%. IR (KBr, cm⁻¹): v(N–H) 3167; v(C=N) 1590. Anal. calcd. (found) for C₃₁H₃₀Cl₂N₄O₄Ru: C, 53.61 (53.54); H, 4.35 (4.28); N, 8.07 (8.09). ¹H NMR (400 MHz, *d*₆-DMSO): δ 13.35 (s, 1H, NH), 9.45 (d, *J* = 2.0 Hz, 1H, CH of benzoquinone imine), 8.72 (s, 1H, N=CH), 8.50 (s, 1H, N=CH), 7.80 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 8.2 Hz, 2H), 7.35 (t, *J* = 6.8 Hz, 2H), 7.20 (dd, *J* = 16.6, 8.6 Hz, 2H), 7.13 (d, *J* = 2.2 Hz, 1H, CH of benzoquinone imine), 7.03–6.97 (m, 4H), 6.51 (dd, *J* = 15.4, 7.7 Hz, 2H), 4.48 (t, *J* = 12.0 Hz, 1 H, N–CH), 3.55 (t, *J* = 12.0 Hz, 1 H, N–CH), 3.22 (d, *J* = 11.4 Hz, 1H), 3.01 (d, *J* = 10.7 Hz, 1H), 2.06–1.90 (m, 3H), 1.67–1.43 (m, 3H). UV–vis (CH₃OH): λ_{max} [nm] (ε [mol⁻¹ dm³ cm⁻¹]) 203 (51300), 232sh (37700), 252sh (28200), 334sh (12800), 380 (17600), 444 (10900), 672 (22300).

[**Ru^{III}(HN-***p***-C₆H₄O)(L)(py)](PF₆) (3).** A solid [Cp₂Fe](PF6) (5 mg, 0.015 mmol) was added into a green solution of **2a** (9 mg, 0.015 mmol) in CH₃OH (200 mL) under argon atmosphere and the mixture was stirred for 1 min. The resulting dark purple solution was evaporated under vacuum, re-dissolved in a minimum amount of CH₂Cl₂ and loaded onto a silica-gel column (20 × 2 cm). The column was flushed with CH₂Cl₂ (200 mL) and then eluted with CH₂Cl₂-acetone (v/v, 10:1) to afford **3** as a purple solid. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et₂O into a solution of **3** in CH₂Cl₂ at 5 °C. Yield: 70%. IR (KBr, cm⁻¹): v(N– H) 3268; v(C=O) 1640; v(C=N) 1597; v(P–F) 843. Anal. calcd. (found) for C₃₁H₃₀F₆N₄O₃PRu: C, 49.47 (49.65); H, 4.02 (4.10); N, 7.44 (7.53). Magnetic moment: $\mu_{eff} = 1.93 \ \mu_{B}$. UV–vis (CH₃OH): λ_{max} [nm] (ε [mol⁻¹ dm³ cm⁻¹]) 236 (43000), 365 (16400).

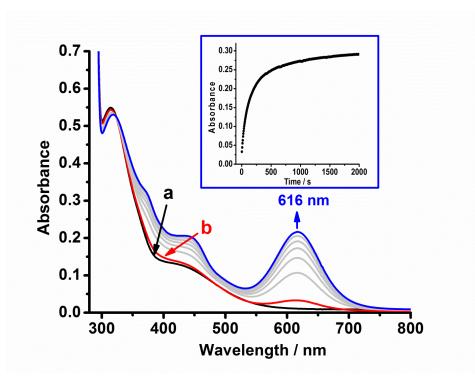
References

- Man, W. L.; Tang, T. M.; Wong, T. W.; Lau, T. C.; Peng, S. M.; Wong, W. T. J. Am. Chem. Soc. 2004, 126, 478–479.
- 2. Amarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*, 5th ed.; Butterworth Heinemann: New York, 2003.
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori G.; Camalli, M. J. *Appl. Crystallogr.* 1994, 27, 435.
- DIRDIF 99, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel and J. M. M. Smits, The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen: The Netherlands, 1999.
- Crystal Structure, Single Crystal Structure Analysis Software, version 3.5.1 Rigaku/MSC Corporation: The Woodlands, Texas, USA, Rigaku, Akishima, Tokyo, Japan, 2003, D. J. Watkin, C. K. Prout, J. R. Carruthers and P.W. Betteridge, Crystals, Chemical Crystallography. Lab: Oxford, UK, 1996, issue 10.

	2b•0.75py•0.5CH ₃ OH	3•2CH ₂ Cl ₂ •0.5CH ₃ OH
Formula	C _{35.25} H _{33.75} Cl ₂ N _{4.75} O _{3.50} Ru	C _{33.5} H ₃₆ Cl ₄ F ₆ N ₄ O _{3.5} PRu
$M_{ m r}$	751.89	938.50
Crystal system	Orthorhombic	Triclinic
Space group	Pbca	P-1
a/Å	24.8814(6)	12.1017(5)
<i>b</i> /Å	20.0338(5)	12.7507(4)
$c/\text{\AA}$	29.5126(7)	14.0794(5)
α (°)	90	71.154(1)
$\beta(^{\circ})$	90	82.268(1)
$\gamma(^{\circ})$	90	71.918(1)
V/\dot{A}^3	14711.1(6)	1953.10(11)
Ζ	16	2
$ ho_{\rm c}/{ m Mg}~{ m m}^{-3}$	1.358	1.596
F(000)	6152	948
Collected refl.	114477	31915
Unique refl.	13237	6908
Final <i>R</i> indices, $I > 2\sigma(I)$	$R_1(\text{obs}) = 0.0477,$	$R_1(\text{obs}) = 0.0740,$
	wR(all) = 0.1361	wR(all) = 0.2063
GOF	1.093	1.085
No. of parameters	838	481

Table S1. Crystal data and structure refinement details for 2b and 3.

Table S2. $E_{1/2}$ values of **2a**, **2b** and $[Ru^{III}(L)(py)_2]^+$ in CH₃CN.


	$E_{1/2}$ (Volts vs Cp ₂ Fe ^{+/0})			
Complex	Ru ^{IV/III}	Ru ^{III/II}	Benzoquinone imine ^{0/–}	
2a	+0.72	-0.25	-1.38	
2b	+0.76	-0.06	-1.18	
$[Ru^{III}(L)(py)_2]^+$	+0.69	-0.58		

	1st phase	2nd phase	KIE	KIE
	in 0.1 M py /	in 0.06 M PhOH /	(1st phase)	(2nd phase)
	$M^{-1} s^{-1}$	$\mathbf{M}^{-1} \mathbf{s}^{-1}$		
C ₆ H ₅ OH in CH ₃ OH	$(1.84 \pm 0.07) \times 10^{-1}$	$(9.32 \pm 0.41) imes 10^{-3}$		
C ₆ D₅OH in CH₃OH	$(1.78 \pm 0.02) \times 10^{-1}$	$(7.08 \pm 0.17) \times 10^{-3}$	1.03 ± 0.05	1.32 ± 0.07
C ₆ H ₅ OD in CD ₃ OD	$(2.00 \pm 0.05) \times 10^{-1}$	$(9.65\pm0.35)\times10^{-3}$	0.92 ± 0.06	0.97 ± 0.08

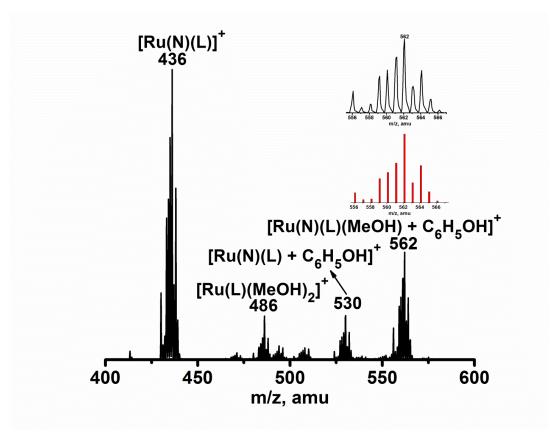

Table S3. Second-order rate constants and KIEs of the reaction of **1** and phenol in the presence of py in methanol at 25 $^{\circ}$ C.

Table S4. Second-order rate constants for the first phase of the reaction of **1** with 2,6-disubstituted phenols (2,6- $X_2C_6H_3OH$) in the presence of 0.1 M py in CH₃OH at 25.0 ^oC.

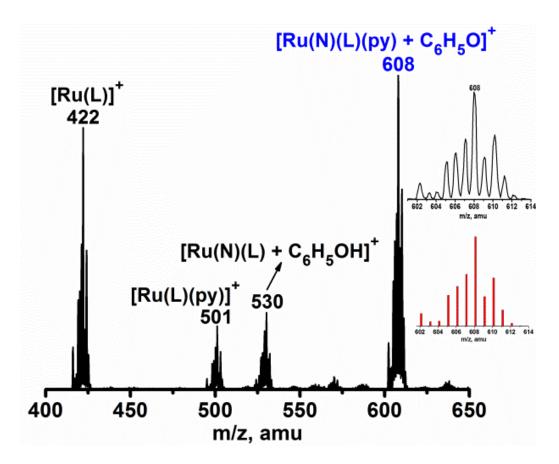

X	$k_2 /{ m M}^{-1}{ m s}^{-1}$
MeO	8.08 ± 0.81
^t Bu	2.38 ± 0.31
Me	1.06 ± 0.08
Н	$(1.84 imes 0.07) imes 10^{-1}$
Cl	$(3.89\pm 0.27)\times 10^{-2}$
Br	$(9.34\pm0.70)\times10^{-2}$

Figure S1. UV–vis spectral changes at 45 s intervals for the reaction of **1** (5.00×10^{-5} M) with C₆H₅OH (0.11 M) in CH₃OH at 25.0 ^oC. a) before mixing; b) *ca.* 3 s after mixing. Inset shows the time trace at 616 nm.

Figure S2. ESI mass spectrum of the green solution for the reaction of **1** with excess phenol in CH₃OH. Insets show the expanded (top) and simulated (bottom) patterns of the peak at m/z 562.

Figure S3. ESI mass spectrum for the reaction of **1** with C_6H_5OH in 0.1 M py in CH₃OH. Insets show the expanded (top) and simulated (bottom) isotopic patterns.

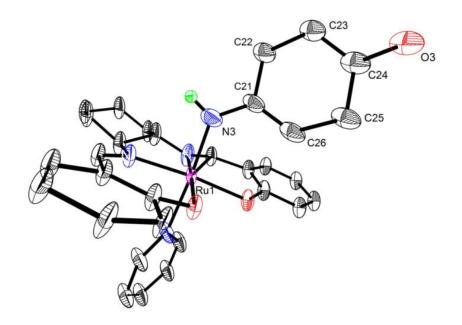


Figure S4. Molecular structure of 2a.

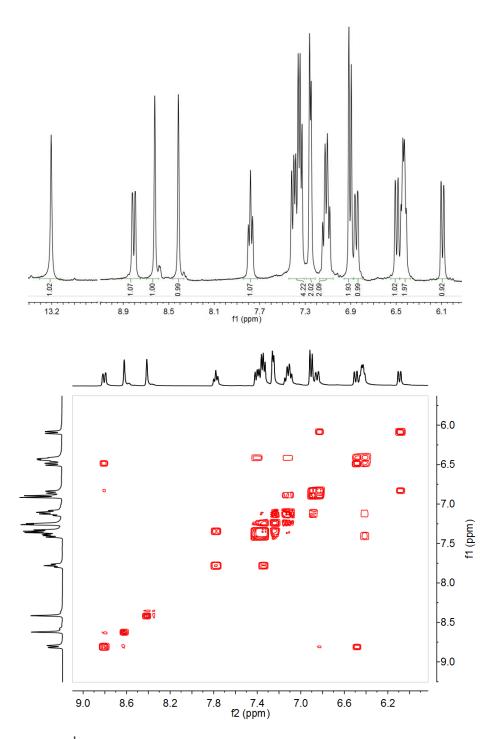
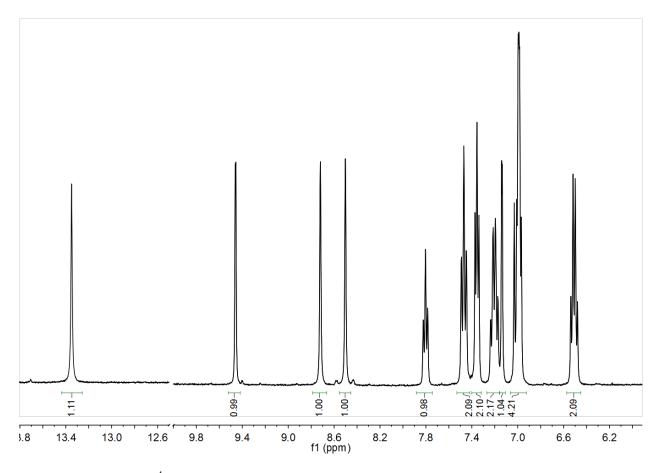
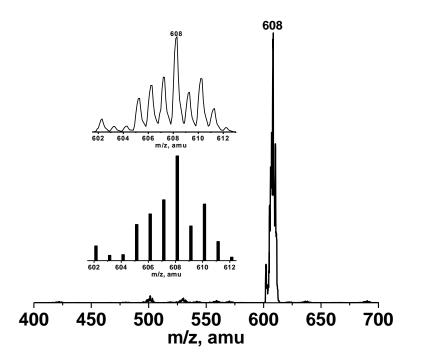




Figure S5. 400 MHz ¹H NMR (top) and (H,H) COSY (bottom) spectra of 2a in DMSO- d_6 .

Figure S6. 400 MHz ¹H NMR spectrum of **2b** in DMSO- d_6 .

Figure S7. ESI mass spectrum of **2a** in CH₃OH. Insets show the expanded (top) and simulated (bottom) patterns of the peak at m/z 608.

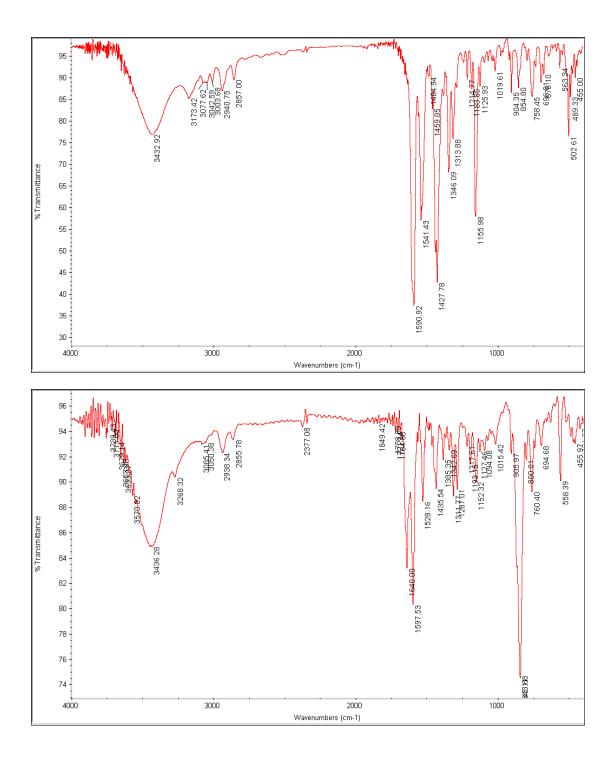


Figure S8. IR spectra (KBr) of 2a (top) and 3 (bottom).

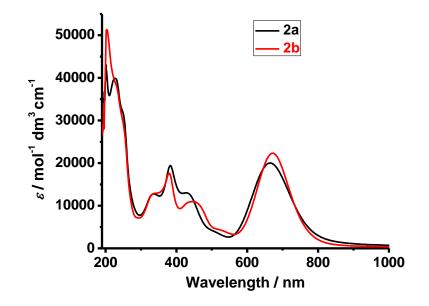
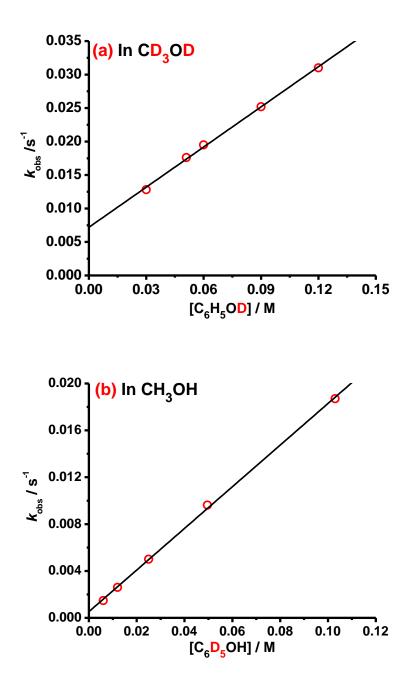
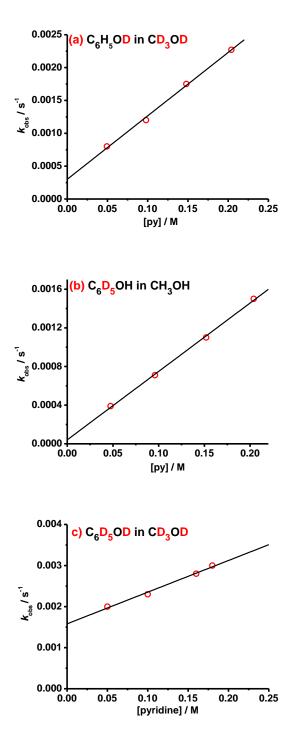
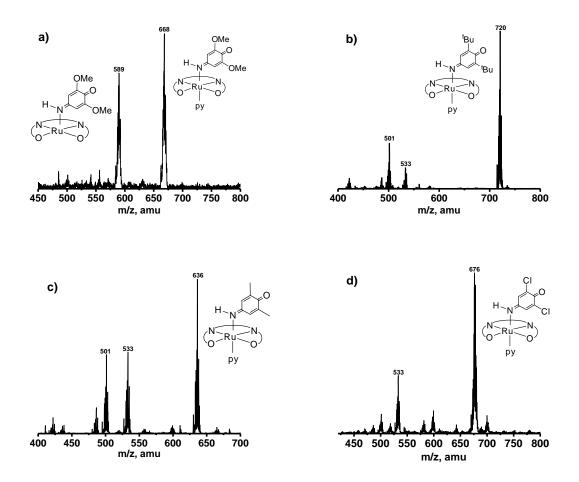
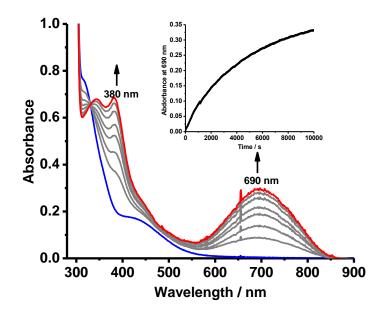
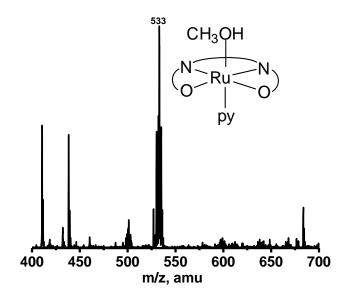



Figure S9. UV-vis spectra of 2a (black line) and 2b (red line) in CH₃OH.

Figure S10. Plot of k_{obs} vs [phenol] for the first phase of the reaction of **1** with phenol in the presence of 0.1 M py in methanol at 25.0 ^oC. (a) For C₆H₅OD in CD₃OD: [Slope = (2.00 ± 0.05) × 10⁻¹; *y*-intercept = (7.19 ± 0.36) × 10⁻³; r² = 0.998]. (b) For C₆D₅OH in CH₃OH: [Slope = (1.78 ± 0.02) × 10⁻¹; *y*-intercept = (5.27 ± 1.30) × 10⁻⁴; r² = 0.999]


Figure S11. Plot of k_{obs} vs [py] for the second phase of the reaction of 1 (5.00 × 10⁻⁵ M) with phenol (0.06 M) in 0.1 M py in methanol at 25.0 °C. (a) For C₆H₅OD in CD₃OD: [Slope = (9.65 ± 0.35) × 10⁻³; y-intercept = (3.00 ± 0.47) × 10⁻⁴; r² = 0.996]. (b) For C₆D₅OH in CH₃OH: [Slope = (7.08 ± 0.17) × 10⁻³; y-intercept = (4.14 ± 2.35) × 10⁻⁵; r² = 0.998]. (c) For C₆D₅OD in CD₃OD: [Slope = (7.71 ± 0.49)×10⁻³; y-intercept = (1.58 ± 0.06) × 10⁻⁴; r² = 0.99].

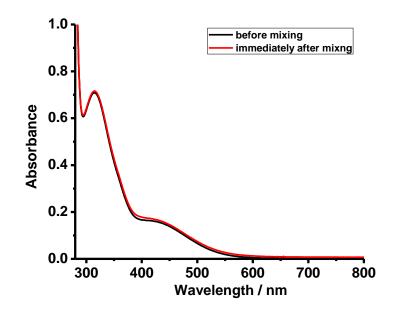

Figure S12. Product analysis by ESI–MS for the reaction of **1** with a) $2,6-(OMe)_2-C_6H_3OH$; b) $2,6-(^{t}Bu)_2-C_6H_3OH$; c) $2,6-Me_2-C_6H_3OH$ and d) $2,6-Cl_2-C_6H_3OH$ in the presence of 0.1 M py in CH₃OH.

Figure S13. Spectrophotometric changes at 1000 s intervals for the reaction between 1 (5.00×10^{-5} M) and *p*-MeO-C₆H₄OH (0.30 M) in the presence of 0.1 M py in CH₃OH at 25.0 ^oC. Inset shows the absorbance-time trace at 690 nm.

Figure S14. Product analysis for the reaction of **1** with *p*-MeO-C₆H₄OH in the presence of py in CH₃OH.

Figure S15. Spectral changes of the reaction of **1** (5×10^{-5} M) with py (0.1 M) in CH₃OH at 25.0 $^{\circ}$ C.