Supporting information

Computational Details

 $6-311G^{**}$ Basis set in Gaussian 09 program package was employed to perform the geometry optimization and energies computation. By using HF (Hartree-Fock) method, the geometry optimization of enol and keto forms of the phototautomers in the ground state (S₀) was obtained. While single-excitation configuration interaction (CIS) method was employed to optimize the geometries in the first singlet excited state (S₁) of the target molecules. The energies of the optimized geometries of S₀ and S₁ states were computed by DFT and TD-DFT (time-dependence DFT) method with B3LYP function at HF and CIS levels respectively such as DFT//HF or TDDFT//CIS (represented the single-point calculation//optimization method). The organic solvent DMF were used as the medium in the theoretical computation.

Synthesis and characterization of C1~C18

General Synthesis Procedue of C1~C6

In a three-necked flask equipped with a magnetic stirrer, coumarin derivatives and 3-(2H-benzotriazol-2-yl)-4-hydroxybenzaldehyde were added into 10 mL ethanol with the molar ratio of 1.2:1. A few drops of piperidine were added into to the above solution. The mixture was heated to 110 °C for overnight, and then the solvent was removed under vacuum. The target molecules were purified by column chromatography using equivoluminal of cyclohexane and dichloromethane as the eluents, which were further recrystallized in dichloromethane.

General Synthesis Procedue of C7~C12

The synthesis of C7~C12 basically followed the same procedures as described those of C1~C6, where 3-(2H-benzotriazol-2-yl)-4-hydroxybenzaldehyde was replaced by 3-(2H-benzotriazol-2-yl)-4-acetoxybenzaldehyde.

General Synthesis Procedue of C13~C18

The synthesis of C13~C18 basically followed the same procedures as described those of C1~C6, where 3-(2H-benzotriazol-2-yl)-4-hydroxybenzaldehyde was replaced by*p*-hydroxybenzaldehyde.

C1, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-6-cyano-2H-chromen-2-one, yellow solid, (yield 45.2%): m.p. 298.1-299.2 °C. ¹H-NMR (400 MHz, DMSO-*d* $₆) <math>\delta$ (ppm): 7.256-7.273 (d, 1H, Ar-H, J=7.2 Hz), 7.479-7.510 (d, 1H, -CH=, J=12.4 Hz), 7.548-7.573 (m, 2H, Ar-H), 7.840-7.873 (m, 2H, Ar-H), 7.899-7.920 (m, 1H, Ar-H), 8.047-8.070 (m, 2H, Ar-H), 8.083-8.099 (d, J=6.4 Hz, 1H, -CH=), 8.135 (s, 3H, Ar-H), 8.218-8.222 (d, J=1.6 Hz, 1H, Ar-H), 8.630 (s, 1H, -CH=), 11.240 (s, 1H, -OH). IR(cm⁻¹): 3432.0, 3127.7, 3010.3, 2229.9, 1737.9, 1657.9, 1607.0, 1572.2, 1514.0, 1400.4, 1301.1, 1183.3, 975.3, 740.8. Elementary analysis, Anal. Calcd (Found) for C₂₅H₁₄N₄O₄, C, 69.12 (69.21), H, 3.25 (3.17), N, 12.90 (12.98).

C2, 3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-6-chloro-2H-chromen-2-one, saffron yellow powder, (yield 30.3%): m.p. 312.2-313.8 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 7.247-7.264 (d, 1H, -CH=, J=6.8 Hz), 7.515-7.567 (m, 4H, Ar-H), 7.781-7.799 (m, 1H, Ar-H), 7.820-7.852 (d, 1H, -CH=, J= 12.8 Hz), 7.888-7.909 (m, 1H, Ar-H), 8.050-8.069 (m, 3H, Ar-H), 8.207-8.210 (d, 1H, Ar-H, J=1.2 Hz), 8.571 (s, 1H, -CH=), 11.227 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 116.622, 118.261, 118.891, 119.134, 123.885, 125.346, 126.235, 127.003, 127.653, 127.956, 128.890, 130.112, 131.158, 132.036, 134.546, 143.897, 144.555,

145.987, 146.916, 154.015, 154.800, 158.340, 187.097. IR(cm⁻¹): 3423.2, 3128.2, 2920.6, 2850.5, 1738.7, 1666.1, 1607.7, 1578.2, 1514.2, 1400.1, 1326.7, 1292.5, 1181.7, 1134.5, 1092.6, 983.6, 739.5, Elementary analysis, Anal. Calcd (Found) for C₂₄H₁₄ClN₃O₄, C, 64.95 (65.06), H, 3.18 (3.11), N, 9.47 (9.52).

C3, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, pale yellow needle solid, (yield 25.7%): m.p. 256.3-258.0 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): 7.262 (s, 1H, -CH=), 7.373-7.400 (t, 2H, Ar-H), 7.430-7.446 (d, 2H, Ar-H, J=14.4 Hz), 7.528-7.547 (m, 2H, Ar-H), 7.675-7.721 (m, 3H, Ar-H), 7.960-7.981 (m, 3H, Ar-H), 7.988-7.994 (d, 1H, -CH=, J=2.4 Hz), 8.626(s, 1H, -CH=), 8.749 (s, 1H, Ar-H), 11.201 (s, 1H, -OH).¹³C-NMR (101-MHz, DMSO- d_6) δ (ppm): 116.620, 118.340, 118.701, 119.937, 124.031, 125.897, 126.142, 127.987, 127.046, 127.866, 127.941, 128.445, 130.732, 132.021, 134.456, 143.755, 144.203, 144.253, 146.872, 153.988, 154.791, 158.196, 187.782. IR(cm⁻¹): 3431.6, 3131.4, 3108.7, 2920.6, 2850.5, 1729.1, 1661.2, 1607.8, 1579.5, 1515.0, 1432.2, 1400.1, 1301.5, 1260.4, 1179.7, 973.3, 751.6. Elementary analysis, Anal. Calcd (Found) for C₂₄H₁₅N₃O₄, C, 70.41 (70.49), H, 3.69 (3.61), N, 10.26 (10.32).

C4, 3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-6-methyl-2H-chromen-2-one, yellow powder, (yield 45.4%): m.p. 320.1-321.7 °C. ¹H-NMR (400 MHz, DMSO-*d₆*) δ (ppm): 7.215-7.232 (d, 1H , Ar-H, J=6.8 Hz), 7.449-7.481 (s, 1H, -CH=), 7.533-7.545 (m, 2H, Ar-H), 7.700-7.719 (d, 1H, Ar-H, J=7.6 Hz), 7.823-7.890 (m, 2H, Ar-H) 8.031-8.043 (m, 2H, Ar-H), 8.178 (s, 1H, -CH=), 8.498-8.517 (m, 1H, Ar-H), 8.733 (s, 1H, -CH=), 8.892 (s, 1H, Ar-H), 11.190 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d₆*) δ (ppm): 55.334, 115.312, 117.381, 119.800, 119.998, 126.025, 126.874, 127.821, 128.096, 128.974, 130.051, 130.945, 131.912,

133.874, 136.071, 142.98887, 143.921, 145.001, 147.128, 148.912, 157.144, 159.762, 163.208,
186.934. IR(cm⁻¹): 3432.8, 3145.9, 3041.1, 2920.6, 1728.8, 1660.6, 1606.5, 1584.7, 1557.9,
1513.5, 1399.3, 1302.3, 1185.5, 981.7, 834.8, 738.4. Elementary analysis, Anal. Calcd (Found) for
C₂₅H₁₇N₃O₄, C, 70.91 (71.02), H, 4.05 (3.95), N, 9.92 (9.98).

C5, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-6-oxymethyl-2H-chromen-2-one, deep yellow solid, (yield 40.1%): m.p. 325.6-326.5 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): (s, 3H, -OMe), 7.224-7.245 (d, 1H, -CH=, J=8.4 Hz), 7.304-7.344 (m, 1H, Ar-H), 7.412-7.435 (d, 1H, Ar-H, J=9.6 Hz), 7.469-7.476 (d, 1H, Ar-H, J=2.8 Hz), 7.518-7.584 (m, 3H, Ar-H), 7.767-7.807 (d, 1H, Ar-H, J=16.0 Hz), 7.857-7.879 (d, 1H, Ar-H, J=8.8 Hz), 8.020-8.044 (m, 2H, Ar-H), 8.189-8.191 (d, 1H, -CH=, J=0.8 Hz), 8.560 (s, 1H, -CH=), 11.140 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO- d_6) δ (ppm): 187.822, 158.963, 156.215, 154.092, 149.312, 146.731, 144.218, 143.731, 132.026, 127.865, 127.051, 126.405, 123.855, 122.299, 119.261, 118.919, 118.495, 117.758, 112.363, 56.250. IR(cm⁻¹): 3415.1, 3126.5, 3015.9, 2842.1, 1728.2, 1659.0, 1605.7, 1583.3, 1514.9, 1400.3, 1281.3, 1187.1, 1039.4, 956.0, 742.7. Elementary analysis, Anal. Calcd (Found) for C₂xH₁₇N₃O₅, C, 68.33 (68.45), H, 3.90 (3.83), N, 9.56 (9.67).

C6, 3-(3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl)acryloyl)-7-oxymethyl-2H-chromen-2-one, deep yellow solid, (yield 35.6%): m.p. 327.8-328.4 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 3.879 (s, 3H, -OMe), 7.000-7.018 (m, 1H, Ar-H), 7.074 (s, 1H, Ar-H), 7.215-7.230 (d, 1H, -CH=, J=6.0 Hz), 7.518-7.532 (m, 2H, Ar-H), 7.659-7.686 (d, 1H, Ar-H, J=6.8 Hz), 7.740-7.766 (d, 1H, Ar-H, J=10.4 Hz), 7.839-7.854 (m, 2H, -CH=), 8.021-8.037 (m, 2H, Ar-H), 8.163 (s, 1H, -CH=), 8.644 (s, 1H, Ar-H), 11.157 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 186.910, 165.091, 159.272, 157.345, 148.064, 144.221, 142.765, 132.026, 128.484, 127.861, 126.756,

123.768, 121.931, 118.893, 118.506, 113.903, 112.502, 100.810, 56.733. IR(cm⁻¹): 3426.9, 3129.2,
3027.1, 1728.3, 1656.2, 1604.5, 1504.8, 1400.2, 1247.4, 1190.2, 1165.0, 1070.2, 1023.0, 974.4,
740.8. Elementary analysis, Anal. Calcd (Found) for C₂₅H₁₇N₃O₅, C, 68.33 (68.41), H, 3.90 (3.82),
N, 9.56 (9.61).

C7, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-6-cyano-2H-chromen-2-one, deep yellow solid (yeild: 35.3%): m.p. 252.3-253.0 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): 2.349 (s, 3H, -COCH₃), 7.373-7.394 (d, 1H, -CH=, J=8.4 Hz), 7.446-7.467 (m, 2H, Ar-H), 7.607-7.627 (d, 1H, Ar-H, J=8.0 Hz), 7.689 (s, 1H, Ar-H), 7.792-7.823 (t, 2H, Ar-H, J=6.2 Hz), 7.937 (s, 3H, Ar-H), 8.460 (s, 1H, Ar-H), 8.563 (s, 1H, -CH=). ¹³C-NMR (101-MHz, DMSO- d_6) δ (ppm): 195.932, 188.147, 169.109, 157.926, 154.127, 145.184, 144.778, 144.653, 143.253, 133.989, 133.222, 131.633, 130.900, 128.673, 128.450, 128.021, 126.936, 126.461, 125.982, 122.697, 120.777, 118.687, 118.126, 115.319, 21.143. IR(cm⁻¹): 3127.9, 3015.9, 2231.3, 1740.6, 1662.8, 1616.5, 1508.4, 1400.6, 1221.2, 1178.8, 1146.4, 1067.0, 960.7, 741.6. Elementary analysis, Anal. Calcd (Found) for C₂₇H₁₆N₄O₅, C, 68.07 (68.12), H, 3.38 (3.31), N, 11.76 (11.83).

C8, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-6-chloro-2H-chromen-2-one, pale yellow (yield: 20.6%): m.p. 300.3-301.9 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.375 (s, 3H, -COCH₃), 7.381-7.395 (d, 1H, -CH=, J=1.6 Hz), 7.395-7.411 (d, 1H, Ar-H, J=6.4 Hz), 7.472-7.491 (m, 2H, Ar-H), 7.630-7.652 (m, 1H, Ar-H), 7.691-7.695 (d, 1H, Ar-H, J=1.6 Hz), 7.837-7.857 (m, 1H, Ar-H), 7.927-7.968 (d, 1H, -CH=, J=16.4 Hz), 7.974-8.028 (m, 3H, Ar-H), 8.479-8.482 (d, 1H, Ar-H, J=1.6 Hz), 8.544 (s, 1H, -CH=). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 187.995, 169.114, 158.418, 153.492, 145.870, 144.785, 144.607, 142.711, 134.053, 133.989, 130.910, 129.615, 129.023, 128.443, 127.052, 126.973, 126.445, 125.873, 120.208,

118.733, 118.694. 21.141. IR(cm⁻¹): 3127.4, 3015.9, 2853.5, 1768.7, 1724.2, 1660.2, 1610.4, 1551.9, 1506.6 1401.2, 1297.5, 1203.2, 1180.9, 1067.9, 988.1, 744.6. Elementary analysis, Anal. Calcd (Found) for C₂₆H₁₆ClN₃O₅, C, 64.27 (64.35), H, 3.32 (3.27), N, 8.65(8.73).

C9, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-2H-chromen-2-one, pale yellow powder (yield 30.2%): m.p. 287.1-282.2 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): 2.374(s, 3H, -COCH₃), 7.287-7.408(m, 2H, Ar-H), 7.430-7.447 (d, 1H, -CH=, J=6.8 Hz), 7.464-7.494 (m, 2H, Ar-H), 4.686-7.727 (m, 2H, Ar-H), 7.843-7.864 (m, 1H, Ar-H), 7.923-7.980 (m, 3H, Ar-H), 8.043-8.074 (d, 1H, -CH=, J=12.0 Hz), 8.478-8.482 (d, 1H, -CH=, J=1.6 Hz), 8.645 (s, 1H, -CH=). ¹³C-NMR (101-MHz, DMSO- d_6) δ (ppm): 187.954, 169.120, 158.822, 154.902, 147.387, 144.786, 144.553, 142.196, 134.690, 134.139, 133.234, 130.938, 130.882, 128.430, 127.054, 126.409, 125.793, 125.423, 118.820, 228.696, 116.683, 26.775, 21.177. IR(cm⁻¹): 3126.2, 2927.4, 1765.5, 1720.7, 1664.8, 1560.8, 1506.8, 1400.7, 1296.3, 1205.3, 1187.8, 1069.8, 987.1, 759.5, 746.2. Elementary analysis, Anal. Calcd (Found) for C₂₆H₁₇N₃O₅, C, 69.18 (69.23), H, 3.80 (3.72), N, 9.31(9.39).

C10, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-6-methyl-2H-chromen-2-one, yellow powder (yield 20.1%): m.p. 305.3-306.8 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm):
2.281 (s, 3H, -COCH₃), 2.399 (s, 3H, -ArCH3), 7.406-7.422 (d, 1H, Ar-H, J=6.4 Hz), 7.555-7.560 (d, 1H, -CH=, J=2.0 Hz), 7.568-7.605 (m, 3H, Ar-H), 7.735-7.787 (t, 2H, Ar-H, J=20.8 Hz), 7.884-7.916 (d, 1H, Ar-H, J=12.8 Hz), 8.056-8.066 (d, 2H, Ar-H, J=4.0 Hz), 8.072 (s, 1H, -CH=), 8.525 (s, 1H, -CH=), 8.623 (s, 1H, Ar-H). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 7.957, 169.114, 158.978, 153.104, 147.350, 144.783, 144.536, 142.054, 135.642, 134.723, 134.142, 133.227, 130.920, 130.329, 128.422, 127.081, 126.400, 125.845, 125.767, 118.694, 118.666,

118.547, 116.458, 21.135, 20.655. IR(cm⁻¹): 3126.5, 2923.1, 2852.3, 1763.9, 1730.6, 1661.9, 1617.1, 1579.4, 1508.6, 1400.4,1325.5, 1277.6, 1182.5, 1137.7, 2067.0, 985.6, 742.9. Elementary analysis, Anal. Calcd (Found) for C₂₇H₁₉N₃O₅, C, 69.67 (69.77), H, 4.11 (4.05), Cl, N, 9.03(9.11).

C11, 3-(3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-6-oxymethyl-2H-chromen-2-one, pale yellow powder (yield 25.3%): m.p. 285.9-287.4 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ (ppm): 2.337 (s, 3H, -COCH₃), 3.925 (s, 3H, -OMe), 6.683(s, 1H, Ar-H) 6.906-6.933 (d, 1H, -CH=, J=10.0 Hz), 7.349-7.370 (d, 1H, Ar-H, J=8.4 Hz), 7.433-7.457 (m, 2H, Ar-H), 7.568-7.590 (d, 1H, Ar-H, J=8.8 Hz), 7.813-7.870 (t, 1H, Ar-H, J=11.4 Hz), 7.910-7.947 (m, 3H, Ar-H), 8.076-8.115 (d, 1H, -CH=, J=15.6 Hz), 8.443 (s, 1H, -CH=), 8.610 (s, 1H, Ar-H). ¹³C-NMR (101-MHz, DMSO- d_6) δ (ppm): 187.052, 169.123, 165.270, 159.289, 157.476, 148.517, 144.788, 144.710, 144.455, 141.229, 138.348, 134.270, 132.617, 132.430, 130.952, 128.411, 128.299, 127.006, 126.387, 125.535, 118.705, 118.663, 113.995, 100.842, 100.780, 56.764, 21.133. IR(cm⁻¹): 3126.5, 3015.9, 2926.2, 2850.5, 1763.1, 1730.4, 1608.4, 1578.4, 1506.7, 1400.6, 1279.9, 1182.4, 1130.6, 1068.4, 1036.5, 993.2, 743.4. Elementary analysis, Anal. Calcd (Found) for C₂₇H₁₉N₃O₆, C, 67.36 (67.46), H, 3.98 (3.89), N, 8.73 (8.79)

C12, 3-(3-(2H-Benzotriazol-2-yl)-4-acetoxyphenyl)acryloyl)-7-oxymethyl -2H-chromen-2-one, pale yellow powder (yield 20.8%): m.p. 290.1-290.9 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.341 (s, 3H, -COCH₃), 3.878 (s, 3H, -OMe), 7.066-7.073 (d, 1H, Ar-H, J=2.8 Hz), 7.237-7.267 (d, 1H, -CH=, J=12.0 Hz), 7.327-7.377 (m, 2H, Ar-H), 7.435-7.459 (m, 2H, Ar-H), 7.807-7.833 (m, 1H, Ar-H), 7.881-7.946 (m, 3H, Ar-H), 8.016-8.056 (d, 1H, -CH=, J=16.0 Hz), 8.445-8.450 (d, 1H, Ar-H, J=2.0 Hz), 8.561 (s, 1H, -CH=). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 188.668, 187.049, 169.120, 165.269, 159.288, 157.477, 148.514, 144.789, 141.226, 132.429, 130.948, 128.409, 128.299, 127.006, 126.387, 125.535, 118.704, 118.661, 118.523, 113.994, 112.488, 100.843, 56.764, 21.133. IR(cm⁻¹): 3126.6, 3015.9, 2926.2, 2856.1, 1783.9, 1736.4, 1656.9, 1615.3, 1578.5, 1508.3, 1400.9, 1293.3, 1220.6, 1185.4, 1160.0, 1066.6, 1028.5, 982.1, 737.0. Elementary analysis, Anal. Calcd (Found) for $C_{27}H_{19}N_3O_6$, C, 67.36 (67.43), H, 3.98 (3.92), N, 8.73 (8.84).

C13, 6-Cyano-3-(3-(4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, deep yellow solid (yield 20.7%): m.p. 237.3-238.1 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 6.835-6.855 (d, 1H, Ar-H, J=8.0 Hz), 7.245-7.267 (d, 2H, Ar-H, J=8.8 Hz), 7.411-7.743 (d, 1H, -CH=, J=12.8 Hz), 7.621-7.654 (m, 2H, Ar-H), 7.664-7.695 (d, 1H, -CH=, J=12.4 Hz), 7.801-7.823 (m, 1H, Ar-H), 8.554 (s, 1H, -CH=), 10.219 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 185.434 162.575, 160.434, 158.964, 143.549, 131.109, 128.459, 127.544, 121.247, 115.465, 114.867, 102.477. Elementary analysis, Anal. Calcd (Found) for C₁₉H₁₁NO₄, C, 71.92 (72.03), H, 3.49 (3.41), N, 4.41 (4.50).

C14, 6-Chloro-3-(3-(4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, saffron yellow powder, (yield 36.5%): m.p. 232.1-232.5 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 6.841-6.859 (d, 1H, Ar-H, J=7.2 Hz), 7.397-7.429 (d, 1H, -CH=, J=12.8 Hz), 7.528-7.546 (d, 1H, Ar-H, J=7.2 Hz), 7.612-7.629 (d, 2H, Ar-H, J=6.8 Hz), 7.698-7.730 (d, 1H, -CH=, J=12.8 HZ), 7.767-7.784 (m, 1H, Ar-H), 8.050-8.055 (d, 1H, Ar-H, J=2.0 Hz), 8.553 (s, 1H, -CH=), 10.203 (s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 186.375, 158.575, 156.486, 144.576, 130.756, 129.001, 128.343, 127.876, 122.965, 118.436, 115.383, 110.874. Elementary analysis, Anal. Calcd (Found) for C₁₈H₁₁ClO₄, C, 66.17 (66.28), H, 3.39 (3.30).

C15, 3-(3-(4-Hydroxyphenyl)acryloyl)-2H-chromen-2-one, yellow powder (yield 18.6%): m.p.

233.9-235.1°C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 6.837-6.857 (s, 1H, Ar-H), 7.434-7.487 (m, 2H, Ar-H), 7.485-7.502 (d, 1H, -CH=, J=6.8 Hz), 7.613-7.630 (d, 2H, Ar-H, J=6.8 Hz), 7.688-7.719 (d, 1H, -CH=, J=12.4 Hz), 7.928-7.946 (m, 1H, Ar-H), 8.625 (s, 1H, -CH=), 10.133(s, 1H, -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 186.024, 159.746, 155.912, 143.193, 129.943, 128.873, 128.124, 127.013, 123.012, 118.049, 114.847. Elementary analysis, Anal. Calcd (Found) for C₁₈H₁₂O₄, C, 73.97 (74.08), H, 4.14 (4.05).

C16, 6-Methyl-3-(3-(4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, deep yellow powder (yield 40.1%): m.p. 238.3-240.0 °C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.390 (s, 3H. Ar-CH3), 6.836-6.853 (d, 1H, Ar-H, J=6.8 Hz), 7.381-7.398 (d, 1H, Ar-H, J=6.8 Hz), 7.442-7.474 (d, 1H, -CH=, J=12.8 Hz), 7.553-7.573 (m, 1H, Ar-H), 7.605-7.622 (d, 2H, Ar-H, J=6.8 Hz), 7.670-7.702 (d, 1H, -CH=, J=12.8 Hz), 7.710 (s, 1H, Ar-H) 8.543 (s, 1H, -CH=), 10.163 (s, 1H -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 186.603, 160.367, 143.193, 132.955, 130.764, 127.984, 127.013, 120.984, 118.283, 114.932, 110.83, 56.038. Elementary analysis, Anal. Calcd (Found) for C₁₉H₁₄O₄, C, 74.50 (74.59), H, 4.61 (4.52).

C17, 6-Oxymethyl-3-(3-(4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, yellow solid (yield 45.2%): m.p. 245.7-245.5 °C. ¹H-NMR (400 MHz, DMSO-*d6*) δ (ppm): 3.871 (s, 3H, -OMe), 6.812-6.825 (d, 1H, Ar-H, J=5.2 Hz), 7.412-7.445 (d, 1H, -CH=, J=12.8 Hz), 7.486-7.501 (m, 2H, Ar-H), 7.532-7.545 (d, 2H, Ar-H, J=5.2 Hz), 7.634-7.661 (d, 1H, -CH=, J=10.8 Hz), 7.712-7.730 (d, 2H, Ar-H, J=7.2 Hz), 8.550 (s, 1H, -CH=), 10.151 (s, 1H -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 185.484, 158.443, 144.586, 131.293, 130.484, 129.002, 127.983, 120.938, 118.484, 115.938, 113.938, 57.001. Elementary analysis, Anal. Calcd (Found) for C₁₉H₁₄O₅, C, 70.80 (70.89), H, 4.38 (4.29).

C18, 7-Methyl-3-(3-(4-hydroxyphenyl)acryloyl)-2H-chromen-2-one, yellow solid (yield 45.6%): m.p. 244.1-244.9°C. ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 3.839 (s, 3H, -OMe), 6.766-6.778 (d, 1H, Ar-H, J=4.8 Hz), 7.239-7.265 (m, 2H, Ar-H), 7.498-7.530(d, 1H, -CH=, J=12.8 Hz), 7.552-7.570 (d, 1H, Ar-H, J=7.8 Hz), 7.601-7.633 (d, 1H, -CH=, J=12.8 Hz), 7.721-7.740 (m, 2H, Ar-H), 8.496 (s, 1H, -CH=), 10.146 (s, 1H -OH). ¹³C-NMR (101-MHz, DMSO-*d*₆) δ (ppm): 18.038, 159.98, 143.938, 130.937, 129.026, 128.837, 128.132, 125.238, 120.736, 118.836, 118.238, 115.938, 57.541. Elementary analysis, Anal. Calcd (Found) for C₁₉H₁₄O₅, C, 70.80 (70.87), H, 4.38 (4.30).

Figure S1 ¹H-NMR spectra of equal molar mixture of C7/phenol and C13/benzotriazole in

DMSO-*D*₆ (500 MHz)

Figure S2 Linear UV/visible absorption of equal molar mixture of C7/phenol and

C13/benzotriazole in 1, 4-diaxane (a) and DMF (b), the concentrations are 1×10^{-5} mol/L

Figure S3 Linear UV/visible absorption of C1 in methanol, the concentration of C1 is 1×10^{-5}

mol/L

Figure S4 Linear fluorescence emission spectra of equal molar of C7/phenol and

C13/benzotriazole in DMF, the concentrations are 1×10^{-5} mol/L

Figure S5 Linear fluorescence emission spectra of C1 in methanol, the concentration of C1 is

 1×10^{-5} mol/L, excited wavelength: 350 nm

Figure S6. Linear fluorescence emission spectra of C1~C6 in DMF, the concentration is 1×10^{-5}

mol/L, excited wavelength: 350 nm

Figure S7 UV/visible absorption spectra of C1 and after 2 hours of UV irradiation in DMF

Figure S8 Optimized molecular geometries of enol, TS and keto forms in excited state of C1

LUMO

Figure S9. HOMO and LUMO orbitals in the ground and excited states of C1

Tables S1~S10

Table S1 The UV spectral parameters of C1, C7 and C13 in various solvents, $\lambda_{a,max}$: the absorption maximum (nm),

Solvents		C1		C7		C13
Solvents	$\lambda_{a,max}$	ε_{max}	$\lambda_{a,max}$	ε_{max}	$\lambda_{a,max}$	ε_{max}
1,4-Dioxane	352	1.464	357	1.050	365	2.753
THF	346	1.662	355	0.905	368	2.061
EtOAc	355	1.723	365	1.234	359	1.878
DCM	359	1.215	358	1.059	360	2.757
Acetone	355	1.758	355	1.694	359	3.384
MeCN	349	1.375	363	1.701	350	2.148
DMSO	346	1.512	353	1.512	359	2.374
DMF	365	1.652	360	1.445	366	2.414
MeOH	362	1.550	368	1.254	362	1.972
EtOH	359	1.311	366	1.127	370	1.951
PrOH	359	1.618	367	1.253	372	2.514
BuOH	362	1.267	365	1.081	373	2.280

 ε_{max} : the maximal molar extinction coefficient (10⁴ cm⁻¹•mol⁻¹•L)

Table S2 The fluorescence spectral parameters of C1, C7and C13 in various solvents, λ_{fmax} : the emission

0.1	C	C1		27	С	C13	
Solvents	$\lambda_{f,max}$	Φ	$\lambda_{f,max}$	Φ	$\lambda_{f,max}$	Φ	
1,4-Dioxane	441	0.0528	433	0.0624	439	0.0536	
THF	429	0.0131	383	0.0651	442	0.0692	
EtOAc	424	0.0524	404	0.0589	441	0.084	
DCM	428	0.0194	398	0.0290	442	0.0612	
Acetone	432	0.0442	430	0.0814	442	0.041	
MeCN	436	0.0096	431	0.0235	442	0.048	
DMSO	405, 515	0.0361	423	0.1249	434	0.062	
DMF	450, 519	0.0503	431	0.1038	445	0.029	
MeOH	436, 523	0.0195	432	0.0171	445	0.020	
EtOH	427, 522	0.0675	425	0.0812	441	0.049	
PrOH	429, 522	0.0437	417	0.0531	442	0.047	
BuOH	426, 520	0.0372	407	0.0497	442	0.033	

maximum (nm), Φ : the fluorescence quantum yield

Table S3 Two-photon cross-sections (GM, 1GM=10⁻⁵⁰ • cm • s⁻¹ • photon⁻¹) of the dyads under 730 nm femtosecond

laser irradiation in DMF solution

Target Dyads	C1	C2	C3	C4	C5	C6
Two-photon Cross-sections	139.6	127.1	110.7	105.0	89.6	97.2
Reference Dyads	C7	C8	С9	C10	C11	C12
Two-photon Cross-sections	12.8	10.0	11.9	9.0	9.1	5.8

Table S4 Photobleaching rates (ν/h^{-1}) of reference molecules studied in this work in various solvents with saturated

ν	C7	C8	С9	C10	C11	C12
DMF	9.76	10.83	11.87	13.79	13.61	11.98
1,4-dioxane	10.22	11.21	12.32	13.12	13.19	12.65
Methanol	10.28	9.98	10.65	12.76	12.19	12.98
ν	C13	C14	C15	C16	C17	C18
DMF	13.44	13.87	13.79	14.54	14.31	14.32
1,4-dioxane	13.43	13.76	13.89	14.01	14.11	14.00
Methanol	13.76	13.98	12.97	13.87	14.09	14.76

air under UV light irradiation

Table S5 Photobleaching rates (ν/h^{-1}) of target dyads in various solvents with saturated oxygen under UV light

irradiation						
v	C1	C2	C3	C4	C5	C6
DMF	6.54	6.94	7.01	8.96	13.87	9.17
1, 4-dioxane	18.12	18.96	19.06	20.65	24.86	21.43
Methanol	13.58	14.04	14.76	15.87	19.76	16.08

Table S6 Photobleaching rates (v/h⁻¹) of reference molecules studied in this work in various solvents with saturated

ν	C7	C8	С9	C10	C11	C12
DMF	26.68	27.97	30.18	34.25	33.87	30.41
1,4-dioxane	25.70	28.78	31.13	32.83	32.98	31.83
Methanol	26.81	26.17	27.59	32.07	30.86	32.53
ν	C13	C14	C15	C16	C17	C18
DMF	30.36	31.13	30.99	32.35	31.93	31.95
1,4-dioxane	30.34	30.93	31.17	31.39	31.57	31.37
Methanol	30.93	31.33	29.50	31.13	31.53	32.75

oxygen under UV light irradiation

Table S7 Photobleaching rates (v/h^{-1}) of reference molecules studied in this work in various solvents under 730

nmnear-IR laser

ν	C7	C8	С9	C10	C11	C12

DMF	19.34	19.97	19.56	19.16	20.18	20.29
1,4-dioxane	19.45	20.01	19.81	18.92	20.17	19.59
Methanol	18.09	19.26	19.89	20.15	20.65	20.43
ν	C13	C14	C15	C16	C17	C18
DMF	21.89	22.93	22.95	23.76	23.91	22.35
1,4-dioxane	22.09	23.65	22.97	23.83	24.01	22.79
Methanol	23.01	23.31	23.52	23.97	23.91	23.12

Table S8 Important bond lengths (Å) and dihedral angel (°) associated with ESIPT of C1 and C4 (enol, enol*,

keto* and transition state) in the ground and excited states

Table S9 The energy barriers (kJ/mol) of phototautomerization of the target dyads C1~C6 in the excited states

Target Dyads	C1	C2	C3	C4	C5	C6
Energy Barrier	8.34	9.23	9.56	14.98	23.23	16.85

Table S10 Mulliken charge of N and O atom in enol forms of target dyads in the ground state and the excited state

Commente	Mulliken c	harge in S ₀	Mulliken charge in S ₁		
Compounds	Ν	0	Ν	0	
C1	-0.462	-0.667	-0.476	-0.651	
C2	-0.462	-0.668	-0.474	-0.654	
C3	-0.463	-0.669	-0.473	-0.656	
C4	-0.463	-0.666	-0.472	-0.655	
C5	-0.463	-0.669	-0.473	-0.658	
C6	-0.463	-0.669	-0.471	-0.660	