Supplementary Material

The Effect of Different Divalent Cations on the Kinetics and Fidelity of RB69 DNA Polymerase.

Ashwani Kumar Vashishtha and William H. Konigsberg

From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven,

Connecticut 06520-8024

* To whom correspondence should be addressed:

Prof. William H. Konigsberg

Department of Biophysics and Biochemistry

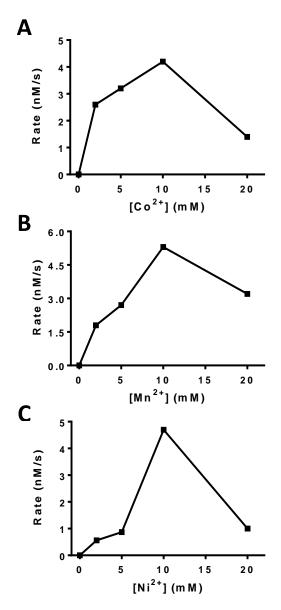
Yale University

333 Cedar Street

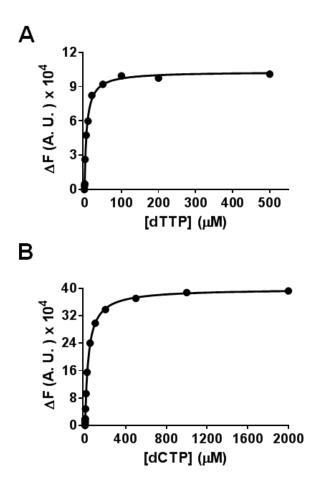
SHM CE-14

New Haven, CT 06520-8024

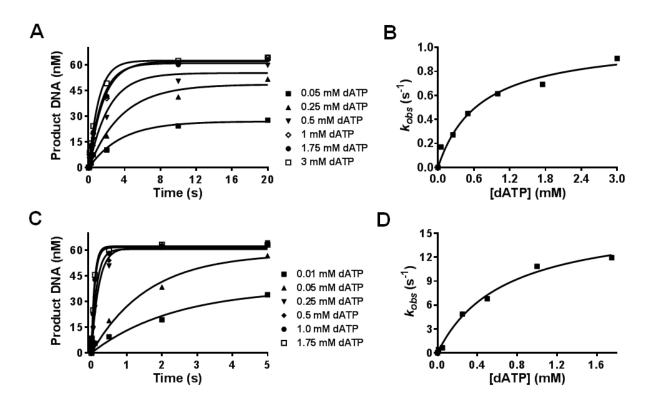
Telephone: (203) 785-4599

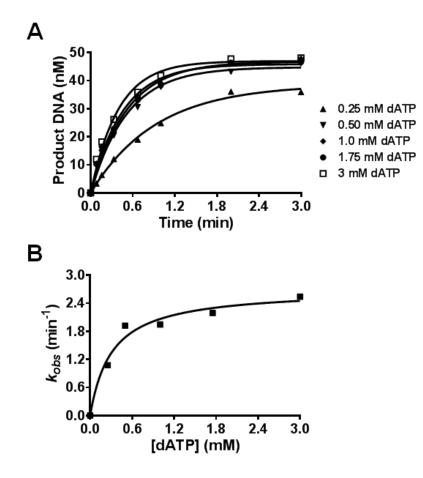

Fax: (203) 785-7979

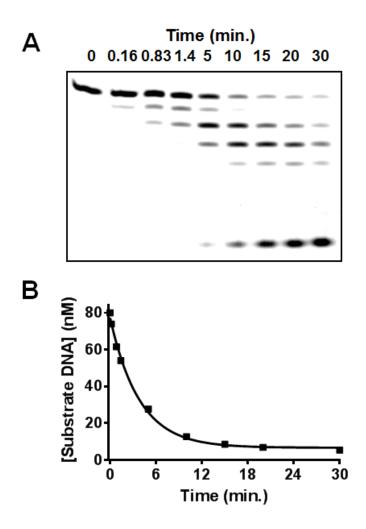
E-mail: <u>William.konigsberg@yale.edu</u>


This file includes:

Supplemental Figures S1-S6.


Supporting Information


Figure S1. Determination of optimum divalent cation concentrations. RB69pol (40 nM) was preincubated with DNA_{13A} (100 nM) in reaction buffer containing increasing concentrations of the divalent cation (Co^{2+} , Mn^{2+} , or Ni²⁺) [0, 2, 5, 10, and 20 mM]. Reactions were initiated by adding 500 μ M dTTP and subsequently quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 10-100 s. All data were obtained at 23 °C. (**A**) Plot of the rate of DNA product formation as a function of [Co^{2+}]. (**B**) Plot of the rate of DNA product formation as a function of [Mn^{2+}]. (**C**) Plot of the rate of DNA product formation as a function of [Ni²⁺].


Figure S2. Equilibrium fluorescence titration plots of the RB69pol-ddP/T complex fluorescence quenching with increasing [dTTP] (or [dCTP]). The concentration of DNA_{Pdd} was 200 nM and that of RB69pol was 1 μ M. (A) Plot showing the change in fluorescence quenching as a function of [dTTP] in the presence of Co²⁺. The concentrations of dTTP used were 0, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, and 500 μ M. Fluorescence intensities at 365 nm were fitted to a hyperbolic equation. Titration of dTTP vs. 2AP in the presence of 10 mM Co²⁺ gives a $K_{d,g} = 5.8 \pm 0.7 \mu$ M. (B) Plot showing the change in fluorescence quenching as a function of [dCTP] in the presence of Mn²⁺. The concentrations of dCTP used were 0, 0.02, 0.04, 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, and 2000 μ M. Fluorescence intensities at 365 nm were fitted to obtain a $K_{d,g} = 33 \pm 6 \mu$ M. (ΔF) represents the change in fluorescence in the direction of quenching and ΔF increases with an increase in [dTTP] (or [dCTP]).

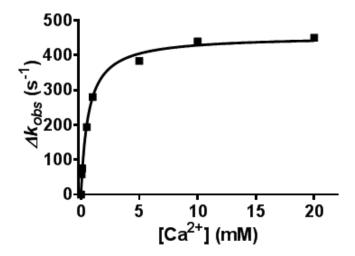

Figure S3. Concentration dependence of the rate of dATP incorporation opposite dT past DNA containing dA/dC mismatch at the primer terminus. RB69pol (1 μ M) was pre-incubated with DNA_{ACMM} (80 nM) in reaction buffer and was mixed with increasing concentrations of dATP [0.05, 0.25, 0.5, 1, 1.75, and 3 mM] containing 10 mM Mg²⁺. Reactions were quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 0.1-20 s. All data were obtained at 23 °C. (**A**) Plots of the amount of extended DNA product obtained as a function of time at various [dATP] in 10 mM Mg²⁺. Points are experimental, while curves are based on a fit of the data to Eq.1. (**B**) The single exponential rates obtained were plotted as a function of [dATP] and fitted to Eq. 2 to obtain a k_{pol} of 1.1 ± 0.1 s⁻¹ and a $K_{d,app}$ of 0.8 ± 0.2 mM. RB69pol (1 μ M) was pre-incubated with DNA_{ACMM} (80 nM) in reaction buffer and was mixed with increasing concentrations of dATP [0.01, 0.05, 0.25, 0.5, 1.0, and 1.75 mM] containing 10 mM Mn²⁺. Reactions were quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 0.04-5 s. (**C**) Plots of the amount of extended DNA product obtained as a function of time at various [dATP] in 10 mM Mn²⁺. Reactions were quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 0.04-5 s. (**C**) Plots of the amount of extended DNA product obtained as a function of time at various [dATP] in 10 mM Mn²⁺. Points are experimental, while curves are based on a fit of the data to Eq. 1 (**D**) The single exponential rates obtained were plotted as a function of [dATP] and fitted to Eq. 2 to obtain a k to Eq. 1 (**D**) The single exponential rates obtained were plotted as a function of [dATP] and fitted to Eq. 2 to obtain a k_{pol} of 1.7 ± 1 s⁻¹ and a $K_{d,app}$ of 0.6 ± 0.1 mM.

Figure S4. Concentration dependence of the rate of dATP incorporation opposite dT past DNA containing dA/dG mismatch at the primer terminus. RB69pol (1 μ M) was pre-incubated with DNA_{AGMM} (80 nM) in reaction buffer and was mixed with increasing concentrations of dATP [0.25, 0.5, 1, 1.75, and 3 mM] containing 10 mM Co²⁺. Reactions were quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 0.08-3 min. All data were obtained at 23 °C. (A) Plots of the amount of extended DNA product obtained as a function of time at various [dATP] in 10 mM Co²⁺. Points are experimental, while curves are based on a fit of the data to Eq. 1. (B) The single exponential rates obtained were plotted as a function of [dATP] and fitted to Eq. 2 to obtain a k_{pol} of 0.05 ± 0.005 s⁻¹ and a $K_{d,app}$ of 0.31 ± 0.08 mM.

Figure S5. Exonuclease activity of RB69pol using Ni²⁺. The reaction mixture contained 80 nM 5'fluorescein labeled 13/18 mer substrate (DNA_{13A}), 1 μ M RB69pol and 10 mM Ni²⁺. (A) Digestion patterns visualized using FUJI scanner with fluorescein as the probe. (B) Plot of [Substrate DNA] remaining versus time fit to Eq. 4 to extract a k_{exo} of 0.24 ± 0.02 s⁻¹.

Figure S6. Competition between Ca²⁺ and Mg²⁺ for metal ions binding site. RB69pol (1 μ M) was preincubated with DNA_{13A} (80 nM) in reaction buffer and was mixed with dTTP (1 mM) containing Mg²⁺ (10 mM), and varying [Ca²⁺] (0.05-20 mM). Reactions were quenched with 0.5 M EDTA (pH 8.0) at various times ranging from 4-100 ms. All data were obtained at 23 °C. Plot of Δk_{obs} as a function of [Ca²⁺]. Points are experimental, while the curve is based on a fit of the data to Eq. 7 to obtain a $K_{d,Ca}$ of 630 ± 72 μ M. (Δk_{obs}) represents change in the rate of reaction as a function of increasing [Ca²⁺] and Δk_{obs} increases with an increase in [Ca²⁺].