Supporting Information

Heterogeneous Photochemical Conversion of NO₂ to HONO on the Humic Acid Surface under Simulated Sunlight

Chong Han,* Wangjin Yang, Qianqian Wu, He Yang, and Xiangxin Xue

School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, People's

Republic of China

*To Whom Correspondence Should Be Addressed:

E-mail address: hanch@smm.neu.edu.cn

Phone: +86-024-83684086

Fax: +86-024-83687719

Summary

Five pages, including 4 figures and text about the trapping of HONO by a quartz tube filled with Na₂CO₃.

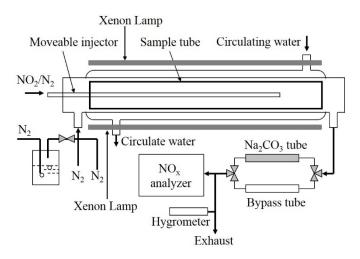


Figure S1. Diagram of the flow tube reactor

We have investigated the trapping of HONO by a quartz tube (10 cm length and 0.6 cm inner diameter) filled with 1.0 g of crystalline Na₂CO₃. Gaseous HONO was produced by the heterogeneous reaction of HCl with NaNO₂ (HCl+NaNO₂ \rightarrow HONO+NaCl),^[1] where HCl diluted in N₂ passed through a column containing NaNO₂ crystals. Caused by its quantitative interference, HONO was measured from the NO₂ signal of the NO_x analyzer (Thermo 42i). As shown in Figure S2, the HONO concentration was 30 ppb by a bypass tube while only negligible HONO was observed using a quartz tube (10 cm length and 0.6 cm inner diameter) filled with 1.0 g of crystalline Na₂CO₃. The trapping efficiency of HONO by this Na₂CO₃ tube was higher than 99% at the steady state.

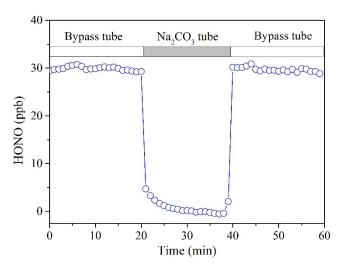


Figure S2. Trapping of HONO by a quartz tube (10 cm length and 0.6 cm inner

diameter) filled with crystalline Na₂CO₃ of 1.0 g

Reference

(1) Febo, A.; Perrino, C.; Gherardi, M; Sparapani, B., Evaluation of a High-Purity and High-Stability Continuous Generation System for Nitrous Acid. *Environ. Sci. Technol.* **1995**, *29*, 2390-2395.

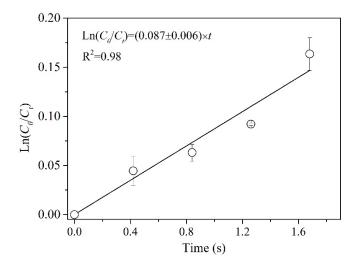


Figure S3. Determination of the linearity of $\ln(C_0/C_t)$ against *t* by varying the length of the HA coating in contact with NO₂, which is equivalent to vary the reaction time. Reaction conditions: irradiation intensity of 194.5 W/m², HA mass of 15.9 µg/cm²,

NO₂ concentration of 30 ppb, temperature of 298 K, and RH of 22%.

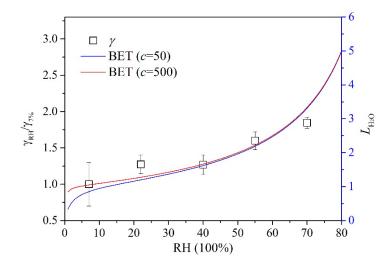


Figure S4. Relative enhancement ($\gamma_{RH}/\gamma_{7\%}$) of γ and equivalent layer numbers (L_{H2O}) of water at different RH. Blue and red lines represent BET isotherms of water (L_{H2O})

at c=50 and 500, respectively.