One-Step Synthesis of Diverse Pyridine-containing Heterocycles with 3-Ethoxycyclobutanones at Room Temperature

Yun Lin^a, Xinglin Yang^a, Weidong Pan^{b,*} and Yu Rao^{a,*}

^a MOE Key Laboratory of Protein Sciences, Department of Pharmacology and Pharmaceutical Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China; ^b The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China.

E-mail: yrao@mail.tsinghua.edu.cn; wdpan@163.com

Contents		Page
١.	Materials and Methods	2
н.	General procedure	2
III.	References	2
IV	Data of products	3-18

I. Materials and Methods

All commercial materials (Alfa Aesar, Aladdin, J&K Chemical LTD., Beijing Ouhe Technology Co.Ltd.) were used without further purification. All solvents were analytical grade. Anhydrous dichloromethane, acetonitrile, 1, 2-dichloroethane were obtained through refluxing over CaH₂ and redistillation. The ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer in CDCl₃ using TMS or solvent peak as a standard. All ₁₃C NMR spectra were recorded with complete proton decoupling. Mass spectra were recorded on a Thermo Fisher Orbitrap Fusion Mass Spectrometer (ESI). All IR spectra were recorded on a Bruker company equipment (ATR). All reactions were carried out in oven-dried glassware with a rubber seal. Analytical TLC was performed on Yantai Chemical Industry Research Institute silica gel 60 (200-300mesh). The rotavapor was BUCHI's Rotavapor R-3. Substituted 3-ethoxycyclobutanones was prepared according to the literature reports.^{1,2}

All the reactions were carried out under a nitrogen atmosphere except the optimization study involving oxygen. Silica gel plates (GF254) were used for TLC monitoring and silica gel (230-400 mesh) was used for flash column chromatography. All final compounds were characterized by 1H NMR, 13C NMR and Waters UPLC-mass spectroscopy. Copies of NMR spectra are included for all final compounds. 1H NMR and 13C NMR spectra were recorded on Bruker models Avance DPX 400 (400 MHz) spectrometers. 1H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl₃ (7.26 ppm), Acetone-d6 (d 2.05) and DMSO-d6 (d 2.50). All 13C NMR spectra were reported in ppm and were obtained with 1H decoupling. In reporting spectral data, the format (δ) chemical shift (multiplicity, J values in Hz, integration) was used with the following abbreviations: s = singlet, brs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, brm = broad multiplet. MS analyses were carried out on Waters UPLC-Mass instrument.

II. General procedure for the synthesis of heterocyclics

Substituted heterocyclic amines (1.0 equiv, 0.30 mmol) and substituted 3-ethoxycyclobutanones (1.0 equiv) were dissolved in anhydrous dichloromethane (2 ml) in a round bottom flask. Following that, BF₃•OEt₂(1.0 equiv) was added slowly into the reaction solution. Then the reaction mixture was stirred at room temperature under atmosphere of Argon for 6-12 h. The reaction was monitored by TLC and LC-MS. After completion of the reaction, Et₃N (1~2 drops) was added to quench the reaction. The reaction mixture was diluted with dichloromethane (15 ml) and washed once with saturated aqueous NaHCO₃ (10 ml) and once with water (10 ml). Then organic layer was dried over MgSO₄ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography to give corresponding heterocyclic products.

III. References

Matsuo , J.; Sasaki, S.; Hoshikawa, T.; Ishibashi, H. Org.Lett. 2009. 11. 3822.
Matsuo J.;Okuno,R; Takeuchi, K.; Kawano,M; Ishibashi,H. Tetrahedron Lett. 2010. 51. 3736

IV. Data of products

3. 1-benzyl-5-isopropyl-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (104 mg, 0.60 mmol), $BF_3 \cdot OEt_2$ (73 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 9h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **3** (126 mg, white solid) was isolated in 84% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.22 (s, 1H), 7.55 (d, J=8.8Hz, 1H), 7.28 (m, 3H), 7.19 (d, 2H), 7.14 (d, J=8.8Hz, 1H), 5.57 (s, 2H), 3.19 (m, 1H), 1.34 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.4, 141.8, 136.5, 133.8, 131.6, 129.0, 128.1, 127.4, 119.2, 117.9, 53.9, 36.7, 23.0; HRMS (ESI) calcd for C₁₆H₁₇N₃ [M+H]⁺: 252.1495, found 252.1502.

4a. 1-(5-isopropylfuro[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4a** (33 mg, colorless oil) was isolated in 55% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (d, J=8.0Hz, 1H), 7.44 (d, 1H), 7.22 (d, J=8.0Hz, 1H), 3.19 (m, 1H), 2.65 (s, 3H), 1.37 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.2, 141.3, 133.3, 131.9, 119.1, 117.5, 36.8, 36.0, 23.0; HRMS (ESI) calcd for C₁₂H₁₃NO₂ [M+H]⁺: 204.1019, found 204.1024.

4b. 5-isopropyl-1-methyl-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (0.60 mmol), BF₃•OEt₂ (73 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4b** (87 mg, yellow solid) was isolated in 83% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.16 (s, 1H), 7.68 (d, J=8.8Hz, 1H), 7.23 (d, J=8.8Hz, 1H), 4.07 (s, 3H), 3.22 (m, 1H), 1.36 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.2, 141.3, 133.3, 131.9, 119.1, 117.5, 36.8, 36.0, 23.0; HRMS (ESI) calcd

4c. 1-(5-isopropyl-1-methyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4c** (48 mg, yellow solid) was isolated in 74% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.65 (d, J=8.7Hz, 1H), 7.41 (s, 1H), 7.21 (d, J=8.7Hz, 1H), 4.05 (s, 3H), 3.20 (m, 1H), 2.63 (s, 3H), 1.36 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 163.3, 142.8, 136.5, 132.5, 118.9, 118.5, 111.6, 36.8, 32.4, 28.3, 23.1; HRMS (ESI) calcd for C₁₃H₁₆N₂O [M+H]⁺: 217.1335, found 217.1340.

4d. 1-(6-isopropyl-1-methyl-1H-pyrrolo[2,3-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 11h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4d** (43 mg, primrose yellow oil) was isolated in 66% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J=8.4Hz, 1H), 7.17 (s, 1H), 7.03 (d, J=8.4Hz, 1H), 4.15 (s, 3H), 3.16 (m, 1H), 2.60 (s, 3H), 1.36 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 191.6, 166.4, 149.5, 134.5, 131.3, 116.4, 115.2, 109.6, 37.1, 30.9, 27.7, 22.9; HRMS (ESI) calcd for C₁₃H₁₆N₂O [M+H]⁺: 217.1335, found 217.1343.

4e. 2-isopropylthieno[3,4-b]pyridine

Following the general procedure **II**, amine (0.20 mmol), BF₃•OEt₂ (24 ul, 0.20 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 8h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4e** (34 mg, yellow oil) was isolated in 87% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 9.26 (s, 1H), 8.78 (d, J=1.2Hz, 1H), 7.97 (d, J=1.5Hz, 1H), 7.63 (d, J=5.5Hz, 1H), 3.63 (m, 1H), 1.29 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 203.0, 158.7, 147.7, 135.2, 131.1, 125.3, 36.2, 19.2; HRMS (ESI) calcd for C₁₀H₁₁NSO [M+H]⁺: 194.0634, found 194.0637.

4f. 7-isopropyl-1-methyl-1H-pyrrolo[2,3-f]quinolone

Following the general procedure **II**, amine (0.60 mmol), $BF_3 \cdot OEt_2$ (72 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **4f** (102 mg, white solid) was isolated in 76% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.69 (d, J=8.8Hz, 1H), 7.89 (d, J=8.8Hz, 1H), 7.75 (d, J=8.8Hz, 1H), 7.37 (d, J=8.8Hz, 1H), 7.07 (d, J= 2.9Hz, 1H), 6.61 (d, J= 2.9Hz, 1H), 4.23 (s, 3H), 3.29 (m, 1H), 1.42 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 164.2, 146.7, 129.6, 129.3, 129.2, 125.4, 124.4, 122.1, 117.4, 116.9, 102.4, 38.3, 37.1, 22.9; HRMS (ESI) calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, found 225.1392

4g. 7-isopropyl-3-methyl-3H-pyrrolo[3,2-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4g** (48 mg, white solid) was isolated in 71% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.46 (d, J=8.5Hz, 1H), 7.83 (d, J=9.0Hz, 1H), 7.69 (d, J=9.0Hz, 1H), 7.39 (d, J=8.5Hz, 1H), 7.16 (d, J= 3.0Hz, 1H), 6.97 (d, J= 3.0Hz, 1H), 3.92 (s, 3H), 3.28 (m, 1H), 1.41 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 164.5, 144.6, 132.8, 131.7, 127.8, 123.5, 123.0, 121.7, 118.3, 114.1, 100.4, 37.3, 33.4, 23.0; HRMS (ESI) calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, found 225.1392.

4h. 8-isopropyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

Following the general procedure **II**, amine (0.60 mmol), $BF_3 \cdot OEt_2$ (72 ul, 0.60 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4h** (110 mg, white solid) was isolated in 82% yield. Melting point: 57-58°C. ¹H-NMR (400 MHz, CDCl₃) δ

(ppm) 8.12 (d, J=8.3Hz, 1H), 7.71 (d, J=8.5Hz, 1H), 7.40 (d, J=8.5Hz, 1H), 7.26 (d, J=8.3Hz, 1H), 7.16 (d, J= 2.8Hz, 1H), 6.65 (d, J= 2.8Hz, 1H), 4.60 (s, 3H), 3.29 (m, 1H), 1.49 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 164.5, 139.7, 136.2, 129.9, 129.5, 128.0, 123.7, 120.9, 119.3, 117.3, 102.1, 38.1, 36.9, 22.7; HRMS (ESI) calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, found 225.1393.

4i. 7-isopropyl-3-phenyl-3H-pyrrolo[3,2-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 9h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4i** (55 mg, yellow solid) was isolated in 64% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.51 (d, 1H), 7.84 (s, 1H), 7.56 (m, 4H), 7.43 (m, 3H), 7.16 (d, 1H), 3.30 (m, 1H), 1.43 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.0, 145.0, 139.6, 132.1, 131.9, 129.9, 127.2, 127.2, 125.0, 124.2, 124.0, 121.7, 118.5, 115.2, 102.6, 37.3, 23.0; HRMS (ESI) calcd for C₂₀H₁₈N₂ [M+H]⁺: 287.1543, found 287.1550.

4j. 7-isopropyl-3-phenyl-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 9h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4j** (74 mg, brown solid) was isolated in 86% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.57 (s, 1H), 8.50 (d, J=8.4Hz, 1H), 8.00 (d, J=9.3Hz, 1H), 7.95 (d, J=9.3Hz, 1H), 7.76 (d, 2H), 7.58 (t, 2H), 7.49 (d, J=8.4Hz, 1H), 7.43 (t, 1H), 3.30 (m, 1H), 1.43 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.1, 145.5, 139.9, 136.7, 134.1, 131.6, 129.8, 129.7, 127.5, 123.6, 120.8, 120.4, 120.0, 114.3, 37.3, 22.9; HRMS (ESI) calcd for C₁9H₁₇N₃ [M+H]⁺: 288.1495, found 288.1502.

4k. 7-isopropyl-3-methyl-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 9h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4k** (58 mg, white solid) was isolated in 52% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.44 (d, J=8.4Hz, 1H), 8.35 (s, 1H), 7.95 (d, J=9.2Hz, 1H), 7.67 (d, J=9.2Hz, 1H), 7.45 (d, J= 8.4Hz, 1H), 4.17 (s, 3H), 3.27 (m, 1H), 1.41 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.6, 145.2, 137.6, 131.8, 131.5, 129.2, 120.9, 119.8, 119.0, 113.1, 37.2, 36.1, 22.9; HRMS (ESI) calcd for C₁₄H₁₅N₃ [M+H]⁺: 226.1339, found 226.1346.

4l. 7-isopropyl-2-methyl-2H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4l** (54 mg, yellow solid) was isolated in 79% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.23 (d, J=8.4Hz, 1H), 8.17 (s, 1H), 7.83 (d, J=9.2Hz, 1H), 7.78 (d, J=9.2Hz, 1H), 7.33 (d, J=8.4Hz, 1H), 4.20 (s, 3H), 3.24 (m, 1H), 1.39 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.5, 147.2, 146.7, 131.6, 129.4, 123.7, 121.1, 120.8, 118.8, 118.0, 40.3, 37.0, 22.9; HRMS (ESI) calcd for C₁₄H₁₅N₃ [M+H]⁺: 226.1339, found 226.1346.

4m. 7-isopropyl-2-methyl-2H-pyrazolo[3,4-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4m** (52 mg, yellow solid) was isolated in 77% yield. Melting point: 81-82°C. ¹H-NMR (400 MHz, CDCl₃) δ

(ppm) 8.75 (d, J=8.4Hz, 1H), 7.89 (s, 1H), 7.72 (d, J=9.2Hz, 1H), 7.69 (d, J=9.2Hz, 1H), 7.41 (d, J=8.4Hz, 1H), 4.25 (s, 3H), 3.26 (m, 1H), 1.41 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 167.0, 148.6, 145.8, 130.7, 125.0, 124.9, 121.7, 119.1, 118.7, 118.6, 40.2, 37.2, 22.9; IR (ATR) 2955, 2863, 1614, 1590, 1560, 1469, 1431, 1399, 1373, 1355, 1331, 1289, 1251, 1209, 1158, 1129, 1103, 1081, 1026, 995, 976, 926, 879, 848, 826, 779, 728, 681, 659 cm⁻¹; HRMS (ESI) calcd for C₁₄H₁₅N₃ [M+H]⁺: 226.1339, found 226.1346

4n. 7-isopropyl-1-methyl-1H-pyrazolo[3,4-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4n** (34 mg, pale yellow oil) was isolated in 50% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.69 (d, J=8.6Hz, 1H), 8.02 (s, 1H), 7.88 (d, J=8.7Hz, 1H), 7.73 (d, J=8.7Hz, 1H), 7.47 (d, J= 8.6Hz, 1H), 4.50 (s, 3H), 3.30 (m, 1H), 1.42 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.9, 148.8, 135.3, 133.3, 130.2, 124.0, 122.8, 121.2, 118.5, 115.0, 40.6, 37.2, 22.8; HRMS (ESI) calcd for C₁₄H₁₅N₃ [M+H]⁺: 226.1339, found 226.1344.

40-1. 7-isopropyl-1-phenyl-1H-pyrazolo[3,4-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **40-1** (55 mg, pale yellow solid) was isolated in 64% yield. Melting point: 79-80°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.23 (s, 1H), 7.94 (d, J=8.9Hz, 1H), 7.85 (d, J=8.9Hz, 1H), 7.79 (d, J=8.9Hz, 1H), 7.59 (m, 5H), 7.16 (d, J=8.9Hz, 1H), 3.23 (m, 1H), 1.36 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 167.2, 148.8, 141.6, 135.7, 135.6, 130.3, 129.8, 129.4, 127.1, 124.7, 122.4, 121.3, 118.1, 114.5, 37.2, 22.7; IR (ATR) 3065, 2966, 2923, 2867, 1612, 1596, 1580, 1500, 1453, 1403, 1361, 1314, 1297, 1206, 1183, 1145, 1087, 1071, 1018, 999, 960, 922, 879, 841, 831, 769, 720 cm⁻¹; HRMS (ESI) calcd for C₁₉H₁₇N₃ [M+H]⁺: 288.1495, found 288.1503.

40-2. 7-isopropyl-1-phenyl-1H-pyrazolo[4,3-g]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and 2,2-dimethyl 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **4o-2** (14 mg, colorless oil) was isolated in 16% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.47 (s, 1H), 8.44 (s, 1H), 8.27 (s, 1H), 8.24 (d, 1H), 7.88 (d, 2H), 7.56 (t, 2H), 7.36 (t, 1H), 7.28 (d, 1H), 3.27 (m, 1H), 1.42 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 146.4, 140.5, 139.3, 137.7, 136.1, 129.6, 126.5, 125.9, 122.9, 122.5, 119.8, 117.9, 107.2, 37.8, 22.4; HRMS (ESI) calcd for C₁₉H₁₇N₃ [M+H]⁺: 288.1495, found 288.1502.

5a. 1-(5-isopropylfuro[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.30 mmol), BF₃•OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5a** (50 mg, colorless oil) was isolated in 69% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.00 (d, J=8.8Hz, 1H), 7.46 (s, 1H), 7.23 (d, J=8.8Hz, 1H), 2.84 (t, 1H), 2.67 (s, 3H), 2.00 (d, 2H), 1.91 (d, 2H), 1.78 (m, 1H), 1.67 (q, 2H), 1.41 (q, 2H), 1.36 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 189.6, 167.1, 161.9, 151.7, 132.8, 118.8, 117.1, 110.3, 47.0, 33.2, 26.8, 26.5, 26.0; HRMS (ESI) calcd for C₁₅H₁₇NO₂ [M+H]⁺: 244.1332, found 244.1336.

5b. 1-(1-methyl-5-phenethyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5b** (45 mg, colorless oil) was isolated in 81% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.61 (d, J=8.4Hz, 1H), 7.41 (s, 1H), 7.26 (m, 5H), 7.09 (d, J=8.4Hz, 1H), 4.05 (s, 3H), 3.22 (m, 2H), 3.11 (m, 2H), 2.65 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 157.1, 143.1, 141.8, 136.6, 132.3, 128.7, 128.5, 126.1, 120.6, 118.7, 111.4, 40.6, 36.7, 32.5, 28.3; HRMS (ESI) calcd for C₁₈H₁₈N₂O [M+H]⁺: 279.1492, found 279.1498.

5c. 1-(5-ethyl-1-methyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5c** (52mg, white solid) was isolated in 86% yield. Melting point: 95-96°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.63 (d, J=8.7Hz, 1H), 7.36 (s, 1H), 7.17 (d, J=8.7Hz, 1H), 4.04 (s, 3H), 2.93 (q, 2H), 2.62 (s, 3H), 1.35 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 159.4, 143.0, 136.5, 132.3, 119.8, 118.8, 111.4, 32.4, 31.8, 28.3, 14.6; IR (ATR) 3047, 2966, 2921, 2852, 1913, 1672, 1565, 1505, 1467, 1441, 1417, 1394, 1354, 1327, 1300, 1214, 1196, 1170, 1151, 1103, 1062, 1018, 981, 964, 932, 822, 801, 781, 752, 686 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₄N₂O [M+H]⁺: 203.1179, found 203.1186.

5d. 1-(1-methyl-5-propyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5d** (29mg, yellow oil) was isolated in 67% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.62 (d, J=8.7Hz, 1H), 7.37 (s, 1H), 7.16 (d, J=8.7Hz, 1H), 4.04 (s, 3H), 2.87 (t, 2H), 2.63 (s, 3H), 1.80 (m, 2H), 1.35 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 158.2, 143.0, 136.5, 132.3, 120.4, 118.6, 111.4, 40.8, 32.4, 28.3, 23.8, 14.0; HRMS (ESI) calcd for C₁₃H₁₆N₂O [M+H]⁺: 217.1335, found 217.1342.

5e. 1-(5-cyclohexyl-1-methyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 15:1). Finally, compound **5e** (40mg, write solid) was isolated in 78% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 7.64 (d, J=8.7Hz, 1H), 7.40

(s, 1H), 7.18 (d, J=8.7Hz, 1H), 4.04 (s, 3H), 2.84 (m, 1H), 2.63 (s, 3H), 1.98 (d, 2H), 1.87 (d, 2H), 1.77 (d, 1H), 1.58 (q, 2H), 1.44 (q, 2H), 1.30 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 162.4, 142.8, 136.5, 132.5, 118.9, 118.8, 111.6, 47.1, 33.5, 32.4, 28.3, 26.8, 26.3; HRMS (ESI) calcd for C₁₆H₂₀N₂O [M+H]⁺: 257.1648, found 257.1656.

5f. 1-benzyl-5-ethyl-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5f** (62mg, pale yellow oil) was isolated in 87% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.20 (s, 1H), 7.55 (d, J=8.8Hz, 1H), 7.28 (m, 3H), 7.19 (d, 2H), 7.12 (d, J=8.8Hz, 1H), 5.58 (s, 2H), 2.94 (q, 2H), 1.35 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 159.6, 142.0, 136.5, 133.8, 131.5, 129.0, 128.2, 127.4, 120.6, 117.9, 53.9, 31.7, 14.4; HRMS (ESI) calcd for C₁₅H₁₅N₃ [M+H]⁺: 238.1339, found 238.1348.

5g. 1-benzyl-5-propyl-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5g** (29mg, brown sloid) was isolated in 58% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.18 (s, 1H), 7.52 (d, J=8.8Hz, 1H), 7.28 (m, 3H), 7.16 (d, 2H), 7.08 (d, J=8.8Hz, 1H), 5.55 (s, 2H), 2.85 (t, 2H), 1.76 (m, 2H), 0.96 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 158.4, 142.0, 136.5, 133.7, 131.5, 129.0, 128.2, 127.4, 121.1, 117.7, 53.9, 40.6, 23.7, 14.1; HRMS (ESI) calcd for C₁₆H₁₇N₃ [M+H]⁺: 252.1495, found 252.1501.

5h. 1-benzyl-5-(pentan-3-yl)-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room

temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 15:1). Finally, compound **5h** (43mg, pale yellow oil) was isolated in 77% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.23 (s, 1H), 7.55 (d, J=8.8Hz, 1H), 7.28 (m, 3H), 7.22 (d, 2H), 7.07 (d, J=8.8Hz, 1H), 5.57 (s, 2H), 2.69 (m, 1H), 1.74 (m, 4H), 0.78 (t, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 161.5, 141.9, 136.4, 133.8, 131.6, 129.0, 128.2, 127.5, 120.4, 117.6, 53.8, 51.8, 28.7, 12.3; HRMS (ESI) calcd for C₁₈H₂₁N₃ [M+H]⁺: 280.1808, found 280.1816.

5i. 1-benzyl-5-cyclohexyl-1H-pyrazolo[4,3-b]pyridine

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 11h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 15:1). Finally, compound **5i** (47mg, write solid) was isolated in 80% yield. Melting point: 78-79°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.22 (s, 1H), 7.55 (d, J=8.8Hz, 1H), 7.28 (m, 3H), 7.19 (d, 2H), 7.12 (d, J=8.8Hz, 1H), 5.56 (s, 2H), 2.83 (m, 1H), 1.97 (d, 2H), 1.88 (d, 2H), 1.75 (m, 1H), 1.58 (q, 2H), 1.44 (q, 2H), 1.40 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 162.6, 141.7, 136.4, 133.8, 131.5, 129.0, 128.1, 127.4, 119.7, 117.8, 53.8, 47.0, 33.3, 26.7, 26.2; IR (ATR) 3061, 3028, 2926, 2856, 2114, 1774, 1604, 1568, 1493, 1452, 1428, 1409, 1377, 1328, 1301, 1261, 1176, 1157, 1133, 1103, 1076, 1049, 1028, 949, 892, 868, 847, 819, 798, 776, 744, 723, 694 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₁N₃ [M+H]⁺: 292.1808, found 292.1815.

5j. 8-benzyl-1-methyl-1H-pyrrolo[3,2-h]quinoline

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 9h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5j** (73mg, yellow solid) was isolated in 90% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.76 (d, 1H), 7.72 (d, J=8.8Hz, 1H), 7.33 (d, J=8.8Hz, 1H), 7.31 (m, 5H), 7.25 (m, 1H), 7.10 (d, J=2.8Hz, 1H), 6.61 (d, J=2.8Hz, 1H), 4.53 (s, 3H), 4.49 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 147.3, 146.1, 139.5, 130.1, 129.4, 129.0, 128.7, 128.5, 127.8, 126.5, 124.4, 121.8, 120.0, 119.2, 115.4, 102.0, 39.2, 38.2; HRMS (ESI) calcd for C₁₉H₁₆N₂ [M+H]⁺: 273.1386, found 273.1392.

5k. 1,8-dimethyl-1H-pyrrolo[3,2-h]quinoline

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 8h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5k** (54mg, colorless oil) was isolated in 92% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (d, J=8Hz, 1H), 7.66 (d, J=8.8Hz, 1H), 7.35 (d, J=8.8Hz, 1H), 7.20 (d, J=8Hz, 1H), 7.13 (d, J= 2.8Hz, 1H), 6.61 (d, J= 2.8Hz, 1H), 4.55 (s, 3H), 2.74 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 156.0, 147.1, 139.9, 136.2, 129.6, 128.0, 123.4, 120.8, 119.3, 119.1, 102.1, 37.9, 25.5; HRMS (ESI) calcd for C₁₃H₁₂N₂ [M+H]⁺: 197.1073, found 197.1080.

5l. 1-methyl-8-phenethyl-1H-pyrrolo[3,2-h]quinoline

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 8h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5l** (75mg, yellow solid) was isolated in 88% yield. Melting point: 80-81°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J=8Hz, 1H), 7.72 (d, J=8.5Hz, 1H), 7.40 (d, J=8.5Hz, 1H), 7.31 (m, 4H), 7.25 (m, 1H), 7.19 (d, J=8.5Hz, 1H), 7.18 (d, J=2.8Hz, 1H), 6.66 (d, J=2.8Hz, 1H), 4.56 (s, 3H), 3.35 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 158.6, 142.3, 139.9, 136.2, 129.7, 129.6, 128.6, 128.5, 128.0, 126.0, 123.7, 121.0, 119.3, 118.8, 102.2, 40.5, 38.0, 35.3; HRMS (ESI) calcd for C₂₀H₁₈N₂ [M+H]⁺: 287.1543, found 287.1549.

5m. 8-ethyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 11h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5m** (pale yellow

oil) was isolated in 95% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J=8.3Hz, 1H), 7.69 (d, J=8.5Hz, 1H), 7.38 (d, J=8.5Hz, 1H), 7.22 (d, J=8.3Hz, 1H), 7.15 (d, J= 2.8Hz, 1H), 6.63 (d, J= 2.8Hz, 1H), 4.58 (s, 3H), 3.05 (q, 2H), 1.48 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 160.7, 139.9, 136.1, 129.8, 129.5, 128.0, 123.6, 120.8, 119.3, 118.3, 102.1, 38.0, 32.0, 13.4; HRMS (ESI) calcd for C₁₄H₁₄N₂ [M+H]⁺: 211.1230, found 211.1237.

5n. 8-cyclohexyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5n** (74mg, pale yellow solid) was isolated in 93% yield. Melting point: 126-127°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J=8.3Hz, 1H), 7.69 (d, J=8.5Hz, 1H), 7.37 (d, J=8.5Hz, 1H), 7.22 (d, J=8.3Hz, 1H), 7.15 (d, J= 2.8Hz, 1H), 6.62 (d, J= 2.8Hz, 1H), 4.58 (s, 3H), 2.91 (t, 1H), 2.11 (d, 2H), 1.95 (d, 2H), 1.84 (m, 1H), 1.70 (q, 2H), 1.50 (q, 2H), 1.38 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.8, 139.8, 136.1, 129.9, 129.4, 127.9, 123.7, 120.8, 119.3, 117.6, 102.1, 47.0, 38.1, 33.1, 26.9, 26.5; IR (ATR) 3102, 2918, 2872, 2848, 2106, 1707, 1931, 1607, 1595, 1541, 1524, 1501, 1461, 1447, 1416, 1400, 1364, 1348, 1327, 1291, 1261, 1238, 1208, 1184, 1146, 1129, 1071, 1056, 999, 959, 904, 890, 867, 853, 834, 801, 792, 756, 743, 714, 687 cm⁻¹; HRMS (ESI) calcd for C₁₈H₂₀N₂ [M+H]⁺: 265.1699, found 265.1705.

50. 1-methyl-8-(pentan-3-yl)-1H-pyrrolo[3,2-h]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **50** (71mg, brown solid) was isolated in 94% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J=8.3Hz, 1H), 7.69 (d, J=8.5Hz, 1H), 7.39 (d, J=8.5Hz, 1H), 7.18 (d, J=8.3Hz, 1H), 7.15 (d, J= 2.8Hz, 1H), 6.63 (d, J= 2.8Hz, 1H), 4.56 (s, 3H), 2.76 (m, 1H), 1.94 (m, 2H), 1.82 (m, 2H), 0.86 (t, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 162.6, 140.1, 135.8, 129.9, 129.4, 127.8, 123.8, 120.8, 119.3, 102.1, 51.9, 38.1, 28.5, 12.3; HRMS (ESI) calcd for C₁₇H₂₀N₂ [M+H]⁺: 253.1699, found 253.1707.

5p. 1-methyl-8-(pentan-3-yl)-1H-pyrrolo[3,2-h]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 10h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5p** (62mg, pale yellow oil) was isolated in 92% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.08 (d, J=8.3Hz, 1H), 7.67 (d, J=8.5Hz, 1H), 7.37 (d, J=8.5Hz, 1H), 7.20 (d, J=8.3Hz, 1H), 7.14 (d, J= 2.8Hz, 1H), 6.62 (d, J= 2.8Hz, 1H), 4.56 (s, 3H), 2.99 (t, 2H), 1.95 (q, 2H), 1.05 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 159.7, 139.9, 136.1, 129.9, 129.5, 128.0, 123.6, 120.8, 119.3, 118.8, 102.1, 41.0, 38.0, 22.5, 14.1; HRMS (ESI) calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, found 225.1394.

5q. 1-methyl-7-propyl-1H-pyrrolo[2,3-f]quinoline

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5q** (38mg, white solid) was isolated in 84% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.68 (d, J=8.4Hz, 1H), 7.89 (d, J=8.8Hz, 1H), 7.74 (d, J=8.8Hz, 1H), 7.33 (d, J=8.4Hz, 1H), 7.09 (d, J= 2.9Hz, 1H), 6.62 (d, J= 2.9Hz, 1H), 4.25 (s, 3H), 2.97 (t, 2H), 1.87 (q, 2H), 1.03 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 159.1, 146.6, 129.5, 128.8, 125.3, 124.4, 121.8, 119.7, 116.6, 102.3, 41.0, 38.2, 23.5, 14.1; HRMS (ESI) calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, found 225.1392.

5r. 1-methyl-7-(pentan-3-yl)-1H-pyrrolo[2,3-f]quinoline

Following the general procedure **II**, amine (0.20 mmol), $BF_3 \cdot OEt_2$ (24 ul, 0.20 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5r** (37mg, colorless oil) was isolated in 73% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.68 (d, J=8.8Hz, 1H), 7.90 (d, J=8.4Hz, 1H), 7.77 (d, J=8.5Hz, 1H), 7.29 (d, J=8.8Hz, 1H), 7.07 (d, J= 2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.79 (d, J=8.5Hz, 1H), 7.29 (d, J=8.8Hz, 1H), 7.07 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.79 (d, J=8.5Hz, 1H), 7.29 (d, J=8.8Hz, 1H), 7.07 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.79 (d, J=8.5Hz, 1H), 7.29 (d, J=8.8Hz, 1H), 7.07 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.49 (d, J=8.4Hz, 1H), 7.07 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.49 (d, J=8.4Hz, 1H), 7.07 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.40 (d, J=8.4Hz, 1H), 7.40 (d, J=2.8Hz, 1H), 6.61 (d, J=8.4Hz, 1H), 7.40 (d, J=8.4Hz

J= 2.8Hz, 1H), 4.23 (s, 3H), 2.80 (m, 1H), 1.82 (m, 4H), 0.85 (t, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 162.6, 140.1, 135.8, 129.9, 129.4, 127.8, 123.8, 120.8, 119.3, 102.1, 51.9, 38.1, 28.5, 12.3; HRMS (ESI) calcd for C₁₇H₂₀N₂ [M+H]⁺: 253.1699, found 253.1703.

5s. 7-cyclohexyl-1-methyl-1H-pyrrolo[2,3-f]quinoline

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5s** (62mg, white solid) was isolated in 78% yield. Melting point: 113-114°C. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.67 (d, J=8.8Hz, 1H), 7.89 (d, J=9.2Hz, 1H), 7.75 (d, J=9.2Hz, 1H), 7.34 (d, J=8.8Hz, 1H), 7.07 (d, J= 2.8Hz, 1H), 6.61 (d, J= 2.8Hz, 1H), 4.22 (s, 3H), 2.94 (m, 1H), 2.08 (d, 2H), 1.92 (d, 2H), 1.85 (m, 1H), 1.67 (q, 2H), 1.54 (q, 2H), 1.38 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.3, 146.7, 129.6, 129.2, 129.1, 125.3, 124.4, 122.0, 117.9, 116.9, 102.4, 47.4, 38.3, 33.2, 26.8, 26.3; HRMS (ESI) calcd for C₁₈H₂₀N₂ [M+H]⁺: 265.1699, found 265.1705.

5t. 7-cyclohexyl-3-methyl-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), BF₃·OEt₂ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5t** (59mg, yellow oil) was isolated in 74% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.44 (d, J=8.4Hz, 1H), 8.34 (s, 1H), 7.95 (d, J=9.2Hz, 1H), 7.67 (d, J=9.2Hz, 1H), 7.44 (d, J= 8.4Hz, 1H), 4.17 (s, 3H), 2.93 (t, 1H), 2.04 (d, 2H), 1.95 (d, 2H), 1.84 (m, 1H), 1.70 (q, 2H), 1.50 (q, 2H), 1.35 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 164.8, 145.2, 137.5, 131.8, 131.5, 129.1, 120.9, 120.2, 119.0, 113.1, 47.5, 36.1, 33.3, 26.8, 26.3; HRMS (ESI) calcd for C₁₇H₁₉N₃ [M+H]⁺: 266.1652, found 266.1657.

5u. 7-ethyl-3-methyl-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5u** (42mg, brown solid) was isolated in 66% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.42 (d, 1H), 8.34 (s, 1H), 7.94 (d, 1H), 7.67 (d, 1H), 7.42 (d, 1H), 4.17 (s, 3H), 3.02 (q, 2H), 1.41 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 161.8, 145.4, 137.5, 131.8, 131.5, 129.0, 121.5, 120.7, 119.0, 113.2, 36.1, 32.2, 14.4; HRMS (ESI) calcd for C₁₃H₁₃N₃ [M+H]⁺: 212.1182, found 212.1188.

5v. 3-methyl-7-propyl-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5v** (51mg, colorless oil) was isolated in 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.42 (d, J=8.4Hz, 1H), 8.34 (s, 1H), 7.96 (d, J=9.2Hz, 1H), 7.67 (d, J=9.2Hz, 1H), 7.41 (d, J=8.4Hz, 1H), 4.16 (s, 3H), 2.97 (t, 2H), 1.86 (m, 2H), 1.03 (t, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 160.6, 145.3, 137.5, 131.8, 131.4, 128.9, 122.1, 120.8, 119.0, 113.3, 41.1, 36.1, 23.6, 14.1; HRMS (ESI) calcd for C₁₄H₁₅N₃ [M+H]⁺: 226.1339, found 226.1345.

5w. 3-methyl-7-(pentan-3-yl)-3H-pyrazolo[4,3-f]quinolone

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 10:1). Finally, compound **5w** (45mg, yellow oil) was isolated in 59% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.43 (d, J=8.4Hz, 1H), 8.36 (s, 1H), 7.98 (d, J=9.2Hz, 1H), 7.68 (d, J=9.2Hz, 1H), 7.38 (d, J=8.4Hz, 1H), 4.18 (s, 3H), 2.79 (m, 1H), 1.81 (m, 4H), 0.83 (t, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.8, 145.4, 144.3, 137.6, 131.8, 131.2, 129.3, 121.1, 119.0, 113.0, 52.2, 36.1, 28.5, 12.3; HRMS (ESI) calcd for C₁₆H₁₉N₃ [M+H]⁺: 254.1652, found 254.1659.

5x. 5-isopropylthieno[3,2-b]pyridine

Following the general procedure **II**, amine (0.30 mmol), $BF_3 \cdot OEt_2$ (36 ul, 0.30 mmol) and substituted 3-ethoxycyclobutanone (1.0 equiv) were used. The reaction mixture was stirred at room temperature for 12h under Ar protection. After completion of the reaction, the residue was purified by silical gel column chromatography (Hexane: Ether = 20:1). Finally, compound **5x** (47mg, pale yellow solid) was isolated in 89% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.11 (d, J=8.4Hz, 1H), 7.70 (d, J=5.2Hz, 1H), 7.53 (d, J=5.2Hz, 1H), 7.18 (d, J=8.4Hz, 1H), 3.2 (m, 1H), 1.37 (d, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.4, 155.7, 130.9, 130.8, 130.3, 125.2, 116.5, 36.8, 23.1; HRMS (ESI) calcd for C₁₀H₁₁NS [M+H]⁺: 178.0685, found 178.0691.

ppm

0 ppm

Current Da NAME l EXPNO PROCNO	ta Parameters y8-p102-P-20151015 10 1	8.0084	7.2816	
F2 - Acquisition Parameters				
Date_	20151015			
Time	12.09			
INSTRUM	spect			
PROBHD 5	mm PABBO BB-			

zg30 65536 CDC13

16

2

PULPROG

TD SOLVENT

NS DS

Current Data Param NAME 20160404- EXPNO PROCNO	eters ly-noe 20 1		
F2 - Acquisition Parameters			
Date_ 201	60404		
Time	19.50		
INSTRUM	spect		
PROBHD 5 mm PABB	O BB-		
PULPROG se	lnogp		
TD	65536		
SOLVENT	CDC13		
NS	64		
	2 605 11-		
SWH 022 EIDDEC 0.1	3.005 HZ 25/02 Hz		
71DRES 0.1	20405 HZ 16387 dog		
AQ 3.90 PC 2	10307 Sec		
DW 6	0 800 usec		
DE	6.50 usec		
TE	298.7 K		
D1 1.000	00000 sec		
D8 0.500	00000 sec		
D16 0.000	20000 sec		
D20 0.248	79999 sec		
TD0	1		

2.6241

Compound 5c: NOE (400 MHz, CDCl3)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

Current Dat	a Parameters
NAME ly	8-p68-P2-08132015
EXPNO	10
PROCNO	1
F2 - Acquis	sition Parameters
Date_	20150813
Time	20.03
INSTRUM	spect
PROBHD 5	mm PABBO BB-
PULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	16
DS	2
SWH	8223.685 Hz
FIDRES	0.125483 Hz
AQ	3.9845889 sec
RG	144.49
DW	60.800 usec

Compound 5h: 13C-NMR (100 MHz, CDCl3)

0 ppm

7.5685 7.254 5.590 Current Data Parameters NAME ly8-p67-P1-noe EXPNO 12 PROCNO 1 F2 - Acquisition Parameters Date_ 20150811 Time 16.17 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG selnogp TD 65536 Et SOLVENT CDC13 NS 24 DS 4 SWH 4595.588 Hz FIDRES 0.070123 Hz AQ 7.1303167 sec RG 80.88 DW 108.800 usec DE 6.50 usec TE 297.0 K D1 1.00000000 sec D8 0.30000001 sec D16 0.00020000 sec Compound 5h: NOE (400 MHz, CDCl3) D20 0.14880000 sec TDO 1 ZGOPTNS CHANNEE 11 400.1316750 MHz SF01 NUC1 1H P1 9.15 usec P2 18.30 usec P12 164812.20 usec PLWO 0 W PLW1 19.00000000 W SPNAM[2] Gaus1 180r.1000 SPOAL2 0.500 562.22 Hz 0.00000138 W SPOFFS2 SPW2 ===== GRADIENT CHANNEL ===== GPNAM[1] SMS010.100 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 4.0 ppm 5.5 4.5 0.445 0.346 -100.000 の御御い 高い 調整

L-	~	480810	ыw					
ß	L-	4 7 9 9 1 8	9 8	8 Q 4	0	9	ŝ	сυ
•	•		• •	410	8	6	ŝ	L 1
2		7 8 8 H 3 Q	6 Γ		•	•	•	• •
9	4	000000	-	6 7 7	c.	9	ć	99
	-	ннннн	-		С	4	e	0 0
		\\\\//		\searrow				$\langle \rangle$

Compound 5i: 13C-NMR (100 MHz, CDCI3)

Current	Data	Parameters
NAME	ly8-	-p62-150804-
EXPNO		10
PROCNO		1

F2 - Acq	uisition Parameters
Date_	20150804
Time	22.24
INSTRUM	spect
PROBHD	5 mm PABBO BB/
PULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	16
DS	2

4.5467

2.7432

1

1.5658 1.2616 1

1

N Ν Compound 5k: 1H-NMR (400 MHz, CDCl3)

					1								1							1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

0 ppm

Compound 50: 13C-NMR (100 MHz, CDCI3)

Current Data Parameters NAME 1y8-p64-3P-150808- EXPNO 10 PROCNO 1	8.6872 8.6655	7.9071 7.7504 7.7504 7.7504 7.3283 7.3283 7.3283 7.3266 7.3166 7.3166 7.3599	6.6224		4.2528	2.9491	1.8969 1.8780 1.8587 1.8400	1.0513	
F2 - Acquisition Parameters Date_ 20150808 Time 17.34 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 8012.820 Hz FIDRES 0.122266 Hz AQ 4.0894465 sec RG 128.61 DW 62.400 usec	М	N IC NIC K	Ŷ			Ш	Шr	ΥΛ Υ	
			N N	N					
		Compo	und 5q: 1H-N	NMR (400 MH	z, CDCl3)				
								I	
	l			Ju		ا	M.^		
10.5 10.0 9.5 9.0) 8.5 // 00.1	8.0 7.5 7.0 <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.086</u> <u>10.0866</u> <u>10.0866</u> <u>10.0866</u> <u>10.0866</u> <u>10.0866</u> <u>10.0866</u> <u>10.086</u>	6.5 6.0	5.5 5.0	4.5 4.0 3.5	3.0 2.5 /\ \ \ \ \ \ \ \ \ \ \ \ \ \	2.0 1.5		mqq

8.6705	7.7612	7.2813 7.2813 7.2599 7.0775	6.6096		4.2344	2.8349	2.8164	1.8607 1.8422 1.8237 1.8237 1.8054 1.7872	0.8668	0.0102
Current Data ParametersNAMEly8-150805-EXPNO10PROCNO1										
F2 - Acquisition Parameter Date_ 20150805 Time 22.07 INSTRUM spect PROBHD 5 mm PULPROG zg30 TD 65536 SOLVENT CDC13 NS 16 DS 2 SWH 8012.820 H FIDRES 0.122266 H AQ 4.0894465 s RG 57.28	rs z z ec			N	N	Compound 5r	: 1H-NMR	<u>(400 MHz,</u>	CDCI3)	
DW 62.400 u	sec									
							J.			I
9.5 9.0 8.5	8.0 106	7.5 7.0 10 8	6.5 /(96	6.0 5.5 5.0 4		.0 3.5 3.(2.0 1.5		

Compound 5w: 1H-NMR (400 MHz, CDCl3)

HRMS (ESI)

4e. 2-isopropylthieno[3,4-b]pyridine

4f. 7-isopropyl-1-methyl-1H-pyrrolo[2,3-f]quinolone

4h. 8-isopropyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

4j. 7-isopropyl-3-phenyl-3H-pyrazolo[4,3-f]quinolone

4l. 7-isopropyl-2-methyl-2H-pyrazolo[4,3-f]quinolone

4m. 7-isopropyl-2-methyl-2H-pyrazolo[3,4-f]quinolone

4n. 7-isopropyl-1-methyl-1H-pyrazolo[3,4-f]quinolone

40-2. 7-isopropyl-1-phenyl-1H-pyrazolo[4,3-g]quinolone

5a. 1-(5-isopropylfuro[3,2-b]pyridin-2-yl)ethanone

5c. 1-(5-ethyl-1-methyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

5b.

5d. 1-(1-methyl-5-propyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

5e.

5f. 1-benzyl-5-ethyl-1H-pyrazolo[4,3-b]pyridine

5g. 1-benzyl-5-propyl-1H-pyrazolo[4,3-b]pyridine

5h. 1-benzyl-5-(pentan-3-yl)-1H-pyrazolo[4,3-b]pyridine

5i. 1-benzyl-5-cyclohexyl-1H-pyrazolo[4,3-b]pyridine

5j. 8-benzyl-1-methyl-1H-pyrrolo[3,2-h]quinoline

5k. 1,8-dimethyl-1H-pyrrolo[3,2-h]quinoline

5l. 1-methyl-8-phenethyl-1H-pyrrolo[3,2-h]quinoline

5m. 8-ethyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

MS160221-10-F #1230 RT: 11.02 AV: 1 NL: 5.20E8 T: FTMS + p NSI Full ms [50.0000-350.0000]

5n. 8-cyclohexyl-1-methyl-1H-pyrrolo[3,2-h]quinolone

5p. 1-methyl-8-(pentan-3-yl)-1H-pyrrolo[3,2-h]quinolone

5q. 1-methyl-7-propyl-1H-pyrrolo[2,3-f]quinoline

5r. 1-methyl-7-(pentan-3-yl)-1H-pyrrolo[2,3-f]quinoline

5s. 7-cyclohexyl-1-methyl-1H-pyrrolo[2,3-f]quinoline

5t. 7-cyclohexyl-3-methyl-3H-pyrazolo[4,3-f]quinolone

5v. 3-methyl-7-propyl-3H-pyrazolo[4,3-f]quinolone

Compound 40-1. 7-isopropyl-1-phenyl-1H-pyrazolo[3,4-f]quinolone

Compound 5c. 1-(5-ethyl-1-methyl-1H-pyrrolo[3,2-b]pyridin-2-yl)ethanone

Compound 5i. 1-benzyl-5-cyclohexyl-1H-pyrazolo[4,3-b]pyridine

Compound 4m. 7-isopropyl-2-methyl-2H-pyrazolo[3,4-f]quinolone

Compound 5n. 8-cyclohexyl-1-methyl-1H-pyrrolo[3,2-h]quinolone