Supporting Information

Chemiluminescence Character of ZnS Quantum Dots with Bisulphite-Hydrogen Peroxide System in Acidic Medium

Syed Niaz Ali Shah,^{†, ‡} Yongzan Zheng,[†] Haifang Li, [†] Jin-Ming Lin*,^{†,‡}

[†] Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China

^{*} Collaborative Innovation Center of Functionalized Probes for Chemical Imaging at University of Shandong, Shandong Normal University, Jinan 250014, China

*Corresponding author: jmlin@mail.tsinghua.edu.cn

Synthesis and Characterization of ZnS quantum dots (QDs). ZnS QDs were synthesized from alkaline solution of ZnSO₄ and Na₂S in one-pot at room temperature. 2-Mercaptopropanoic Acid was uses as capping agent. The sample for TEM was dialyzed before analysis to remove soluble electrolytes. Dialysis was performed by using MW cut off 3.5 kDa Biotech regenerated cellulose (RC) membrane for 12 h against distilled water under gentle stirring by replacing the distilled water after each 2 h. The sample was prepared by molding a drop of ZnS QDs on to a 300-mesh holey carbon- coated copper grid. Figure S1 showed the transmission electron microscopy (TEM) image of the as-prepared water dispersible ZnS QDs. The average particle size was about 5 nm.

Batch CL System. The CL reaction was carried out in a glass cuvette under ambient conditions by a batch method, and the detection was performed on a BPCL luminescence analyzer. First, H_2O_2 , ZnS QDs and H_2SO_4 were mixed in a glass cuvette, and then NaHSO₃ solution was injected by a microliter syringe in different concentrations and volumes to get the optimum intensity. The CL intensity was displayed and integrated with 0.1 s intervals at 1.3 kV.

CL Spectrum Measurements. The CL spectrum was obtained with a Hitachi F-7000 spectrophotometer when the Xe lamp was turned off with a flow cell, which consisted of two peristaltic pumps, a CL detector, and a flow cell placed inside the cell holder of the fluorescence spectrophotometer. The emission slit width was 20 nm during the documentation of the CL spectrum. All optical measurements were performed at room temperature.

EPR Analysis. EPR spectra were recorded at room temperature using a JEOL JES-FA200 spectrometer. For the examination of ${}^{1}O_{2}$ or 'OH radicals, for that, 30 µL of each reagent i.e. NaHSO₃ (1.5 M), H₂O₂ (0.1M), H2SO₄ (0.1M) and ZnS QDs were mixed with 30 µL of 0.1 M DMPO (or 10% TEMP) in different orders. In a typical experiment, a final volume of 10 µL of this sample solution was loaded into a 50 µL quartz micropipette for the ESR measurement. All spectra were recorded at the appropriate time after the addition of the oxidant. The instrument was operated at microwave power of 1.0 mW and the modulation amplitude was 1.0 G.

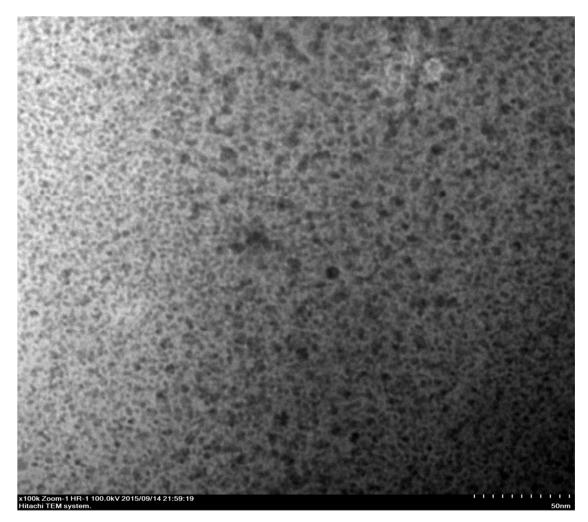
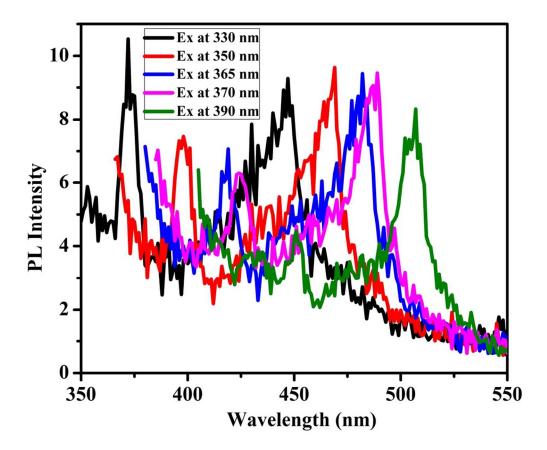
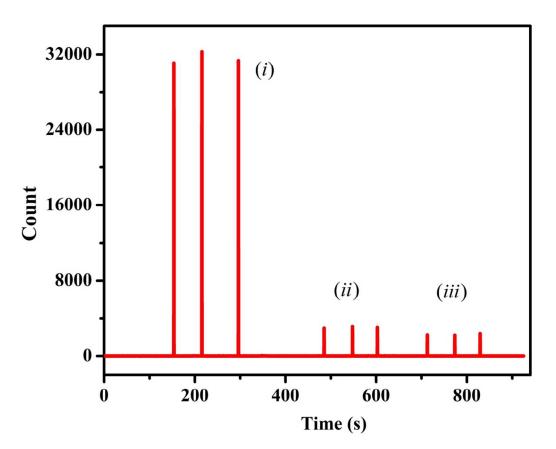
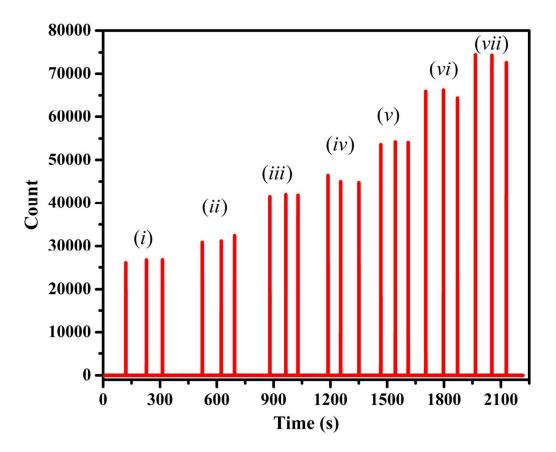

The photoluminescent spectra of ZnS QDs after the reaction shown in Figure S2 was scanned at different excitation wavelengths. Different peaks could be found in addition to that of the ZnS QDs, which changes as the wavelength changes, indicating the different emitting species in the system. The low intensity of the peaks was due to dilution effect.

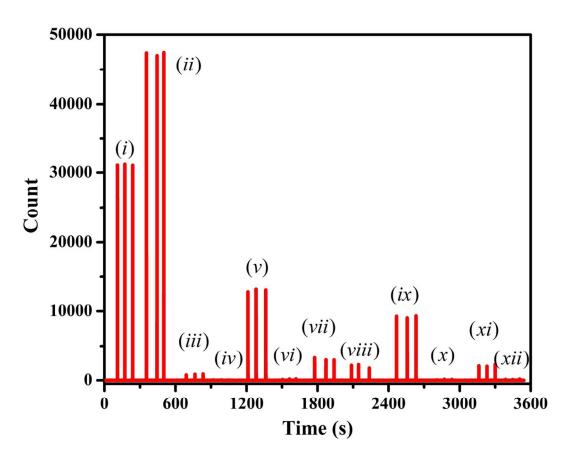
Figure S3 showed the effect of order of reagents on NaHSO₃-H₂O₂ system in the presence of ZnS QDs in acidic medium. The addition of acid at different position causes difference in CL

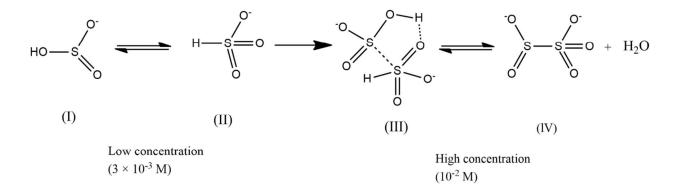

intensity. (i) NaHSO₃ injected to ZnS QDs– $H_2O_2-H_2SO_4$ (ii) NaHSO₃ injected to H_2SO_4-ZnS QDs– H_2O_2 (iii) NaHSO₃ injected to $H_2O_2-H_2SO_4-ZnS$ QDs. When acid were added in last causes 10 time higher CL intensity compared to the other two cases, which is attributed to the decomposition of H_2O_2 on the surface of ZnS QDs without the presence of acids.

A remarkable enhancement in CL intensity of the system was observed by the addition of water. Figure S4 showed the increase in CL intensity of the system by applying different volume of water to the system.


The enhancement in CL signals by water may attribute to the conversion of different tautomeric form of NaHSO₃ as shown in Figure S6 or to the stability of the ions produced in the system. The water enhances the CL intensity but when added in the last. The addition of water at first, results in no enhancement, when added after the addition of H_2O_2 causes a slight enhancement while its addition at last results in greater enhancement as shown in the Figure S7.


Figure S1. TEM image of water dispersible ZnS QDs, with an average size of about 5 nm. The size histogram is given aside.


Figure S2. Photoluminescent spectra of NaHSO₃–ZnS QDs– H_2O_2 – H_2SO_4 system, after the chemical reaction. The concentration of H_2O_2 and H_2SO_4 was 1M and that of NaHSO₃ was 1.5 M. The volume of each reagent used was 100 μ L.


Figure S3. Effect of order of reagents on NaHSO₃-H₂O₂ system in the presence of ZnS QDs in acidic medium (i) NaHSO₃ injected to ZnS QDs-H₂O₂-H₂SO₄ (ii) NaHSO₃ injected to H₂SO₄-ZnS QDs-H₂O₂ (iii) NaHSO₃ injected to H₂O₂-H₂SO₄-ZnS QDs. The concentration of H₂SO₄ and H₂O₂ was 1M while that of NaHSO₃ was 1.5 M. the volume of each reagent used was 100 μ L.

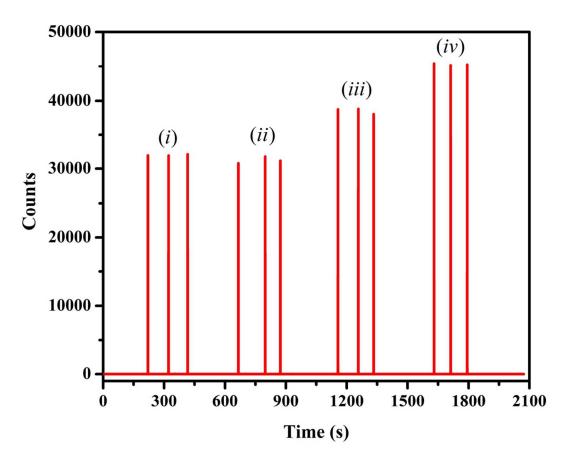

Figure S4. Consequences of addition of different volume of water to NaHSO₃-H₂O₂-ZnS QDs system in acidic medium. NaHSO₃ was injected to H₂O₂-ZnS QDs-H₂SO₄-water; the volume of added water was as mentioned. (i) 0 μ L (ii) 50 μ L (iii) 100 μ L (iv) 150 μ L (v) 200 μ L (vi) 300 μ L (vii) 500 μ L. The concentration of H₂SO₄ and H₂O₂ were 1M while that of NaHSO₃ was 1.5 M. The volume of each reagent used was 100 μ L.

Figure S5. Effect of free radical scavengers on the CL intensity of NaHSO₃-H₂O₂ system in acidic medium with and without ZnS QDs. Injection of NaHSO₃ to H₂O₂-ZnS QDs-H₂SO₄-(-), (i) blank (ii) water (iii) thiourea (iv) the same as previous but without ZnS QDs (v) NaN₃ (vi) the same as previous but without ZnS QDs (vii) ascorbic acid (viii) the same as previous but without ZnS QDs (ix) NBT (x) the same as previous but without ZnS QDs (xi) DMPO (xii) the same as previous but without ZnS QDs. The concentration of H₂SO₄ and H₂O₂ were 1M, NaHSO₃ was 1.5M, NaN₃, ascorbic acid, DMPO and thiourea were 0.1M while NBT was 0.05M. The volume of each reagent used was 100 μ L.

Figure S6. Scheme showing the conversion of different form of NaHSO₃ at different concentration and the role of water in its conversion

Figure S7. Effect of order of addition of water. Water was added at different position to know about the enhancement. (i) NaHSO₃ injected to ZnS QDs-H₂O₂-H₂SO₄ (ii) NaHSO₃ injected to H₂O-ZnS QDs-H₂O₂-H₂SO₄ (iii) NaHSO₃ injected to ZnS QDs-H₂O₂-H₂O-H₂SO₄ (iv) NaHSO₃ injected to ZnS QDs-H₂O₂-H₂SO₄ (iv) NaHSO₃ injected to ZnS QDs-H₂O₂-H₂SO₄-H₂O. The concentration of NaHSO₃ was 1.5 M, H₂O₂ and H₂SO₄ was 1 M. The volume of each reagent used was 100 µL.