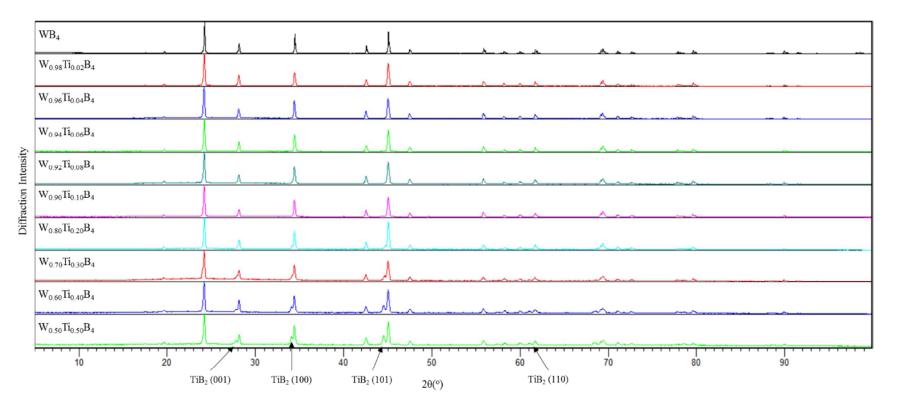
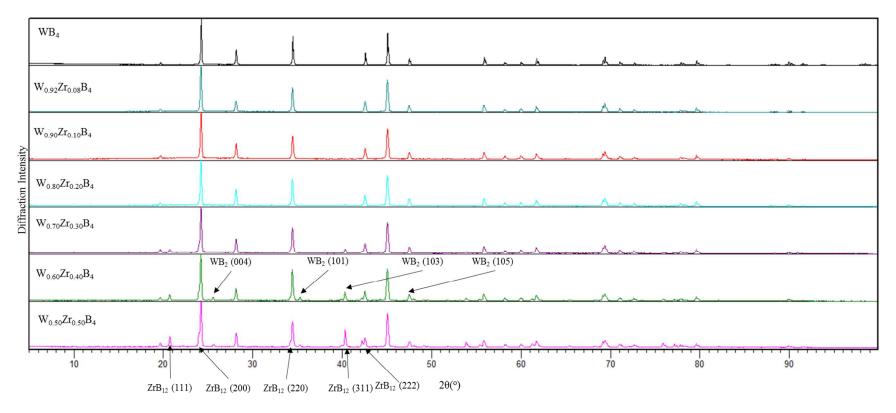

## **Supplemental Information**

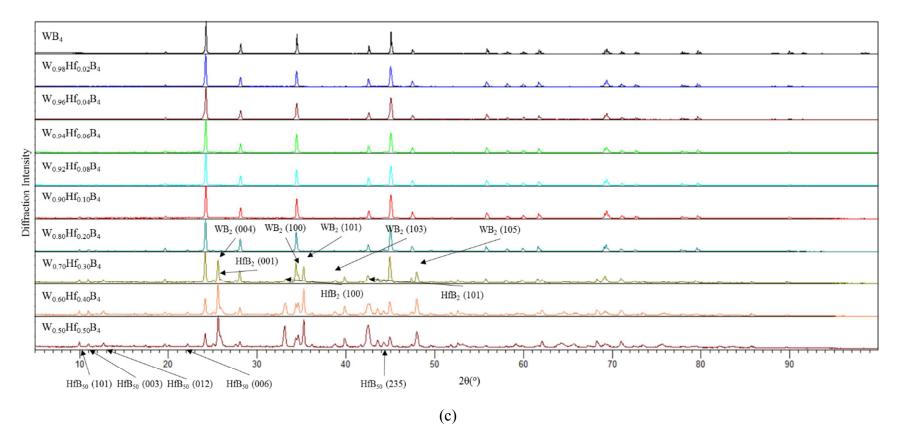
## Extrinsic Hardening of Superhard Tungsten Tetraboride Alloys with Group 4 Transition Metals


*Georgiy Akopov<sup>1</sup>, Michael T. Yeung<sup>1</sup>, Christopher L. Turner<sup>1</sup>, Reza Mohammadi<sup>2</sup>, and Richard B. Kaner<sup>1,3,4\*</sup>* 

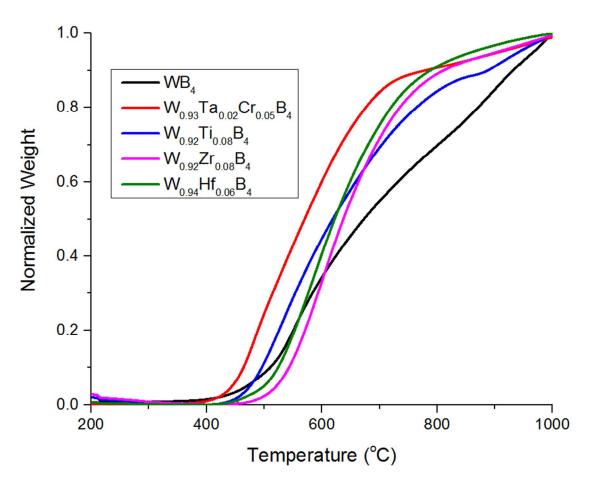
<sup>1</sup>Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA <sup>2</sup>Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA <sup>3</sup>Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA <sup>4</sup>California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA


\* Corresponding author: kaner@chem.ucla.edu




**Figure S1.** (Left) crystal structure of  $\beta$ -rhombohedral boron (ICSD 68104), showing characteristic boron icosahedra; (Right) crystal structure of a solid solution of hafnium in  $\beta$ -rhombohedral boron (known as the  $\beta$ -rhombohedral boron doping phase of hafnium – HfB<sub>50</sub>) (ICSD 40396), showing Hf atoms in positions of some of the boron icosahedra. (Boron atoms are in yellow, hafnium atoms are in maroon).




(a)







**Figure S2.** Powder XRD patterns of alloys of WB<sub>4</sub> with 2-50 at.% (a) Ti, (b) Zr and (c) Hf added on a metals basis. The top spectrum in each set is pure WB<sub>4</sub> (JCPDS 00-019-1373). The solubility limit is less than 20 at.% for Ti, 10 at.% for Zr and below 8 at.% for Hf. Above 20 at.% Ti, the secondary phases TiB<sub>2</sub> (JCPDS 01-075-0967), above 20 at.% Zr, ZrB<sub>12</sub> (JCPDS 03-065-7806) and above 10 and 20 at.% Hf, HfB<sub>50</sub> (known as the  $\beta$ -rhombohedral boron doping phase of hafnium) and HfB<sub>2</sub> (JCPDS 01-086-2400 and 01-089-3651) appear, respectively. In addition, peaks corresponding to WB<sub>2</sub> (JCPDS 01-073-1244) are observed at 40 at.% Zr and 30 at.% Hf.



**Figure S3.** Thermal stability of the hardest tungsten tetraboride alloys with Ti, Zr and Hf as measured by thermal gravimetric analysis in air. The data for pure WB<sub>4</sub> and the hardest alloy  $W_{0.93}Ta_{0.02}Cr_{0.05}B_4$  are given for comparison. These data show that  $W_{0.92}Ti_{0.08}B_4$ ,  $W_{0.92}Zr_{0.08}B_4$  and  $W_{0.94}Hf_{0.06}B_4$  are stable up to ~460 °C, ~510 °C and ~490 °C, respectively (using the extrapolated oxidation onset), compared to ~400 °C for pure WB<sub>4</sub> and ~420 °C for the  $W_{0.93}Ta_{0.02}Cr_{0.05}B_4$  alloy.