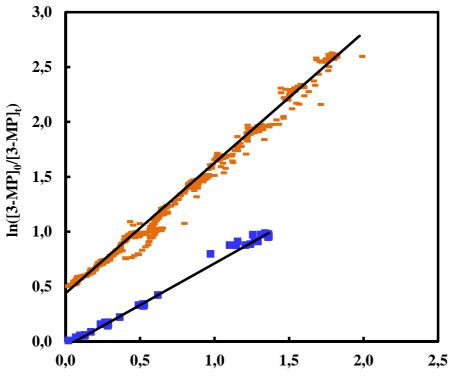
Supporting Information

Kinetic Study of the Gas-Phase Reactions of Nitrate Radicals with Methoxyphenol Compounds: Experimental and Theoretical Approaches

Amélie LAURAGUAIS^(1,2), Atallah EL ZEIN^(1,2), Cécile COEUR^{(1,2)*,} Emil OBEID^(1,2), Andy Cassez^(1,2), Marie-Thérèse RAYEZ^(3,4), Jean-Claude RAYEZ^(3,4)

⁽¹⁾Université Lille Nord de FRANCE

⁽²⁾Laboratoire de Physico-Chimie de l'Atmosphère, EA 4493, Wimereux, FRANCE


⁽³⁾ Université de Bordeaux, ISM, UMR 5255, F-33400 Talence, France

⁽⁴⁾ CNRS, ISM, UMR 5255, F-33400 Talence, France

*Corresponding author. Tel.: +33 321 99 64 05; fax: +33 321 99 64 01. Email address: coeur@univ-littoral.fr (C. Coeur).

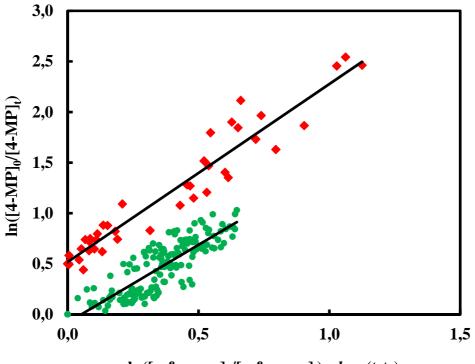

Numbers of Figures: 10

Figure S1. Kinetic data plot for the reaction of 3-methoxyphenol (3-MP) with nitrate radicals at (294 ± 3) K using *m*-cresol (•) and *o*-cresol (•) as reference compounds. For clarity, data obtained with *m*-cresol have been vertically shifted by 0.5 units. The organic compound concentrations were monitored with PTR-ToF-MS.

ln([reference]₀/[reference]_t)

Figure S2. Kinetic data plot for the reaction of 4-methoxyphenol (4-MP) with nitrate radicals at (294 \pm 3) K using α -phellandrene (\blacklozenge) and catechol (\bullet) as reference compounds. For clarity, data obtained with α -phellandrene have been vertically shifted by 0.5 units. The organic compound concentrations were monitored with PTR-ToF-MS.

 $ln([reference]_0/[reference]_t) - k_{wall}(t-t_0)$

Figure S3. Kinetic data plot for the reaction of 2-methoxy-4-methylphenol (2-M-4-MeP) with nitrate radicals at (294 \pm 3) K using α -phellandrene (\blacklozenge) and catechol (\bullet) as reference compounds. For clarity, data obtained with α -phellandrene have been vertically shifted by 0.5 units. The organic compound concentrations were monitored with PTR-ToF-MS.

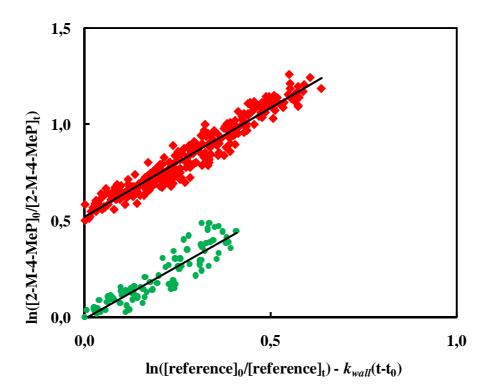


Figure S4. Kinetic data plot for the reaction of syringol (2,6-DMP) with nitrate radicals at (294 ± 3) K using catechol (•) and 3-methylcatechol (•) as reference compounds. For clarity, data obtained with catechol have been vertically shifted by 0.5 units. The organic compound concentrations were monitored with PTR-ToF-MS.

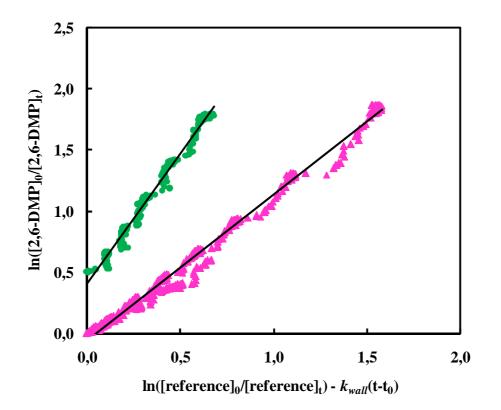


Figure S5. Relative stability, ΔE_0 , of the adducts formed from the reaction of 2-MP with nitrate radicals (calculation performed using DFT: UM06-2X/6-31G(d,p)).

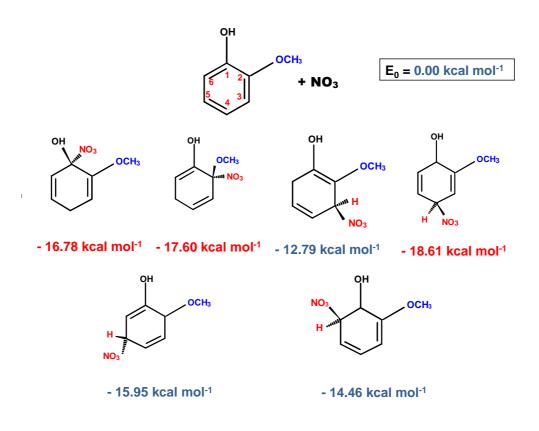


Figure S6. Relative stability, ΔE_0 , of the adducts formed from the reaction of 3-MP with nitrate radicals (calculation done using DFT: UM06-2X/6-31G(d,p)).

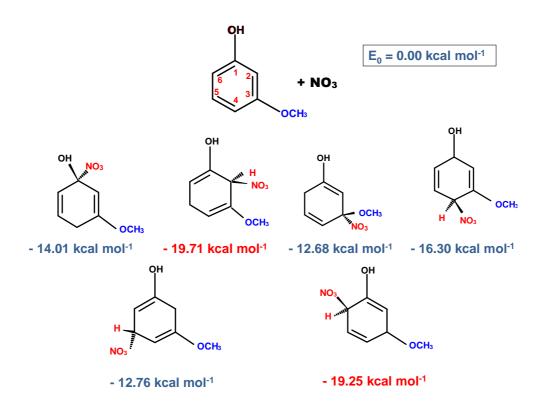


Figure S7. Relative stability, ΔE_0 , of the adducts formed from the reaction of 4-MP with nitrate radicals (calculation done using DFT: UM06-2X/6-31G(d,p)).

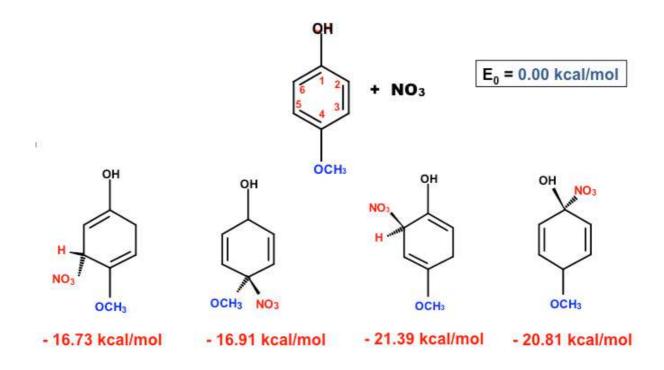


Figure S8. Relative stability, ΔE_0 , of the adducts formed from the reaction of 2-M-4-MeP with nitrate radicals (calculation done using DFT: UM06-2X/6-31G(d,p)).

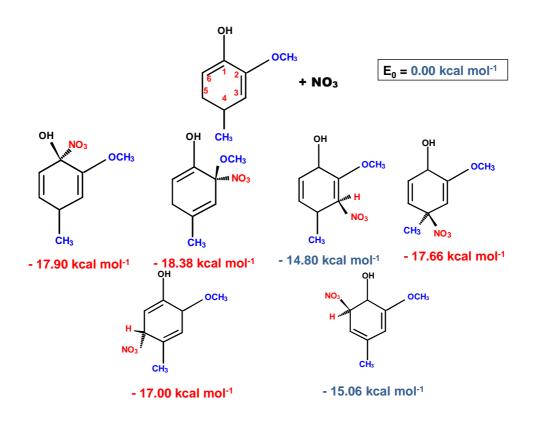
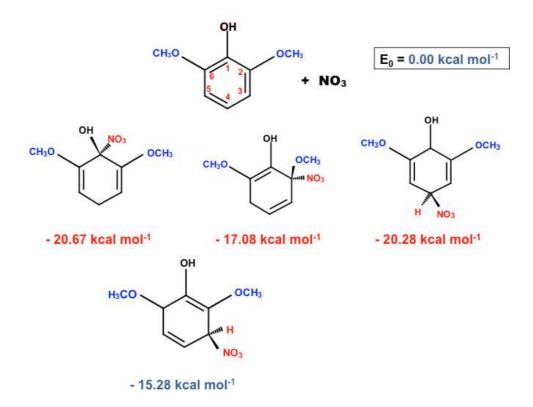



Figure S9. Relative stability, ΔE_0 , of the adducts formed from the reaction of 2,6-DMP with nitrate radicals (UM06-2X/6-31G(d,p) calculations).

S10. Theoretical NO₃ rate constants calculated if NO₃ is considered as a D_{3h} symmetry system

If NO₃ is considered as a D_{3h} symmetry system, then $d_{NO3} = 0$. Consequently, we have to consider an interaction dipole-quadrupole and the long-range rate constant k takes now the following form (T independent):

$$k = 0.8568 \times \pi (d_A.Q_B/\mu)^{1/2}$$
 (*

The calculated value of the quadrupole moment of NO₃ is: $Q_{NO3} = 21.5$ Buckingham = 21.5 10^{-26} esu CGS. Using this formula, we get the following values for the NO₃ rate coefficients (in cm³ molecule⁻¹ s⁻¹): $k_{2-MP(\text{theoretical})} = 23 \times 10^{-11}$, $k_{3-MP(\text{theoretical})} = 20 \times 10^{-11}$, $k_{4-MP(\text{theoretical})} = 11 \times 10^{-11}$, $k_{2M-4-MeP(\text{theoretical})} = 20 \times 10^{-11}$ and $k_{2-6 \text{ DMP(theoretical})} = 21 \times 10^{-11}$. These values are in the same range of magnitude and in the same order than those calculated using the value 0.71D for the dipole moment of NO₃. So, the theoretical calculations lead to similar NO₃ rate coefficients for the methoxyphenols if NO₃ is considered with a C_{2v} (interaction dipole-dipole) or D_{3h} symmetry (interaction dipole-quadrupole).

^(*) Stoecklin, T.; C.E. Dateo, C. E.; Clary, D. C. Rate Constant Calculations on fast Diatom-Diatom Reactions *J. Chem. Soc. Faraday Trans.*, **1991**, *87*, 1667-1679.