Silicon amine reagents for the photocatalytic synthesis of piperazines from aldehydes and ketones

Supporting Information

Sheng-Ying Hsieh and Jeffrey W. Bode*

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences ETH Zürich, Zürich 8093, Switzerland

bode@org.chem.ethz.ch

Table of Contents

1.	General information2
	1.1 Materials
	1.2 Blue light reactor and the photocatalytic reaction
	1.3 Reaction monitoring and purification
	1.4 Characterization instruments
2.	Preparation of SLAP reagents
	2.1 Synthesis of SLAP reagent 2
	2.2 Synthesis of SLAP reagent 3
	2.3 Synthesis of SLAP reagent 10
	2.4 Synthesis of SLAP reagent 11
	2.5 Synthesis of SLAP reagent 12
	2.6 Synthesis of SLAP reagent 13
	2.7 Synthesis of SLAP reagent 14
	2.8 Synthesis of SLAP reagent 15
3.	Photocatalytic synthesis of piperazines with SLAP reagents
	3.1 Optimized conditions for cyclization
	3.2 General procedure
	3.3 Substrate scope
	3.4 Procedure for N-Bn deprotection
4.	X-ray crystallography
5.	NMR spectra

1. General information

Reactions with anhydrous solvents were carried out in oven-dried glassware under N_2 using standard manifold techniques.¹

1.1 Materials

Compounds that are not described in the experimental part were synthesized according to literature procedures. Unless otherwise stated, chemicals were purchased from ABCR, Acros, Alfa Aesar, Apollo Scientific, Fluorochem, Maybridge, Merck, Sigma-Aldrich, Strem, or TCI, and were used without further purification. Common organic solvents were used as supplied (ACS or HPLC grade). Anhydrous MeCN, CH_2Cl_2 , and THF (HPLC grade) were freshly dried by passage over activated alumina under an inert atmosphere of N_2 . 1,1,1,3,3,3-Hexafluoro-2-propanol is abbreviated to HFIP, and 2,2,2-trifluoroethanol to TFE.

All the synthesized SLAP reagents were stored under 4 °C to avoid the decomposition.

1.2 Blue light reactor and the photocatalytic reaction

Nichia LumiFlex LED strip (blue light, $\lambda_{max} = 467$ nm, 6 W for 30 LEDs) were purchased from Lumitronix[®] LED-Technik (<u>http://www.leds.de/</u>) and assembled in a 15×12×12 cm³ metal case with total 150 blue LEDs (**maximum power: 30 W**). The case was also equipped with a cooling fan (12×12 cm²) to maintain the temperature at room temperature. Detailed specification of the blue LEDs can be found in this webpage: <u>http://www.leds.de/en/LED-strips-modules-oxid-oxid/Flexible-LED-strips/LumiFlex-LED-Leiste-30-LEDs-50cm-24V-blue.html</u>.

Photocatalytic reactions were carried out in closed glass vials (sizes depended on reaction scales), neither degassed beforehand nor conducted under dry conditions. The vials were exposed next to the blue LEDs as shown in Figure S1.

Figure S1. Blue light reactor/reaction setup. We thank Mr. Benedikt Wanner from the Bode group of Laboratorium für Organische Chemie at ETH Zürich for the construction of this blue reactor.

⁽¹⁾ Leonard, J.; Lygo, B.; Procter, G. Advanced Practical Organic Chemistry, Taylor & Francis, 1998.

1.3 Reaction monitoring and purification

Thin layer chromatography (TLC) was performed on glass-backed plates pre-coated with silica gel (*Merck*, Silica Gel 60 F254), and visualized by UV quenching and by staining with basic KMnO₄, ninhydrin solution, or phosphomolybdic acid.

Flash column chromatography² was performed on silica gel (*Silicycle* SiliaFlash F60, 230–400 mesh) using a forced flow of eluent at 0.4-0.5 bar.

1.4 Characterization instruments

NMR spectra were recorded on *Bruker* Avance 400 MHz, and Varian Mercury 300 MHz spectrometers using CDCl₃ as the solvent unless indicated otherwise. The residual signal of the CDCl₃ was used as the internal standard (7.26 ppm in ¹H and 77.160 ppm in ¹³C NMR). No additional internal standard was used in the measurement of ¹⁹F NMR. Peaks of ¹³C NMR from the major rotamer were marked with asterisks if able to be recognized.

Infrared (IR) data was obtained on a JASCO FT-IR-4100 spectrometer with only major peaks being reported.

Optical rotations were measured on a *JASCO* P-2000 polarimeter operating with Tungsten-Halogen (WI) lamp at 589 nm through a 100 mm path length cell.

Melting points (m.p.) were measured on an *Electrothermal Mel-Temp* melting point apparatus and were uncorrected.

High resolution mass spectra were measured by the Mass Spectrometry Service Facility of Laboratorium für Organische Chemie at ETH Zürich on a Bruker Daltonics maXis for ESI-Q-TOF spectrometer (ESI-MS).

2. Preparation of SLAP reagents

2.1 Synthesis of SLAP reagent 2

2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1)

The procedure was modified from the literature.³ A mixture of *N*-phenylethane-1,2-diamine (2.62 mL, 20.00 mmol, 1.00 equiv) and phthalic anhydride (2.96 g, 20.00 mmol, 1.00 equiv) in toluene (20 mL) was heated for reflux with Dean-Stark apparatus overnight. The reaction was cooled and condensed under vacuo. Treated with the mixture of EtOAc and hexanes, the desired product was obtained as a white solid (4.24 g, 80%).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.84 (dd, J = 5.5, 3.0 Hz, 2 H), 7.71 (dd, J = 5.5, 3.0 Hz, 2 H), 7.17-7.12 (m, 2 H), 6.69–6.61 (m, 3 H), 4.03 (br, 1 H), 3.97 (t, J = 6.1 Hz, 2 H), 3.44 (t, J = 6.1 Hz, 2 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 168.7, 147.7, 134.2, 132.1, 129.4, 123.5, 117.7, 112.8, 43.1, 37.6; **HRMS** (ESI): calculated for $[C_{16}H_{15}N_2O_2]^+$: m/z = 267.1128, found: m/z = 267.1129.

2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2)

The procedure was modified from the literature.⁴ To an ice-cooled solution of **S1** (1.07 g, 4.00 mmol, 1.00 equiv) in anhydrous CH₂Cl₂ (10 mL, 0.50 M) under N₂ was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate⁵ (0.82 mL, 4.00 mmol, 1.00 equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by 5% NaOH_(aa) (10 mL), the mixture was extracted by CH₂Cl₂ (3×10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under vacuo. The residue

was purified by flash column chromatography to afford the desired product (1.17 g, 83%) as a yellowish oil.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.80 (dd, J = 5.5, 3.0 Hz, 2 H), 7.68 (dd, J = 5.5, 3.0 Hz, 2 H), 7.18-7.12 (m, 2 H), 6.79 (apparent d, J = 7.9 Hz, 2 H), 6.55 (apparent t, J = 7.2 Hz, 1 H), 3.90–3.86 (m, 2 H), 3.61-3.57 (m, 2 H), 2.93 (s, 2 H), 0.11 (s, 9 H).; ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.3, 148.8, 134.0, 132.1, 129.1, 123.2, 115.7, 112.4, 50.0, 41.7, 33.9, -1.1; HRMS (ESI): calculated for $[C_{20}H_{25}N_2O_2S_i]^+$: m/z = 353.1680, found: m/z = 353.1678; **IR** (v/cm⁻¹, neat): 3060, 2952, 2897, 1772, 1714, 1597, 1505, 1394, 1249, 1184, 1122, 1039, 1022, 854, 719.

N^1 -phenyl- N^1 -((trimethylsilyl)methyl)ethane-1,2-diamine (2)

Ň NHa

Hydrazine monohydrate (1.62 mL, 33.20 mmol, 10.00 equiv) was added to a solution of S2 TMS (1.17 g, 3.30 mmol, 1.00 equiv) in EtOH (10 mL, 0.30 M). The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of 5% NaOH(aq) was added to dissolved the white precipitates. EtOH was removed under vacuo and the remained aqueous layer was extracted by CH₂Cl₂ (3×10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under vacuo to afford the desired product (0.69 g, 94%) as a colorless oil without further purification.

(3) Cul, A.; Daïch, A.; Decroix, B.; Sanz, G.; Van Hijfte, L. Tetrahedron 2004, 60, 11029-11039.

(4) Kawanishi, N.; Shirai, N.; Sato, Y.; Hatano, K.; Kurono, Y. J. Org. Chem. 1995, 60, 4272-4275.

(5) (a) The reagent was prepared from (trimethylsilyl)methanol and triflate anhydride by the procedure reported in Anderson, W. K.; Milowsky, A. S. J. Med. Chem. **1986**, 29, 2241–2249; (b) d = 1.16 g/mL.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.22–7.17 (m, 2 H), 6.69 (dt, J = 7.8, 1.0 Hz, 2 H), 6.63 (tt, J = 7.1, 1.0 Hz, 1 H), 3.37 (t, J = 6.9 Hz, 2 H), 2.91 (t, J = 6.9 Hz, 2 H), 2.90 (s, 2 H), 1.14 (br, 2 H), 0.08 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 149.4, 129.0, 115.4, 112.4, 55.9, 42.5, 38.9, -0.9; **HRMS** (ESI): calculated for [C₁₂H₂₃N₂Si]⁺: m/z = 223.1625, found: m/z = 223.1627; **IR** (v/cm⁻¹, neat): 3366, 3296, 3060, 2952, 1597, 1505, 1382, 1248, 1193, 1034, 990, 850, 744, 693.

2.2 Synthesis of SLAP reagent 3

2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3)

A mixture of 2-(2-bromoethyl)isoindoline-1,3-dione (7.62 g, 30.00 mmol, 1.00 equiv), *N*-benzyl-1-(trimethylsilyl)methanamine (7.25 mL, 33.00 mmol, 1.10 equiv), and K_2CO_3 (8.29 g, 60.00 mmol, 2.00 equiv) in MeCN (120 mL, 0.25 M) was heated under reflux for 2 days. The reaction was cooled to room temperature, filtered, washed with CH₂Cl₂. The combined filtrate was condensed and the residue was purified by flash column chromatography to afford the desired product (8.63 g, 79%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.81 (dd, J = 5.5, 3.0 Hz, 2 H), 7.71 (dd, J = 5.5, 3.0 Hz, 2 H), 7.17– 7.09 (m, 5 H), 3.77 (t, J = 6.3 Hz, 2 H), 3.54 (s, 2 H), 2.60 (t, J = 6.3 Hz, 2 H), 2.09 (s, 2 H), 0.03 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 168.2, 139.8, 133.8, 132.4, 128.8, 128.1, 126.8, 123.1, 61.9, 54.9, 46.3, 36.0, -1.2; **HRMS** (ESI): calculated for [C₂₁H₂₇N₂O₂Si]⁺: m/z = 367.1836, found: m/z = 367.1838; **IR** (v/cm⁻¹, neat): 2952, 2793, 1772, 1714, 1395, 1248, 1085, 1069, 1018, 855, 721.

N^{1} -benzyl- N^{1} -((trimethylsilyl)methyl)ethane-1,2-diamine (3)

Bn Hydrazine monohydrate (11.15 mL, 228.70 mmol, 10.00 equiv) was added to a solution of **S3** (8.36 g, 22.90 mmol, 1.00 equiv) in EtOH (46 mL, 0.50 M). The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of 5% NaOH_(aq) was added to dissolved the white precipitates. EtOH was removed under *vacuo* and the remained aqueous layer was extracted by CH₂Cl₂ (3×50 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the desired product (5.12 g, 94%) as a colorless oil without further purification.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.35–7.23 (m, 5 H), 3.53 (s, 2 H), 2.72 (t, J = 5.9 Hz, 2 H), 2.39 (t, J = 5.9 Hz, 2 H), 2.00 (s, 2 H), 1.30 (br, 2 H), 0.10 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 140.2, 128.9, 128.3, 126.9, 62.4, 60.4, 46.4, 39.8, -1.2; **HRMS** (ESI): calculated for $[C_{13}H_{25}N_2Si]^+$: m/z = 237.1782, found: m/z = 237.1785; **IR** (v/cm⁻¹, neat): 3369, 3028, 2952, 2789, 1585, 1453, 1248, 1028, 854, 738, 699.

92%) as a colorless oil.

2.3 Synthesis of SLAP reagent 10

(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4)

^{Bn} $N \rightarrow TMS$ Me $N \rightarrow MBoc$ Me $N \rightarrow MBoc$ $N \rightarrow MBoc$

under *vacuo*. The residue was purified by flash column chromatography to afford the desired product (6.68 g,

 $[\alpha]_D^{24}$ (c = 1.0, CHCl₃) = -27.7; the ratio of rotamers was 75:25 as determined by ¹H NMR at room temperature; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.38–7.26 (m, 3.00 H), 7.20–7.15 (m, 2.00 H), 5.57 (d, J = 8.2 Hz, 0.25 H), 5.44 (d, J = 8.2 Hz, 0.75 H), 5.03 (d, J = 14.8 Hz, 0.25 H), 4.73–4.65 (m, 1.00 H), 4.66 (d, J = 16.5 Hz, 0.75 H), 4.57 (d, J = 16.5 Hz, 0.75 H), 4.19 (d, J = 14.8 Hz, 0.25 H), 2.87 (s, 1.50 H), 2.83 (s, 0.50 H), 1.45 (s, 2.25 H), 1.43 (s, 6.75 H), 1.36 (d, J = 6.7 Hz, 0.75 H), 1.27 (d, J = 6.8 Hz, 2.25 H), 0.13 (s, 2.25 H), 0.06 (s, 6.75 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 172.7, 172.3*, 155.2*, 155.0, 136.9, 136.4*, 129.0, 128.7*, 127.8, 127.7*, 127.5*, 126.8, 79.5*, 79.4, 53.2*, 50.2, 46.4, 46.0*, 38.7*, 38.1, 28.44, 28.43*, 19.5*, 19.4, -1.2*, -1.6; HRMS (ESI): calculated for [C₁₉H₃₂N₂NaO₃Si]⁺: m/z = 387.2074, found: m/z = 387.2074; IR (v/cm⁻¹, neat): 3424, 3311, 2978, 1713, 1634, 1453, 1366, 1249, 1169, 1028, 854, 731, 698

(S)-2-Amino-N-benzyl-N-((trimethylsilyl)methyl)propanamide (S5)

^{Bn} N_{H_2} ^N N_{H_2} ^N

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = -50.2; the ratio of rotamers was 75:25 as determined by ¹H NMR at room temperature; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.36–7.24 (m, 3 H), 7.16–7.12 (m, 2 H), 5.10 (d, *J* = 14.8 Hz, 0.25 H), 4.63 (d, *J* = 16.7 Hz, 0.75 H), 4.37 (d, *J* = 16.7 Hz, 0.75 H), 4.06 (d, *J* = 14.8 Hz, 0.25 H), 3.78–3.70 (m, 1 H), 3.15 (d, *J* = 14.9 Hz, 0.75 H), 2.83 (d, *J* = 16.3 Hz, 0.25 H), 2.68 (d, *J* = 16.3 Hz, 0.25 H), 2.57 (d, *J* = 14.9 Hz, 0.75 H), 1.70 (br, 2 H), 1.27 (d, *J* = 6.8 Hz, 0.75 H), 1.27 (d, *J* = 6.7 Hz, 2.25 H), 0.10 (s, 2.25 H), 0.04 (s, 6.75 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 176.1, 175.7*, 137.3, 136.6*, 129.0*, 128.7, 127.81, 127.77*, 127.4, 126.4*, 52.8*, 50.3, 47.0, 46.9*, 38.9*, 37.6, 22.2*, 21.4, -1.2*, -1.5; HRMS (ESI): calculated for [C₁₄H₂₅N₂OSi]⁺: m/z = 265.1731, found: m/z = 265.1734; **IR** (v/cm⁻¹, neat): 3364, 3297, 2953, 2897, 1633, 1453, 1248, 995, 851, 732, 697.

(6) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660–5661.

(S)-N¹-Benzyl-N¹-((trimethylsilyl)methyl)propane-1,2-diamine (10)

To an ice-cooled solution of S5 (1.85 g, 7.00 mmol, 1.00 equiv) in anhydrous THF (35 mL, TMS 0.20 M), LiAlH₄ (0.80 g, 21.00 mmol, 3.00 equiv) was added slowly and portionwise (CAUTION!⁷). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with 20% NaOH_(aq) before filtered and washed with EtOAc. The combined filtrate was condensed under vacuo, and the desired product was obtained as a colorless oil without further purification (1.71 g, 98%).

 $[\alpha]_{D}^{25}$ (c = 1.0, CHCl₃) = +85.8; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.32–7.27 (m, 4 H), 7.24–7.20 (m, 1 H), 3.73 (d, J = 13.5 Hz, 1 H), 3.26 (d, J = 13.5 Hz, 1 H), 3.02-2.94 (m, 1 H), 2.17 (dd, J = 12.2, 9.1 Hz, 1H), 2.11 (dd, J = 12.2, 4.4 Hz, 1 H), 2.10 (d, J = 14.8 Hz, 1 H), 1.88 (br, 2 H), 1.85 (d, J = 14.8 Hz, 1 H), 0.97 (d, J = 6.4 Hz, 3 H), 0.07 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 140.0, 129.0, 128.3, 127.0, 66.7, 62.7, 47.0, 44.6, 21.0, -1.1; **HRMS** (ESI): calculated for $[C_{14}H_{27}N_2Si]^+$: m/z = 251.1938, found: m/z = 251.1941; IR (v/cm⁻¹, neat): 3359, 2956, 2790, 1585, 1453, 1365, 1248, 1062, 840, 740, 699.

(7) The addition of $LiAlH_4$ must be slow. Stop the addition if the reaction is too drastic, and continue the addition while the reaction returns gentle.

2.4 Synthesis of SLAP reagent 11

1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6)

The procedure was modified from the literature.⁸ K_2CO_3 (34.6 g, 250.0 mmol, 2.5 equiv) was added to a solution of 1-aminocyclohexanecarboxylic acid (14.3 g, 100.0 mmol, 1.0 equiv) in MeOH (50 mL) and H₂O (100 mL). A solution of Boc₂O (26.2 g, 120.0 mmol, 1.2 equiv) in MeOH (50 mL) was added dropwise at 0 °C. The mixture was allowed to warm to room

temperature and stirred for 16 h before condensed under *vacuo*. The residue was cooled to 0 °C, acidified with 3 N HCl_(aq) to pH = 5 (ca. 180 mL), and extracted with EtOAc (4×150 mL). The extracts were combined, washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the crude product. After washed with Et₂O, the pure product was obtained as a white solid (13.7 g, 56%).

¹**H NMR** (400 MHz, CD₃OD): δ [ppm] = 4.88 (br, 2 H), 2.02–1.98 (m, 2 H), 1.78 (ddd, J = 13.8, 12.6, 4.2 Hz, 2 H), 1.53–1.45 (m, 5 H), 1.43 (s, 9 H), 1.37–1.22 (m, 1H); ¹³**C NMR** (100 MHz, CD₃OD): δ [ppm] = 178.8, 157.3, 80.1, 59.8, 33.6, 28.8, 26.5, 22.5.

tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7)

The procedure was modified from the literature.⁶ To a mixture of **S6** (4.87 g, 20.00 mmol, 1.00 equiv) and N,N,N',N'-tetramethyl-O-(6-chloro-1H-benzotriazol-1-yl)uronium hexafluorophosphate (HCTU, 9.10 g, 22.00 mmol, 1.10 equiv) in anhydrous CH₂Cl₂ (100 mL, 0.20 M) was sequentially added ^{*i*}Pr₂NEt (7.61 mL, 44.00 mmol, 2.20 equiv) and *N*-benzyl-1-(trimethylsilyl)methanamine (4.40 mL, 20.00 mmol, 1.00 equiv). The mixture

was stirred under N₂ at room temperature overnight. The reaction was washed with 1 N HCl_(aq) (3×50 mL), sat. NaHCO_{3(aq)} (1×50 mL), and brine. The final organic layer was dried over Na₂SO₄, filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography to afford the desired product (4.24 g, 51%) as a white solid.

m.p.: 120–121 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.36–7.20 (m, 5 H), 4.90 (s, 2 H), 4.77 (br, 1 H), 2.76 (s, 2 H), 2.11 (apparent d, J = 13.8 Hz, 2 H), 1.96 (apparent dt, J = 13.8, 6.8 Hz, 2 H), 1.72–1.59 (m, 3 H), 1.42 (s, 9 H), 1.35–1.29 (m, 3 H), 0.04 (s, 9 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 172.3, 153.7, 137.5, 128.7, 127.3, 127.2, 79.7, 59.1, 53.3, 39.4, 33.2, 28.5, 25.3, 21.7, -0.8; **HRMS** (ESI): calculated for [C₂₃H₃₉N₂O₃Si]⁺: m/z = 419.2724, found: m/z = 419.2721; **IR** (v/cm⁻¹, neat): 3286, 2931, 1693, 1619, 1496, 1390, 1366, 1247, 1163, 853, 731.

1-Amino-N-benzyl-N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8)

The procedure was modified from the literature.^[6] A solution of HCl in dioxane (4.0 M, 60.0 mL, 240.0 mmol, 15.0 equiv) was added to **S7** (6.7 g, 16.0 mmol, 1.0 equiv), and the mixture was stirred at room temperature for 4 h. The reaction was condensed under *vacuo*

(8) Prozymex A/S; Pedersen, J.; Lauritzen, C. WO2012/119941 A1, 2012.

to remove the excess HCl in dioxane, and the residue was basified and partitioned with sat. NaHCO_{3(*aq*)} and CH₂Cl₂. The organic layer was separated and the basic aqueous layer was extracted with CH₂Cl₂ for twice. Organic extracts were combined, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the deprotected amine (5.1 g, quantitative) as a white solid without further purification.

m.p.: 65–66 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.36–7.31 (m, 2 H), 7.27–7.23 (m, 1 H), 7.19–7.16 (m, 2 H), 5.22 (s, 2 H), 2.73 (s, 2 H), 2.03 (ddd, J = 13.9, 10.5, 3.7 Hz, 1 H), 1.67–1.29 (m, 10 H), 0.04 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 175.3, 138.4, 128.7, 127.1, 126.8, 58.4, 54.4, 39.8, 37.4, 25.6, 22.2, -0.8; **HRMS** (ESI): calculated for [C₁₈H₃₁N₂OSi]⁺: m/z = 319.2200, found: m/z = 319.2201; **IR** (v/cm⁻¹, neat): 2925, 2857, 1620, 1452, 1246, 853, 728, 697.

1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11)

To an ice-cooled solution of **S8** (4.78 g, 15.00 mmol, 1.00 equiv) in anhydrous THF (45 mL, 0.30 M), LiAlH₄ (1.71 g, 45.00 mmol, 3.00 equiv) was added slowly and portionwise (CAUTION!⁷). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with 20% NaOH_(aq) before filtered and washed with EtOAc. The combined filtrate was condensed under *vacuo*,

and the desired product was obtained as colorless oil without further purification (4.34 g, 95%).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.36–7.29 (m, 4 H), 7.26–7.22 (m, 1 H), 3.61 (s, 2 H), 2.37 (s, 2 H), 2.23 (s, 2 H), 1.52–1.35 (m, 5 H), 1.29–1.18 (m, 7 H), 0.12 (s, 9 H); ¹³**C** NMR (100 MHz, CDCl₃): δ [ppm] = 140.4, 129.2, 128.2, 126.9, 69.6, 64.5, 52.0, 50.8, 37.6, 26.2, 22.0, -0.8; **HRMS** (ESI): calculated for $[C_{18}H_{33}N_2Si]^+$: m/z = 305.2408, found: m/z = 305.2407; **IR** (v/cm⁻¹, neat): 2926, 2853, 1495, 1450, 1363, 1247, 1068, 855, 741, 699.

2.5 Synthesis of SLAP reagent 12

trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S9)

To a solution of 3,4-epoxytetrahydrofuran (2.15 mL, 30.00 mmol, 1.00 equiv) in EtOH (10 mL, 3.00 M) was added (trimethylsilyl)methanamine (4.22 mL, 31.50 mmol, 1.05 equiv). The mixture was heated under reflux for 2 days. The reaction was cooled to room temperature and condensed under *vacuo* to afford the desired product (5.67 g, quantitative) oil without further purification

as a colorless oil without further purification.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 4.13 (ddd, J = 4.3, 2.7, 1.3 Hz, 1 H), 4.04 (dd, J = 9.1, 5.6 Hz, 1 H), 3.95 (dd, J = 9.8, 4.6 Hz, 1 H), 3.65 (dd, J = 9.8, 2.7 Hz, 1 H), 3.55 (dd, J = 9.1, 3.4 Hz, 1 H), 3.08 (ddd, J = 5.6, 3.4, 1.3 Hz, 1 H), 2.20 (br, 2 H), 2.05 (s, 2 H), 0.02 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 76.1, 74.2, 72.3, 70.7, 38.4, -2.6; **HRMS** (ESI): calculated for [C₈H₂₀NO₂Si]⁺: m/z = 190.1258, found: m/z = 190.1262; **IR** (v/cm⁻¹, neat): 3390, 2953, 2871, 1660, 1464, 1421, 1249, 1074, 856.

trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10)

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.39–7.32 (m, 4 H), 7.29–7.25 (m, 1 H), 4.42 (ddd, J = 5.8, 4.2, 3.0 Hz, 1 H), 3.96 (dd, J = 9.8, 5.8 Hz, 1 H), 3.91 (dd, J = 9.6, 7.8 Hz, 1 H), 3.71 (dd, J = 9.6, 5.5 Hz, 1 H), 3.65 (apparent d, J = 3.2 Hz, 2 H), 3.58 (dd, J = 9.8, 4.2 Hz, 1 H), 3.26 (ddd, J = 7.8, 5.5, 3.0 Hz, 1 H), 2.20 (br, 1 H), 2.12 (d, J = 14.8 Hz, 1 H), 2.04 (d, J = 14.8 Hz, 1 H), 0.10 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 139.8, 128.6, 128.4, 127.1, 75.1, 72.9, 71.7, 69.1, 59.4, 42.4, -1.3; HRMS (ESI): calculated for [C₁₅H₂₆NO₂Si]⁺: m/z = 280.1727, found: m/z = 280.1728; **IR** (v/cm⁻¹, neat): 3410, 2952, 2860, 1495, 1454, 1422, 1365, 1249, 1074, 856, 740, 699.

2-(*trans*-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11)

S10 (5.55 g, 20.00 mmol, 1.00 equiv), phthalimide (2.94 g, 20.00 mmol, 1.00 equiv), and PPh₃ (5.25 g, 20.00 mmol, 1.00 equiv) were dissolved in anhydrous THF (80 mL, 0.25 M) under N₂. This clear solution was cooled to 0 °C and diisopropyl azodicarboxylate (DIAD, 3.94 mL, 20.00 mmol, 1.00 equiv) was added dropwise. The reaction was allowed to warm to room temperature and stirred under N₂ overnight. After the solvent was removed under *vacuo*, the residue was purified by flash column chromatography to afford the *trans*

product⁹ (6.67 g, 83%) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.84–7.79 (m, 2 H), 7.75–7.71 (m, 2 H), 7.10–7.00 (m, 5 H), 4.96 (ddd, J = 8.7, 8.7, 4.6 Hz, 1 H), 4.14–4.07 (m, 2 H), 3.99–3.84 (m, 3 H), 3.68 (d, J = 13.9 Hz, 1 H), 3.40 (d, J = 13.9 Hz, 1 H), 2.16 (d, J = 14.8 Hz, 1 H), 2.03 (d, J = 14.8 Hz, 1 H), 0.03 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 167.8, 139.4, 134.2, 131.8, 128.3, 128.2, 127.0, 123.3, 70.9, 68.9, 65.1, 58.8, 49.4, 40.5, – 1.4; **HRMS** (ESI): calculated for $[C_{23}H_{29}N_2O_3Si]^+$: m/z = 409.1942, found: m/z = 409.1943; **IR** (v/cm⁻¹, neat): 2953, 2877, 1773, 1714, 1387, 1248, 1088, 924, 857, 720.

*trans-N*³-Benzyl-*N*³-((trimethylsilyl)methyl)tetrahydrofuran-3,4-diamine (12)

Hydrazine monohydrate (2.98 mL, 61.20 mmol, 10.00 equiv) was added to a solution of **S11** (2.50 g, 6.10 mmol, 1.00 equiv) in EtOH (18 mL, 0.30 M). The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was

 H^{NH_2} cooled to room temperature and sufficient amount of 5% NaOH_(aq) was added to dissolved the white precipitates. EtOH was removed under *vacuo* and the remained aqueous layer was extracted by CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the desired product (1.62 g, 95%) as a colorless oil without further purification.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.36–7.29 (m, 4 H), 7.26–7.21 (m, 1 H), 4.00 (dd, J = 9.0, 6.7 Hz, 1 H), 3.84–3.77 (m, 2 H), 3.69 (d, J = 14.1 Hz, 1 H), 3.52 (d, J = 14.1 Hz, 1 H), 3.50 (apparent td, J = 6.7, 4.9 Hz, 1 H), 3.28 (dd, J = 9.0, 6.7 Hz, 1 H), 3.02 (apparent dt, J = 7.4, 5.6 Hz, 1 H), 2.05 (s, 2 H), 1.25 (br, 2 H), 0.07 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 140.0, 128.5, 128.4, 127.1, 75.3, 71.7, 67.8, 59.5, 53.5, 41.7, -1.3; **HRMS** (ESI): calculated for [C₁₅H₂₇N₂OSi]⁺: m/z = 279.1887, found: m/z = 279.1887; **IR** (v/cm⁻¹, neat): 3368, 2951, 2853, 1602, 1494, 1453, 1247, 1052, 838, 738, 698.

2.6 Synthesis of SLAP reagent 13

2-(*trans*-2-Aminocyclohexyl)isoindoline-1,3-dione (S12)

The procedure was modified from the literature.¹⁰ A stirred suspension of p-TsOH•H₂O (7.6 g, 40.0 mmol, 1.0 equiv) in xylenes (200 mL) was heated to reflux to remove water azeotropically (c.a. 1–2 h). The resulting solution was allowed to cool to room temperature, followed by the addition of *trans*-cyclohexane-1,2-diamine (4.6 g, 40.0 mmol, 1.0 equiv) and phthalic anhydride (5.9 g, 40.0 mmol, 1.0 equiv). The mixture was again

heated to remove water azeotropically overnight and allowed to cool to room temperature. The monoprotected **S12**•*p*-TsOH was obtained by recrystallization from hexanes/xylenes (a white solid, 16.0 g, 96%). **S12**•*p*-TsOH was dissolved in CH₂Cl₂ (100 mL) and stirred with sat. NaHCO_{3(aq)} (100 mL) at room temperature overnight. After the organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ ($3 \times 100 \text{ mL}$). The combined organics were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the desired product **S12** without further purification (a white solid, 7.8 g, 80% from diamine).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.82 (dd, J = 5.4, 3.1 Hz, 2 H), 7.69 (dd, J = 5.4, 3.1 Hz, 2 H), 3.79 (ddd, J = 12.4, 10.5, 3.9 Hz, 1 H), 3.41 (ddd, J = 11.3, 10.5, 4.1 Hz, 1 H), 2.19 (dddd, J = 12.6, 12.6, 12.4, 3.5 Hz, 1 H), 2.07–2.01 (m, 1 H), 1.84–1.73 (m, 1 H), 1.49–1.28 (m, 4 H), 1.19 (dddd, J = 12.8, 11.3, 3.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.9, 134.0, 132.1, 123.3, 58.7, 51.0, 36.8, 29.5, 25.8, 25.2.

2-(*trans*-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13)

The procedure was followed by the literature.^{10a} A solution of **S12** (9.77 g, 40.00 mmol, 1.00 equiv) and benzaldehyde (4.87 mL, 48.00 mmol, 1.20 equiv) in benzene (100 mL) with Dean–Stark apparatus overnight. The reaction was allowed to cool to room temperature and poured into hexanes. The desired product was obtained from the recrystallization as a white solid (12.79 g, 96%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.63 (dd, J = 5.4, 3.1 Hz, 2 H), 7.50 (dd, J = 5.4, 3.1 Hz, 2 H), 7.47–7.45 (m, 2 H), 7.22–7.15 (m, 3 H), 4.33 (ddd, J = 12.7, 10.6, 3.8 Hz, 1 H), 3.96 (ddd, J = 10.6, 10.6, 4.3 Hz, 1 H), 2.17 (dddd, J = 12.7, 12.7, 11.8, 3.0 Hz, 1 H), 1.82–1.61 (m, 5 H), 1.49–1.35 (m, 2 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 168.6, 160.9, 136.3, 133.8, 131.9, 130.6, 128.5, 128.2, 123.1, 69.5, 55.8, 34.3, 28.9, 25.7, 24.3.

^{(10) (}a) Kaik, M.; Gawroński, J. Tetrahedron: Asymmetry 2003, 14, 1559–1563; (b) Bui, T.; Syed, S.; Barbas, C. F. J. Am. Chem. Soc. 2009, 131, 8758–8759.

2-(trans-2-(Benzylamino)cyclohexyl)isoindoline-1,3-dione (S14)

The procedure was modified from the literature.^{10a} To a solution of imine **S13** (9.97 g, 30.00 mmol, 1.00 equiv) in dry MeCN (240 mL, 0.13 M) at 0 °C was added NaBH₃CN (4.71 g, 75.00 mmol, 2.50 equiv) and AcOH (0.17 mL, 3.00 mmol, 0.10 equiv) sequentially. The reaction was allowed to warm to room temperature and stirred overnight. After solvent was removed under *vacuo*, the residue was extracted with CH_2Cl_2 and sat.

 $NaHCO_{3(aq)}$. The combined organic extracts were washed with brine, dried over Na_2SO_4 , filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography to afford the desired product (9.14 g, 91%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.80 (dd, J = 5.5, 3.0 Hz, 2 H), 7.70 (dd, J = 5.5, 3.0 Hz, 2 H), 7.10–7.04 (m, 5 H), 3.96 (ddd, J = 12.4, 11.0, 3.9 Hz, 1 H), 3.81 (d, J = 13.2 Hz, 1 H), 3.59 (d, J = 13.2 Hz, 1 H), 3.26 (td, J = 11.0, 4.1 Hz, 1 H), 2.31–2.20 (m, 2 H), 1.84–1.77 (m, 3 H), 1.45–1.29 (m, 2 H), 1.18–1.08 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 168.9, 141.2, 133.8, 132.2, 128.2, 128.0, 126.7, 123.2, 56.5, 56.1, 50.7, 33.3, 29.6, 25.8, 25.2.

2-(trans-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15)

The procedure was modified from the literature.⁴ To an ice-cooled solution of **S14** (3.00 g, 9.00 mmol, 1.00 equiv) in anhydrous CH_2Cl_2 (45 mL, 0.20 M) under N₂ was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate⁵ (1.83 mL, 9.00 mmol, 1.00 equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by 5% NaOH_(aq) (10 mL), the mixture was extracted by CH₂Cl₂ (3×20 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo*.

The residue was purified by flash column chromatography to afford the desired product (2.88 g, 76%) as a white solid.

m.p.: 78–79 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.80–7.78 (m, 2 H), 7.73–7.70 (m, 2 H), 7.17–7.13 (m, 1 H), 7.09–7.05 (m, 2 H), 6.96–6.94 (m, 2 H), 4.20 (ddd, J = 12.1, 10.8, 3.9 Hz, 1 H), 3.74 (d, J = 13.6 Hz, 1 H), 3.25 (d, J = 13.6 Hz, 1 H), 3.25–3.20 (m, 1 H), 2.35–2.24 (m, 1 H), 2.13 (d, J = 14.2 Hz, 1 H), 2.06–2.02 (m, 1 H), 1.91 (d, J = 14.2 Hz, 1 H), 1.86–1.75 (m, 3 H), 1.36–1.24 (m, 3 H), -0.05 (s, 9 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = <u>168.5, 168.1</u>, 140.2, 133.7, <u>132.7, 132.2</u>, 128.6, 128.0, 126.7, <u>123.1</u>, <u>122.8</u>, 59.7, 57.0, 51.9, 40.9, 29.8, 26.0, 25.2, 22.5, -1.2; **HRMS** (ESI): calculated for [C₂₅H₃₃N₂O₂Si]⁺: m/z = 421.2306, found: m/z = 421.2307; **IR** (v/cm⁻¹, neat): 2933, 1767, 1708, 1389, 1246, 1076, 847, 718.

*trans-N*¹-Benzyl-*N*¹-((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13)

 H_{H}^{Bn} H_{I}^{N} H_{I}^{TMS} Hydrazine monohydrate (5.85 mL, 120.00 mmol, 10.00 equiv) was added to a solution of **S15** (5.05 g, 12.00 mmol, 1.00 equiv) in EtOH (120 mL, 0.10 M). The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of 5% NaOH_(aq) was added to dissolved the white precipitates. EtOH was removed under *vacuo* and the remained aqueous layer was extracted by CH₂Cl₂ (3×50 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the desired product (3.25 g, 93%) as a colorless oil without further purification.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.30 (d, J = 4.4 Hz, 4 H), 7.25–7.20 (m, 1 H), 3.83 (d, J = 13.6 Hz, 1 H), 3.27 (d, J = 13.6 Hz, 1 H), 2.60 (ddd, J = 10.4, 10.4, 4.2 Hz, 1 H), 2.12–2.04 (m, 1 H), 2.07 (d, J = 14.6 Hz, 1 H), 1.93 (d, J = 14.6 Hz, 1 H), 1.99–1.84 (m, 4 H), 1.81–1.76 (m, 1 H), 1.65–1.60 (m, 1 H), 1.25–1.07 (m, 3 H), 1.04–0.93 (m, 1 H), 0.06 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 140.6, 128.8, 128.4, 126.8, 67.0, 56.9, 51.6, 41.1, 35.2, 25.8, 25.3, 21.0, -1.1; HRMS (ESI): calculated for $[C_{17}H_{31}N_{2}Si]^{+}$: m/z = 291.2251, found: m/z = 291.2250; **IR** (v/cm⁻¹, neat): 3359, 2928, 2856, 1585, 1450, 1364, 1248, 1070, 839, 740. 689.

2.7 Synthesis of SLAP reagent 14

(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16)

(S)-Pyrrolidine-2-carboxamide (2.28 g, 20.00 mmol, 1.00 equiv), (iodomethyl)trimethylsilane (2.97 mL, 20.00 mmol, 1.00 equiv), and Et_3N (2.78 mL, 20.00 mmol, 1.00 equiv) were mixed in anhydrous THF (40 mL, 0.50 M) and heated to reflux

under N_2 overnight. The reaction was cooled to room temperature and condensed under *vacuo*. The residue was purified by flash column chromatography to afford the desired product¹¹ (1.65 g, 41%) as a colorless oil.

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = -112.7; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.08 (br, 1 H), 6.52 (br, 1 H), 3.13–3.08 (m, 1 H), 2.83 (dd, *J* = 10.1, 5.2 Hz, 1 H), 2.25–2.18 (m, 1 H), 2.24 (d, *J* = 14.2 Hz, 1 H), 2.19–2.08 (m, 1 H), 1.84 (d, *J* = 14.2 Hz, 1 H), 1.81–1.71 (m, 3 H), 0.02 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 178.8, 72.3, 56.6, 47.3, 30.4, 24.8, -1.6; HRMS (ESI): calculated for $[C_9H_{21}N_2OSi]^+$: m/z = 201.1418, found: m/z = 201.1418; IR (v/cm⁻¹, neat): 3430, 3258, 2954, 2790, 1682, 1574, 1249, 1107, 853, 763, 693.

(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14)

The provided solution of **S16** (1.50 g, 7.50 mmol, 1.00 equiv) in anhydrous THF (30 mL, 0.25 M), LiAlH₄ (0.85 g, 22.50 mmol, 3.00 equiv) was added slowly and portionwise (CAUTION!⁷). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with 20% NaOH_(aq)

before being filtered and washed with EtOAc. The combined filtrate was condensed under *vacuo*, and the desired product was obtained as colorless oil without further purification (1.28 g, 92%).

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = -83.3; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 3.05 (ddd, J = 8.9, 4.4, 4.4 Hz, 1 H), 2.69 (dd, J = 13.0, 5.1 Hz, 1 H), 2.59 (dd, J = 13.0, 2.7 Hz, 1 H), 2.24 (d, J = 14.2 Hz, 1 H), 2.14 (dddd, J = 7.4, 5.1, 4.9, 2.7 Hz, 1 H), 2.07 (ddd, J = 8.9, 8.6, 8.6 Hz, 1H), 1.79–1.72 (m, 1 H), 1.69–1.53 (m, 3 H), 1.54 (d, J = 14.2 Hz, 1 H), 1.25 (br, 2 H), 0.01 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 69.8, 57.3, 45.4, 43.4, 27.2, 23.3, -1.3; HRMS (ESI): calculated for [C₉H₂₃N₂Si]⁺: m/z = 187.1625, found: m/z = 187.1627; IR (v/cm⁻¹, neat): 3369, 2953, 2777, 1582, 1461, 1418, 1248, 1113, 850, 762, 692.

(11) The product was found to decompose gradually at room temperature over a few weeks.

2.8 Synthesis of SLAP reagent 15

2,2,2-Trifluoro-*N*-(piperidin-2-ylmethyl)acetamide (S17)

The procedure was modified from the literature.¹² To an ice-cooled solution of piperidin-2ylmethanamine (3.64 mL, 30.00 mmol, 1.00 equiv) and Et_3N (4.59 mL, 33.00 mmol, 1.10 equiv) in EtOH (30 mL, 1.00 M), ethyl 2,2,2-trifluoroacetate (3.75 mL, 31.50 mmol, 1.05

 NHCOCF_3 equiv) was added dropwise under N₂. The reaction was allowed to warm to room temperature and stirred for 18 h. After the solvents were removed under *vacuo*, the residue was further recrystallized with Et₂O/hexanes to afford the desired product (4.63 g, 73%) as a white solid.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.19 (br, 1 H), 3.40 (dd, J = 13.7, 4.2 Hz, 1 H), 3.16 (dd, J = 13.7, 7.5 Hz, 1 H), 3.07 (dddd, J = 12.4, 4.1, 2.1, 2.1 Hz, 1 H), 2.75 (dddd, J = 10.9, 7.5, 4.2, 2.8 Hz, 1 H), 2.65–2.59 (m, 1 H), 1.87–1.80 (m, 1 H), 1.83 (br, 1 H), 1.68–1.58 (m, 2 H), 1.47–1.29 (m, 2 H), 1.20–1.10 (m, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 157.6 (q, J = 36.8 Hz), 116.0 (q, J = 287.7 Hz), 55.0, 46.5, 45.0, 30.3, 26.5, 24.1; ¹⁹**F NMR** (377 MHz, CDCl₃): δ [ppm] = -75.8.

2,2,2-Trifluoro-*N*-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18)

TMS TMS TMS TMS TMS THE procedure was modified from the literature.⁴ To an ice-cooled solution of **S17** (3.15 g, 15.00 mmol, 1.00 equiv) in anhydrous CH_2Cl_2 (30 mL, 0.50 M) under N₂ was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate⁵ (3.05 mL, 15.00 mmol, 1.00 equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by 5% NaOH_(aq) (20 mL), the mixture was extracted by CH_2Cl_2 (3×30 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography to afford the desired product (2.66 g, 60%) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.19 (br, 1 H), 3.48 (dd, J = 13.9, 4.8 Hz, 1 H), 3.29 (dd, J = 13.9, 3.2 Hz, 1 H), 2.95 (ddd, J = 12.0, 3.8, 3.8 Hz, 1 H), 2.30–2.25 (m, 1 H), 2.21 (d, J = 14.3 Hz, 1 H), 2.10 (ddd, J = 12.0, 10.8, 2.7 Hz, 1 H), 1.72–1.67 (m, 1 H), 1.63 (d, J = 14.3 Hz, 1 H), 1.62–1.57 (m, 2 H), 1.47–1.27 (m, 3 H), 0.05 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 157.6 (q, J = 37.1 Hz), 116.1 (q, J = 287.8 Hz), 60.9, 54.8, 44.7, 41.6, 28.5, 24.7, 23.6, -1.2; ¹⁹F NMR (377 MHz, CDCl₃): δ [ppm] = -75.9; HRMS (ESI): calculated for [C₁₂H₂₄F₃N₂OSi]⁺: m/z = 297.1605, found: m/z = 297.1607; **IR** (v/cm⁻¹, neat): 3341, 2939, 2859, 2788, 1727, 1525, 1250, 1165, 1065, 861, 702.

(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15)

To a solution of **S18** (2.4 g, 8.1 mmol, 1.0 equiv) in MeOH (20 mL, 0.4 M), *ca*. 25% NH_{3(aq)} (20 mL, 131.3 mmol, 16.2 equiv) was added. The mixture was stirred at room temperature for 2 days before the solvents were removed under *vacuo*. The residue was extracted with CH₂Cl₂ and sat. NaHCO_{3(aq)}. The combined extracts were washed with brine, dried over

 Na_2SO_4 , filtered, and condensed under *vacuo* to afford the desired product (1.6 g, quantitative) as a colorless oil without further purification.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 2.93–2.88 (m, 2 H), 2.61 (dd, *J* = 13.3, 3.4 Hz, 1 H), 2.32 (d, *J* = 14.4 Hz, 1 H), 2.09 (ddd, *J* = 12.1, 11.4, 3.3 Hz, 1 H), 2.09 (ddd, *J* = 11.7, 11.4, 3.1 Hz, 1 H), 2.02–1.96 (m,

(12) Fujita, M.; Chiba, K.; Tominaga, Y.; Hino, Chem. Pharm. Bull. 1998, 46, 787–796.

3 H), 1.70–1.64 (m, 1 H), 1.62 (d, J = 14.4 Hz, 1 H), 1.56–1.43 (m, 4 H), 1.32–1.21 (m, 1 H), 0.03 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 65.6, 55.7, 44.7, 43.6, 28.0, 25.1, 24.0, -0.9; HRMS (ESI): calculated for [C₁₀H₂₅N₂Si]⁺: m/z = 201.1782, found: m/z = 201.1783; **IR** (v/cm⁻¹, neat): 3369, 2933, 2857, 2778, 1683, 1582, 1462, 1248, 1201, 1130, 838, 692.

3. Photocatalytic synthesis of piperazines with SLAP reagents

3.1 Optimized conditions for cyclization

Table S1. Screening of cyclization conditions

entry	imine ^a	condition	result
1	4	Cu(OTf) ₂ (1.0 equiv), 2,6-lutidine (1.0 equiv), 1,2- dichloroethane/HFIP (1:1, 0.10 M), RT, 16 h	imine recovered
2	4	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN (0.05 M), blue light, RT, 16 h	imine recovered
3	5	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN (0.05 M), blue light, RT, 3 h	8 , 73% ^b
4	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN (0.05 M), blue light, RT, 3 h	9a , N.D. ^b (59% ^c)
5	6	$Ir[(ppy)_2dtbbpy]PF_6$ (1 mol %), MeCN/MeOH (9:1, 0.05 M), blue light, RT, 3 h	9a , $62\%^{b}(67\%^{c})$
6	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN/HFIP (9:1, 0.05 M), blue light, RT, 3 h	9a , 67% ^{<i>b</i>} (71% ^{<i>c</i>})
7	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN/TFE (9:1, 0.05 M), blue light, RT, 3 h	9a , 70% ^b
8	6	No catalyst, MeCN (0.05 M), blue light, RT, 3 h	imine recovered
9	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeCN (0.05 M), dark, RT, 3 h	imine recovered
10	6	Ir(ppy) ₃ (1 mol %), MeCN (0.05 M), blue light, RT, 3 h	imine recovered + unidentified products
11	6	$Ru(bpy)_3Cl_2 \bullet 6H_2O$ (1 mol %), MeCN (0.05 M), blue light, RT, 3 h	fully desilylated unidentified products
12	6	Mes-Acr-Me (5 mol %), MeCN (0.05 M), blue light, RT, 3 h	imine recovered
13	6	Mes-Acr-Ph (5 mol %), MeCN (0.05 M), blue light, RT, 3 h	imine recovered
14	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), MeOH (0.05 M), blue light, RT, 3 h	9a , N.D. ^b (55% ^c)
15	6	Ir[(ppy) ₂ dtbbpy]PF ₆ (1 mol %), HFIP (0.05 M), blue light, RT, 3 h	imine recovered + trace of hydrolysis

^{*a*}Imine formation was performed with *p*-fluorobenzaldehyde and MS 4A in MeCN. ^{*b*}Isolated yield under 0.5 mmol scale. ^{*c*}Calculated yield from crude ¹H NMR spectrum under 0.1 mmol scale with 1,3,5-trimethoxybenzene as an internal standard. N.D. = not determined.

3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3)

A mixture of the **2** (112.2 mg, 0.5 mmol, 1.0 equiv) and 4-fluorobenzaldehyde (53.6 μ L, 0.5 mmol, 1.0 equiv), and MS 4A (100.0 mg) in MeCN (1.0 mL, 0.5 M) under N₂ was stirred overnight at room temperature. The reaction was filtered through Celite and washed with CH₂Cl₂. The filtrate was condensed under *vacuo* and the residue was re-dissolved in MeCN (10 mL, 0.05 M) in a vial (20 mL), followed by the addition of Ir[(ppy)₂dtbbpy]PF₆¹³ (4.6

mg, 5.0 μ mol, 0.01 equiv). The reaction was stirred at room temperature under the exposure of blue LEDs with a cooling fan to maintain the temperature. H₂O (0.1 mL) was added and the reaction was stirred for another 5 min. After the solvents were removed under *vacuo*, the residue was dissolved in CH₂Cl₂, dried over Na₂SO₄, filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to afford the desired product (93.9 mg, 73%) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.47 (ddd, J = 8.5, 5.3, 2.6 Hz, 2 H), 7.33–7.28 (m, 2 H), 7.11–7.07 (m, 2 H), 7.00–6.97 (m, 2 H), 6.91 (tt, J = 7.2, 1.0 Hz, 1 H), 4.01 (dd, J = 10.4, 2.9 Hz, 1 H), 3.67–3.62 (m, 2 H), 3.27 (ddd, J = 11.4, 3.5, 2.2 Hz, 1 H), 3.19 (td, J = 11.4, 3.0 Hz, 1 H), 2.94 (td, J = 11.4, 3.5 Hz, 1 H), 2.74 (dd, J = 11.8, 10.4 Hz, 1 H), 2.41 (br, 1 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 162.3 (d, J = 245.8 Hz), 151.3, 137.8 (d, J = 3.1 Hz), 129.2, 128.8 (d, J = 7.9 Hz), 119.9, 116.3, 115.4 (d, J = 21.2 Hz), 59.8, 57.1 (d, J = 1.4 Hz), 49.4, 46.2; ¹⁹**F NMR** (377 MHz, CDCl₃): δ [ppm] = -114.6; **HRMS** (ESI): calculated for [C₁₆H₁₈FN₂]⁺: m/z = 257.1449, found: m/z = 257.1448; **IR** (v/cm⁻¹, neat): 3037, 2947, 2821, 1671, 1600, 1508, 1449, 1333, 1234, 1141, 964, 837, 759, 693.

1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5–7)

A mixture of the **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and 4-fluorobenzaldehyde (53.6 μ L, 0.5 mmol, 1.0 equiv), and MS 4A (100.0 mg) in MeCN (1.0 mL, 0.5 M) under N₂ was stirred overnight at room temperature. The reaction was filtered through Celite and washed with CH₂Cl₂. The filtrate was condensed under *vacuo* and the residue was re-dissolved in MeCN/MeOH (9:1, 10 mL, 0.05 M) in a vial (20 mL), followed by the addition of

Ir[(ppy)₂dtbbpy]PF₆¹³ (4.6 mg, 5.0 μ mol, 0.01 equiv). The reaction was stirred at room temperature under the exposure of blue LEDs with a cooling fan to maintain the temperature. H₂O (0.1 mL) was added and the reaction was stirred for another 5 min. After the solvents were removed under *vacuo*, the residue was dissolved in CH₂Cl₂, dried over Na₂SO₄, filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) to afford the desired product (83.7 mg, 62%) as a yellowish oil. (Entry 5)

- The photocatalytic reaction was conducted under MeCN/HFIP (9:1, 10 mL, 0.05 M) for 3 h at room temperature. The desired product was obtained by flash column chromatography (90.7 mg, 67%). (Entry 6)
- The photocatalytic reaction was conducted under MeCN/TFE (9:1, 10 mL, 0.05 M) for 3 h at room temperature. The desired product was obtained by flash column chromatography (94.2 mg, 70%). (Entry 7)

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.39–7.33 (m, 6 H), 7.30–7.27 (m, 1 H), 7.04–6.99 (m, 2 H), 3.90 (dd, J = 10.2, 2.8 Hz, 1 H), 3.57 (s, 2 H), 3.12–3.04 (m, 2 H), 2.93–2.84 (m, 2 H), 2.22 (ddd, J = 11.0, 9.7, 4.8 Hz, 1 H), 2.21 (br, 1 H), 2.07 (t, J = 10.2 Hz, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 162.1 (d, J = 245.2 Hz), 138.5 (d, J = 3.1 Hz), 138.0, 129.3, 128.6 (d, J = 7.9 Hz), 128.3, 127.1, 115.2 (d, J = 21.1 Hz), 63.3, 61.4 (d, J = 1.2 Hz), 59.7, 53.2, 46.2; ¹⁹**F NMR** (377 MHz, CDCl₃): δ [ppm] = -115.2; **HRMS** (ESI): calculated for [C₁₇H₂₀FN₂]⁺: m/z = 271.1605, found: m/z = 271.1608; **IR** (v/cm⁻¹, neat): 3262, 2939, 2806, 1604, 1509, 1453, 1318, 1223, 1133, 1026, 836, 699.

^{(13) (}a) The iridium photocatalyst can be purchased from Sigma-Aldrich or prepared according to the literature: Ladouceur, S.; Fortin, D.; Zysman-Colman, E. *Inorg. Chem.* **2011**, *50*, 11514–11526; (b) Abbreviations: dtbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine; ppy = 2-phenylpyridine.

3.2 General procedure

* Protecting groups (Pg) can be alkyl or aryl substituents.

General condition for imine formation:

A mixture of a SLAP reagent (0.5 mmol), an aldehyde (0.5 mmol), and MS 4A (100.0 mg) in MeCN (1.0 mL, 0.5 M) under N₂ was stirred at room temperature overnight.¹⁴ The reaction was filtered through Celite and washed with CH_2Cl_2 . The filtrate was condensed under *vacuo* and used directly for cyclization.

General condition for ketimine formation:

A mixture of a SLAP reagent (0.5 mmol), a ketone (0.5 mmol), and MS 4A (100.0 mg) in benzene (1.0 mL, 0.5 M) under N₂ was stirred at reflux overnight. The reaction was filtered through Celite and washed with CH_2Cl_2 . The filtrate was condensed under *vacuo* and used directly for cyclization.

General condition for photocatalytic cyclization:

The reaction was carried out in a closed vial (20 mL) with no need to be degased beforehand or under dry conditions. To a solution of the corresponding imine or ketimine (0.5 mmol, 1.00 equiv) in MeCN/TFE (9:1, 10.0 mL, 0.05 M), $Ir[(ppy)_2dtbpy]PF_6^{13}$ (4.6 mg, 5.0 µmol, 0.01 equiv) was added. The reaction was stirred at room temperature under the exposure of blue LEDs (30 W) with a cooling fan to maintain the temperature. H₂O (0.1 mL) was added and the reaction was stirred for another 5 min. After the solvents were removed under *vacuo*, the residue was dissolved in CH₂Cl₂, dried over Na₂SO₄, filtered, and condensed under *vacuo*. The residue was purified by flash column chromatography to afford the desired piperazine product.

3.3 Substrate scope

Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2)

The photocatalytic synthesis of **9b** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and methyl 3-formylbenzoate (82.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH_2Cl_2 to 5% MeOH in CH_2Cl_2) as a yellowish oil (102.1 mg, 66%).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 8.08 (t, J = 1.6 Hz, 1 H), 7.95 (dt, J = 7.8, 1.6 Hz, 1 H), 7.61 (dt, J = 7.7, 1.6 Hz, 1 H), 7.39 (apparent t, J = 7.8 Hz, 1 H), 7.36–7.24 (m, 5 H), 3.97 (dd, J = 10.2, 2.9 Hz, 1 H), 3.91 (s, 3 H), 3.56 (s, 2 H), 3.13–3.03 (m, 2 H), 2.93–2.84 (m, 2 H), 2.69 (br, 1 H), 2.25 (td, J = 10.7, 4.2 Hz, 1 H), 2.12 (dd, J = 11.0, 10.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 167.0, 142.7, 137.8, 131.8, 130.3, 129.2, 128.8, 128.5, 128.30, 128.27, 127.2, 77.2, 63.3, 60.9, 60.0, 53.0, 52.1, 46.0; HRMS (ESI): calculated for [C₁₉H₂₃N₂O₂]⁺: m/z = 311.1754, found: m/z = 311.1755; **IR** (v/cm⁻¹, neat): 3327, 3028, 2948, 2807, 1715, 1673, 1435, 1287, 1204, 1105, 1027, 1001, 818, 737.

1-Benzyl-3-(*o*-tolyl)piperazine (9c) (Scheme 2)

The photocatalytic synthesis of **9c** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and 2-methylbenzaldehyde (57.8 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a yellowish oil (73.6 mg, 55%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.56 (d, J = 7.6 Hz, 1 H), 7.37–7.31 (m, 4 H), 7.28–7.24 (m, 1 H), 7.22–7.12 (m, 3 H), 4.13 (dd, J = 10.0, 2.6 Hz, 1 H), 3.60 (d, J = 13.1 Hz, 1 H), 3.55 (d, J = 13.1 Hz, 1 H), 3.13 –3.10 (m, 2 H), 2.91–2.86 (m, 2 H), 2.48 (br, 1 H), 2.35 (s, 3 H), 2.26 (ddd, J = 11.2, 9.2, 5.4 Hz, 1 H), 2.03 (dd, J = 11.2, 10.0 Hz, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 140.3, 138.0, 135.4, 130.4, 129.3, 128.3, 127.12, 127.11, 126.3, 126.2, 63.3, 59.9, 56.4, 53.3, 46.4, 19.3; **HRMS** (ESI): calculated for $[C_{18}H_{23}N_2]^+$: m/z = 267.1856, found: m/z = 267.1858; **IR** (v/cm⁻¹, neat): 3322, 3026, 2938, 2804, 1493, 1453, 1316, 1133, 1101, 1025, 756, 699.

1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2)

The photocatalytic synthesis of **9d** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and 3-methoxybenzaldehyde (60.8 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a yellowish oil (98.9 mg, 70%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.38–7.32 (m, 4 H), 7.30–7.23 (m, 2 H), 7.01–6.98 (m, 2 H), 6.83 (ddd, J = 8.2, 2.5, 1.2 Hz, 1 H), 3.92 (dd, J = 10.5, 2.8 Hz, 1 H), 3.82 (s, 3 H), 3.58 (s, 2 H), 3.13–3.04 (m, 2 H), 2.95 (ddd, J = 11.0, 2.8, 1.7 Hz, 1 H), 2.87 (ddd, J = 10.7, 2.3, 2.3 Hz, 1 H), 2.55 (br, 1 H), 2.24 (ddd, J = 10.7, 10.7, 4.2 Hz, 1 H), 2.13 (dd, J = 10.5, 10.5 Hz, 1 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 159.7, 144.1, 138.0, 129.4, 129.3, 128.3, 127.1, 119.5, 113.1, 112.5, 63.3, 61.1, 60.4, 55.3, 53.1, 46.2; **HRMS** (ESI): calculated for [C₁₈H₂₃N₂O]⁺: m/z = 283.1805, found: m/z = 283.1803; **IR** (v/cm⁻¹, neat): 3324, 2939, 2806, 1673, 1585, 1454, 1317, 1250, 1131, 1048, 910, 740, 699.

1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2)

The photocatalytic synthesis of **9e** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and cyclopropanecarboxaldehyde (37.4 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (49.9 mg, 46%).

1 H), 1.19 (apparent dddd, J = 12.9, 9.7, 8.1, 4.8 Hz, 1 H), 0.76 (dddd, J = 9.6, 5.1, 5.1, 4.9 Hz, 1 H), 0.69–0.56 (m, 2 H), 0.28 (dddd, J = 10.2, 4.9, 4.7, 4.7 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 137.3, 129.0, 128.5, 127.5, 62.4, 61.0, 55.7, 49.4, 43.9, 11.8, 4.1, 3.9; HRMS (ESI): calculated for $[C_{14}H_{21}N_2]^+$: m/z = 217.1699, found: m/z = 217.1699; IR (v/cm⁻¹, neat): 3399, 2927, 2810, 2714, 2482, 1590, 1453, 1314, 1055, 1015, 741, 700.

1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)

The photocatalytic synthesis of **9f** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and 3-methylbutanal (54.1 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (36.0 mg, 37%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.30–7.27 (m, 4 H), 7.25–7.21 (m, 1 H), 4.43 (br, 1 H), 3.49 (apparent q, J = 13.0 Hz, 2 H), 3.03 (apparent dt, J = 12.1, 2.9 Hz, 1 H), 2.94– 2.87 (m, 2 H), 2.81–2.73 (m, 2 H), 2.15 (apparent td, J = 11.3, 3.2 Hz, 1 H), 1.85 (dd, J = 11.3, 9.9 Hz, 1 H), 1.66 (apparent dh, J = 7.8, 6.6 Hz, 1 H), 1.36 (apparent dt, J = 14.0, 7.1 Hz, 1 H), 1.23 (ddd, J = 14.0, 7.8, 6.3 Hz, 1 H), 0.88 (d, J = 2.6 Hz, 3 H), 0.86 (d, J = 2.6 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 137.9, 129.2, 128.3, 127.2, 63.3, 59.2, 53.2, 52.8, 45.3, 42.7, 24.3, 23.0, 22.6; **HRMS** (ESI): calculated for [C₁₅H₂₅N₂]⁺: m/z = 233.2012, found: m/z = 233.2018; **IR** (v/cm⁻¹, neat): 3398, 2957, 2822, 2718, 2482, 1590, 1454, 1368, 1318, 1140, 922, 736, 700.

4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2)

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.35–7.26 (m, 5 H), 6.47 (br, 1 H), 3.83 (dt, J = 12.0, 4.9 Hz, 2 H), 3.53 (s, 2 H), 3.41 (dt, J = 12.0, 6.0 Hz, 2 H), 3.11 (apparent t, J = 5.2 Hz, 2 H), 2.65 (dd, J = 6.8, 3.8 Hz, 2 H), 2.50 (apparent br, 2 H), 1.93 (apparent t, J = 5.5 Hz, 4 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 137.9, 128.8, 128.5, 127.4, 63.3, 62.6, 58.9, 52.7, 52.5, 39.9, 33.6; **HRMS** (ESI): calculated for $[C_{15}H_{23}N_2O]^+$: m/z = 247.1805, found: m/z = 247.1805; **IR** (v/cm⁻¹, neat): 3397, 2947, 2851, 2809, 2488, 1587, 1454, 1363, 1239, 1152, 1107, 1029, 912, 850, 736, 700.

1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2)

The photocatalytic synthesis of **9h** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and pyridine-2-carbaldehyde (47.8 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (81.5 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.51 (ddd, J = 4.9, 1.3, 1.2 Hz, 1 H), 7.60 (ddd, J = 7.7, 7.5, 1.8 Hz, 1 H), 7.34–7.20 (m, 6 H), 7.13 (ddd, J = 7.5, 4.9, 1.1 Hz, 1 H), 4.50 (br, 1 H), 4.09 (dd, J = 10.1, 3.0 Hz, 1 H), 3.54 (s, 2 H), 3.14 (ddd, J = 12.3, 2.9, 2.9 Hz, 1 H), 3.09–3.02 (m, 2 H), 2.84–2.79 (m, 1 H), 2.28–2.20 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 159.6, 149.2, 137.7, 136.7, 129.2, 128.3, 127.2, 122.6, 121.7, 63.2, 60.3, 58.8, 52.8, 45.2; **HRMS** (ESI): calculated for $[C_{16}H_{20}N_3]^+$: m/z = 254.1652, found: m/z = 254.1654; **IR** (v/cm⁻¹, neat): 3390, 2938, 2810, 2713, 2472, 1592, 1435, 1317, 1149, 1106, 912, 777, 743, 700.

1-Benzyl-3-(1-benzyl-1*H*-imidazol-5-yl)piperazine (9i) (Scheme 2)

The photocatalytic synthesis of **9i** followed the general procedure with **3** (118.2 mg, 0.5 mmol, 1.0 equiv) and 1-benzyl-1*H*-imidazole-5-carbaldehyde (93.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH_2Cl_2 to 5% MeOH in

CH₂Cl₂) as a yellowish solid (125.0 mg, 75%).

m.p.: 112–113 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.45 (d, J = 1.0 Hz, 1 H), 7.35–7.23 (m, 8 H), 7.08–7.06 (m, 2 H), 7.01 (apparent br, 1 H), 5.30 (d, J = 15.7 Hz, 1 H), 5.15 (d, J = 15.7 Hz, 1 H), 3.80 (ddd, J = 10.0, 2.8, 0.7 Hz, 1 H), 3.49 (s, 2 H), 2.94 (dt, J = 12.6, 3.0 Hz, 1 H), 2.88–2.81 (m, 2 H), 2.72 (apparent dq, J = 11.0, 2.5 Hz, 1 H), 2.31 (br, 1 H), 2.18 (dd, J = 10.0, 10.0 Hz, 1 H), 2.08 (apparent td, J = 11.0, 3.3 Hz, 1 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 138.2, 137.6, 136.7, 132.2, 129.2, 129.0, 128.3, 128.0, 127.1, 126.9, 126.8, 63.3, 58.4, 53.7, 50.6, 48.7, 45.5; **HRMS** (ESI): calculated for [C₂₁H₂₅N₄]⁺: m/z = 333.2074, found: m/z = 333.2073; **IR** (v/cm⁻¹, neat): 3303, 2811, 1668, 1496, 1454, 1342, 1316, 1267, 1225, 1111, 909, 814, 732.

N-(4-((2*R*,6*S*)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3)

The photocatalytic synthesis of **16a** followed the general procedure with **10** (125.2 mg, 0.5 mmol, 1.0 equiv) and *N*-(4-formylphenyl)acetamide (81.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (149.7 mg, 93%, dr > 20:1). The relative stereochemistry was assigned by NOESY.

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = +10.1; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 8.11 (s, 1 H), 7.46–7.43 (m, 2 H), 7.35–7.25 (m, 7 H), 3.94 (dd, *J* = 10.7, 2.8 Hz, 1 H), 3.58 (d, *J* = 13.1 Hz, 1 H), 3.53 (d, *J* = 13.1 Hz, 1 H), 3.10 (dqd, *J* = 10.6, 6.3, 2.8 Hz, 1 H), 2.88 (d, *J* = 10.9 Hz, 1 H), 2.82 (d, *J* = 10.8 Hz, 1 H), 2.62 (br, 1 H), 2.13 (s, 3 H), 2.04 (dd, *J* = 10.9, 10.7 Hz, 1 H), 1.82 (dd, *J* = 10.8, 10.6 Hz, 1 H), 1.10 (d, *J* = 6.3 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 168.9, 138.0, 137.9, 137.4, 129.3, 128.3, 127.7, 127.1, 120.2, 63.1, 60.4, 60.0, 60.0, 51.1, 24.4, 19.8; **HRMS** (ESI): calculated for [C₂₀H₂₆N₃O]⁺: m/z = 324.2070, found: m/z = 324.2071; **IR** (v/cm⁻¹, neat): 3298, 3261, 3060, 3030, 2962, 2932, 2810, 1667, 1604, 1541, 1517, 1317, 1130, 909, 836, 732, 700.

(3*S*,5*S*)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3)

The photocatalytic synthesis of **16b** followed the general procedure with **10** (125.2 mg, 0.5 mmol, 1.0 equiv) and 5-bromopyridine-2-carbaldehyde (93.0 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (89.4 mg, 52%, dr > 20:1). The relative stereochemistry was determined by analogy to **16a**.

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = +20.3; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.48 (t, J = 7.7 Hz, 1 H), 7.36–7.24 (m, 7 H), 4.07 (dd, J = 10.5, 3.0 Hz, 1 H), 3.58 (d, J = 13.1 Hz, 1 H), 3.54 (d, J = 13.1 Hz, 1 H), 3.12–3.04 (m, 2 H), 2.84 (dd, J = 10.8, 2.9 Hz, 1 H), 2.20 (br, 1 H), 2.02 (dd, J = 10.6, 10.5 Hz, 1 H), 1.75 (dd, J = 10.8, 10.7 Hz, 1 H), 1.11 (d, J = 6.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 162.5, 141.6, 138.9, 138.0, 129.2, 128.3, 127.1, 126.8, 120.2, 63.1, 60.5, 60.3, 58.7, 50.5, 19.9; HRMS (ESI): calculated for [C₁₇H₂₁BrN₃]⁺: m/z = 346.0913, found: m/z = 346.0912; IR (v/cm⁻¹, neat): 3287, 2960, 2805, 1581, 1555, 1435, 1407, 1315, 1119, 1061, 985, 791, 739, 699.

4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3)

The photocatalytic synthesis of **16c** followed the general procedure with **10** (125.2 mg, 0.5 mmol, 1.0 equiv) and 1,3-oxazole-4-carboxaldehyde (48.5 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (87.6 mg, 68%, dr > 20:1). The relative stereochemistry was determined by analogy to **16a**.

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = +7.0; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.82 (d, J = 1.0 Hz, 1 H), 7.55 (t, J = 1.0 Hz, 1 H), 7.36–7.24 (m, 5 H), 4.04 (dd, J = 10.6, 3.0 Hz, 1 H), 3.56 (s, 2 H), 3.12–3.04 (m, 2 H), 2.84 (dd, J = 10.9, 2.9 Hz, 1 H), 2.20 (br, 1 H), 2.08 (dd, J = 10.6, 10.5 Hz, 1 H), 1.77 (dd, J = 10.9, 10.1 Hz, 1 H), 1.08 (d, J = 6.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 151.0, 141.2, 137.9, 134.5, 129.2,

128.3, 127.2, 63.1, 60.5, 57.7, 52.5, 50.7, 19.8; **HRMS** (ESI): calculated for $[C_{15}H_{20}N_3O]^+$: m/z = 258.1601, found: m/z = 258.1603; **IR** (v/cm⁻¹, neat): 3287, 2961, 2810, 1669, 1510, 1455, 1317, 1137, 1100, 1061, 914, 744, 700.

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3)

The photocatalytic synthesis of **17a** followed the general procedure with **11** (152.3 mg, 0.5 mmol, 1.0 equiv) and 2-fluoro-5-formylbenzonitrile (74.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (1–10% EtOAc in hexanes) as a yellowish oil (94.1 mg, 52%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.76 (dd, J = 6.2, 2.3 Hz, 1 H), 7.67 (ddd, J = 8.8, 5.2, 2.3 Hz, 1 H), 7.39–7.33 (m, 4 H), 7.30–7.27 (m, 1 H), 7.16 (t, J = 8.7 Hz, 1 H), 4.22 (dd, J = 10.5, 3.2 Hz, 1 H), 3.57 (d, J = 13.4 Hz, 1 H), 3.45 (d, J = 13.4 Hz, 1 H), 2.87 (dd, J = 10.6, 3.2 Hz, 1 H), 2.79 (d, J = 11.0 Hz, 1 H), 1.90 (dd, J = 10.6, 10.5 Hz, 2 H), 1.89 (br, 1 H), 1.81 (d, J = 11.0 Hz, 1 H), 1.56 – 1.34 (m, 10 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 162.3 (d, J = 258.2 Hz), 140.6 (d, J = 3.5 Hz), 138.6, 134.1 (d, J = 8.2 Hz), 132.2, 128.7, 128.3, 127.1, 116.1 (d, J = 19.3 Hz), 114.2, 101.2 (d, J = 15.4 Hz), 62.9, 62.1, 62.0, 53.3, 52.0, 38.8, 32.1, 26.4, 22.0, 21.8; ¹⁹**F NMR** (377 MHz, CDCl₃): δ [ppm] = -108.9; **HRMS** (ESI): calculated for [C₂₃H₂₇FN₃]⁺: m/z = 364.2184, found: m/z = 364.2183; **IR** (v/cm⁻¹, neat): 2926, 2854, 2801, 2235, 1611, 1497, 1454, 1266, 1110, 834, 739, 699.

2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3)

The photocatalytic synthesis of **17b** was followed by the general procedure with **11** (152.3 mg, 0.5 mmol, 1.0 equiv) and thiazole-2-carbaldehyde (43.9 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (5–30% EtOAc in hexanes) as a yellowish oil (61.4 mg, 37%).

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.73 (d, J = 3.3 Hz, 1 H), 7.38–7.31 (m, 4 H), 7.29–7.25 (m, 1 H), 7.26 (d, J = 3.3 Hz, 1 H), 4.62 (dd, J = 10.5, 3.4 Hz, 1 H), 3.62 (d, J = 13.4 Hz, 1 H), 3.46 (d, J = 13.4 Hz, 1 H), 3.24 (dd, J = 10.6, 3.4 Hz, 1 H), 2.80 (d, J = 11.0 Hz, 1 H), 2.09 (dd, J = 10.6, 10.5 Hz, 1H), 1.88 (apparent t, J = 6.0 Hz, 2 H), 1.81 (d, J = 11.0 Hz, 1 H), 1.58–1.48 (m, 2 H), 1.47–1.32 (m, 7 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 173.5, 142.3, 138.7, 128.8, 128.3, 127.1, 118.6, 62.9, 62.0, 60.9, 52.9, 52.3, 38.6, 32.2, 26.5, 22.0, 21.8; **HRMS** (ESI): calculated for [C₁₉H₂₆N₃S]⁺: m/z = 328.1842, found: m/z = 328.1846; **IR** (v/cm⁻¹, neat): 2926, 2854, 2800, 1673, 1453, 1327, 1129, 781, 736, 698.

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3)

The photocatalytic synthesis of **17c** followed the general procedure with **11** (152.3 mg, 0.5 mmol, 1.0 equiv) and 3-phenylisoxazole-5-carbaldehyde (86.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (1–5% EtOAc in hexanes) as a yellowish oil (71.2 mg, 38%)

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.80–7.78 (m, 2 H), 7.45–7.42 (m, 3 H), 7.37–7.31 (m, 4 H), 7.29–7.25 (m, 1 H), 6.48 (s, 1 H), 4.47 (dd, J = 10.6, 2.6 Hz, 1 H), 3.60 (d, J = 13.3 Hz, 1 H), 3.46 (d, J = 13.3 Hz, 1 H), 3.15 (dd, J = 10.5, 2.6 Hz, 1 H), 2.79 (d, J = 11.1 Hz, 1 H), 2.15 (dd, J = 10.6, 10.5 Hz, 1 H), 1.90–1.81 (m, 2 H), 1.81 (d, J = 11.1 Hz, 1 H), 1.56–1.49 (m, 2 H), 1.45–1.33 (m, 7 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 174.1, 162.3, 138.5, 130.0, 129.2, 128.9, 128.8, 128.4, 127.2, 126.9, 98.7, 62.9, 62.0, 58.5, 52.1, 47.9, 38.5, 32.0, 26.4, 21.9, 21.8; HRMS (ESI): calculated for [C₂₅H₃₀N₃O]⁺: m/z = 388.2383; **IR** (v/cm⁻¹, neat): 3061, 3028, 2928, 2854, 2803, 1603, 1579, 1454, 1442, 1406, 1308, 1144, 910, 768, 735, 695.

(*trans,cis*)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-*b*]pyrazine (18a) (Scheme 3)

The photocatalytic synthesis of **18a** followed the general procedure with **12** (139.2 mg, 0.5 mmol, 1.0 equiv) and 3-bromobenzaldehyde (58.3 μ L, 0.5 mmol, 1.0 equiv).

The desired product was obtained by flash column chromatography (10–50% EtOAc in hexanes) as a yellowish oil (120.6 mg, 65%, dr > 20:1). The relative stereochemistry was determined by analogy to **18b**.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.59 (t, J = 2.0 Hz, 1 H), 7.41 (ddd, J = 7.9, 2.0, 1.1 Hz, 1 H), 7.34– 7.26 (m, 6 H), 7.18 (t, J = 7.9 Hz, 1 H), 4.06–4.02 (m, 2 H), 4.01 (dd, J = 10.6, 3.1 Hz, 1 H), 3.71 (dd, J = 10.6, 7.2 Hz, 1 H), 3.65 (d, J = 13.1 Hz, 1 H), 3.59 (dd, J = 10.5, 7.0 Hz, 1 H), 3.36 (d, J = 13.1 Hz, 1 H), 3.27 (ddd, J = 10.6, 9.2, 7.2 Hz, 1 H), 2.92 (dd, J = 11.4, 3.1 Hz, 1 H), 2.51 (ddd, J = 10.5, 9.2, 7.0 Hz, 1 H), 2.05 (dd, J = 11.4, 10.6 Hz, 1 H), 2.04 (br, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 144.0, 137.5, 130.9, 130.4, 130.1, 129.2, 128.4, 127.5, 126.1, 122.6, 69.9, 69.8, 68.2, 62.0, 61.8, 61.0, 60.9; **HRMS** (ESI): calculated for [C₁₉H₂₂BrN₂O]⁺: m/z = 373.0190, found: m/z = 373.0906; **IR** (v/cm⁻¹, neat): 3299, 2938, 2868, 2820, 1676, 1568, 1453, 1324, 1034, 892, 785, 741, 698.

(trans,cis)-1-Benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b) (Scheme 3)

The photocatalytic synthesis of **18b** followed the general procedure with **12** (139.2 mg, 0.5 mmol, 1.0 equiv) and 5-methylisoxazole-3-carbaldehyde (55.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a yellowish oil (107.7 mg, 72%, dr > 20:1). The relative stereochemistry was assigned by NOESY.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.33–7.23 (m, 5 H), 5.96 (d, J = 1.0 Hz, 1 H), 4.19 (dd, J = 11.0, 3.2 Hz, 1 H), 4.02 (dd, J = 7.3, 7.3 Hz, 1 H), 3.99 (dd, J = 7.5, 6.7 Hz, 1 H), 3.64 (d, J = 13.2 Hz, 1 H), 3.62 (dd, J = 10.7, 7.3 Hz, 1 H), 3.55 (dd, J = 10.5, 7.5 Hz, 1 H), 3.35 (d, J = 13.2 Hz, 1 H), 3.23 (ddd, J = 10.7, 9.1, 7.3 Hz, 1 H), 3.05 (dd, J = 11.2, 3.2 Hz, 1 H), 2.43 (ddd, J = 10.5, 9.1, 6.7 Hz, 1H), 2.37 (d, J = 1.0 Hz, 3 H), 2.13 (dd, J = 11.2, 11.0 Hz, 1 H), 2.06 (br, 1 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 169.5, 163.9, 137.3, 129.1, 128.3, 127.4, 100.0, 69.6, 69.4, 68.2, 61.7, 61.7, 57.9, 53.4, 12.2; **HRMS** (ESI): calculated for [C₁₇H₂₂N₃O₂]⁺: m/z = 300.1707, found: m/z = 300.1706; **IR** (v/cm⁻¹, neat): 3290, 2939, 2869, 1673, 1604, 1453, 1322, 1146, 1087, 1025, 893, 799, 745, 701.

(*trans*)-4'-Benzylhexahydro-1'*H*-spiro[cyclohexane-1,2'-furo[3,4-*b*]pyrazin]-4-one ethylene ketal (18c) (Scheme 3)

The photocatalytic synthesis of **18c** followed the general procedure with **12** (139.2 mg, 0.5 mmol, 1.0 equiv) and 1,4-dioxaspiro[4.5]decan-8-one (78.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a white solid (72.0 mg, 42%).

6 m.p.: 135–136 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.32–7.21 (m, 5 H), 3.96 (dd, J = 7.1, 7.1 Hz, 1 H), 3.96 (dd, J = 7.0, 7.0 Hz, 1 H), 3.92–3.85 (m, 4 H), 3.59 (d, J = 13.3 Hz, 1 H), 3.55–3.48 (m, 2 H), 3.31 (ddd, J = 10.7, 9.4, 7.1 Hz, 1 H), 3.19 (d, J = 13.3 Hz, 1 H), 2.72 (d, J = 11.5 Hz, 1 H), 2.22 (ddd, J = 10.5, 9.4, 7.0 Hz, 1 H), 2.12–2.06 (m, 1 H), 1.80–1.67 (m, 3 H), 1.71 (d, J = 11.5 Hz, 1 H), 1.58–1.41 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 138.2, 128.7, 128.3, 127.3, 109.0, 70.2, 69.8, 69.6, 64.3, 64.3, 63.0, 61.5, 56.8, 52.8, 35.7, 30.5, 30.4, 29.3; HRMS (ESI): calculated for [C₂₀H₂₉N₂O₃]⁺: m/z = 345.2173, found: m/z = 345.2175; IR (v/cm⁻¹, neat): 2945, 2872, 1736, 1675, 1453, 1370, 1094, 1033, 938 888, 740, 700.

(*trans,cis*)-3-(Benzo[*d*][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a) (Scheme 3)

The photocatalytic synthesis of **19a** followed the general procedure with **13** (145.3 mg, 0.5 mmol, 1.0 equiv) and benzo[d][1,3]dioxole-5-carbaldehyde (75.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (10–50% EtOAc in hexanes) as a yellowish oil (150.3 mg, 86%, dr > 20:1). The relative stereochemistry was assigned by NOESY.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.31 (d, J = 4.4 Hz, 4 H), 7.29–7.21 (m, 1 H), 6.89 (d, J = 1.6 Hz, 1 H), 6.80 (dd, J = 8.0, 1.6 Hz, 1 H), 6.72 (d, J = 8.0 Hz, 1 H), 5.91 (s, 2 H), 4.15 (d, J = 13.6 Hz, 1 H), 3.88 (dd, J = 10.9, 2.8 Hz, 1 H), 3.25 (d, J = 13.6 Hz, 1 H), 2.83 (dd, J = 10.9, 2.8 Hz, 1 H), 2.67 (ddd, J = 10.6,

8.7, 3.9 Hz, 1 H), 2.33–2.29 (m, 1 H), 2.12 (dd, J = 10.9, 10.9 Hz, 1 H), 1.99 (ddd, J = 10.6, 8.6, 3.6 Hz, 1H), 1.88–1.84 (m, 1 H), 1.78–1.71 (m, 3 H), 1.49–1.33 (m, 3 H), 1.30–1.19 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 147.5, 146.7, 138.8, 136.9, 129.2, 128.2, 126.8, 120.2, 108.0, 107.7, 100.9, 65.6, 61.1, 60.8, 60.2, 57.2, 32.8, 29.1, 25.4, 24.9; HRMS (ESI): calculated for $[C_{22}H_{27}N_2O_2]^+$: m/z = 351.2067, found: m/z = 351.2069; IR (v/cm⁻¹, neat): 2926, 2856, 2799, 1502, 1487, 1442, 1250, 1039, 934, 808, 735, 699.

(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3)

The photocatalytic synthesis of **19b** followed the general procedure with **13** (145.3 mg, 0.5 mmol, 1.0 equiv) and 1-methyl-1*H*-benzo[*d*]imidazole-2-carbaldehyde (80.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a yellowish oil (153.2 mg, 85%). Relative stereochemistry was determined by analogy to **19a**.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.75–7.71 (m, 1 H), 7.35–7.27 (m, 4 H), 7.25–7.20 (m, 4 H), 4.32 (dd, J = 10.7, 2.9 Hz, 1 H), 4.22 (d, J = 13.4 Hz, 1 H), 3.67 (s, 3 H), 3.21 (d, J = 13.4 Hz, 1 H), 3.03 (dd, J = 11.6, 2.9 Hz, 1 H), 2.69 (ddd, J = 10.8, 8.7, 3.4 Hz, 1 H), 2.44 (dd, J = 11.6, 10.7 Hz, 1 H), 2.35–2.31 (m, 1 H), 2.18 (br, 1 H), 1.98 (ddd, J = 10.8, 8.7, 3.5 Hz, 1 H), 1.91–1.83 (m, 2 H), 1.81–1.77 (m, 1 H), 1.45–1.32 (m, 3 H), 1.29–1.19 (m, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 153.8, 142.2, 138.7, 135.6, 129.0, 128.2, 126.9, 122.4, 121.9, 119.5, 109.1, 67.1, 60.3, 57.4, 57.0, 52.6, 32.5, 29.8, 29.0, 25.3 (two carbons); **HRMS** (ESI): calculated for $[C_{23}H_{29}N_4]^+$: m/z = 361.2387, found: m/z = 361.2390; **IR** (v/cm⁻¹, neat): 3257, 2931, 2857, 2802, 1472, 1443, 1332, 1132, 909, 742.

(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3)

The photocatalytic synthesis of **19c** followed the general procedure with **13** (145.3 mg, 0.5 mmol, 1.0 equiv) and 3-methyl-2-butenal (48.2 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (57.0 mg, 40%, dr > 20:1). The relative stereochemistry was determined by analogy to **19a**.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.31–7.20 (m, 5 H), 5.06 (d, J = 8.8 Hz, 1 H), 4.10 (d, J = 13.5 Hz, 1 H), 3.69–3.63 (m, 1 H), 3.19 (d, J = 13.5 Hz, 1 H), 2.58–2.65 (m, 1 H), 2.65 (dd, J = 11.7, 3.1 Hz, 1 H), 2.29–2.24 (m, 1 H), 2.09–2.01 (m, 2 H), 1.86–1.76 (m, 2 H), 1.73–1.68 (m, 1 H), 1.63 (d, J = 1.4 Hz, 3 H), 1.61 (d, J = 1.4 Hz, 3 H), 1.47– 1.10 (m, 5 H); ¹³C **NMR** (100 MHz, CDCl₃): δ [ppm] = 138.7, 136.5 (br), 129.2, 128.3, 127.0, 123.6 (br), 64.8, 60.3, 57.5, 57.0, 54.0, 31.7, 29.1, 25.9, 25.1, 24.9, 18.5; **HRMS** (ESI): calculated for [C₁₉H₂₉N₂]⁺: m/z = 285.2325, found: m/z = 285.2326; **IR** (v/cm⁻¹, neat): 3308, 2929, 2856, 2795, 1673, 1447, 1375, 1135, 1084, 749, 739, 699.

(3R,8aS)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-a]pyrazine (20a) (Scheme 3)

The photocatalytic synthesis of **20a** followed the general procedure with **14** (93.2 mg, 0.5 mmol, 1.0 equiv) and 2-chloro-4-fluorobenzaldehyde (79.3 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (71.8 mg, 56%, dr > 20:1). The relative stereochemistry was determined by analogy to **21b**.

[*α*]_{*D*}²⁶ (c = 1.0, CHCl₃) = -58.3; ¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.61 (dd, *J* = 8.7, 6.3 Hz, 1 H), 7.07 (dd, *J* = 8.6, 2.7 Hz, 1 H), 6.94 (ddd, *J* = 8.7, 8.3, 2.7 Hz, 1 H), 4.34 (dd, *J* = 10.1, 2.9 Hz, 1 H), 3.25 (dd, *J* = 11.0, 2.9 Hz, 1 H), 3.20 (dd, *J* = 10.6, 2.9 Hz, 1 H), 3.09 (ddd, *J* = 8.7, 8.6, 2.3 Hz, 1 H), 2.72 (dd, *J* = 11.0, 10.0 Hz, 1 H), 2.24 (br, 1 H), 2.16 (ddd, *J* = 8.8, 8.8, 8.7 Hz, 1H), 2.09 (dddd, *J* = 10.0, 6.5, 6.0, 2.9 Hz, 1 H), 2.00 (dd, *J* = 10.6, 10.1 Hz, 1 H), 1.89–1.80 (m, 2 H), 1.78–1.70 (m, 1 H), 1.50–1.40 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 161.6 (d, *J* = 249.0 Hz), 135.6 (d, *J* = 3.5 Hz), 133.8 (d, *J* = 10.1 Hz), 129.4 (d, *J* = 8.6 Hz), 116.8 (d, *J* = 24.5 Hz), 114.2 (d, *J* = 20.6 Hz), 62.8, 58.3, 55.4, 53.5, 51.0, 27.4, 21.3; ¹⁹F NMR (377 MHz, CDCl₃): δ [ppm] = -113.5; HRMS (ESI): calculated for $[C_{13}H_{17}CIFN_2]^+$: m/z = 255.1059, found: m/z = 255.1061; IR (v/cm⁻¹, neat): 3254, 2962, 2798, 1675, 1604, 1581, 1489, 1232, 1166, 1136, 1040, 911, 857, 822.

(3*R*,8*aS*)-3-(5-Methyl-1-phenyl-1*H*-pyrazol-4-yl)octahydropyrrolo[1,2-*a*]pyrazine (20b) (Scheme 3)

The photocatalytic synthesis of **20b** followed the general procedure with **14** (93.2 mg, 0.5 mmol, 1.0 equiv) and 5-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde (93.1 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (91.9 mg, 63%, dr > 20:1). The relative stereochemistry was determined by analogy to **21b**.

 $[\alpha]_D^{25}$ (c = 1.0, CHCl₃) = -20.0; ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.67 (s, 1 H), 7.45–7.32 (m, 5 H), 3.93 (dd, *J* = 10.5, 3.1 Hz, 1 H), 3.74 (br, 1 H), 3.22 (dd, *J* = 11.6, 2.8 Hz, 1 H), 3.14 (dd, *J* = 10.8, 3.1 Hz, 1 H), 3.12–3.07 (m, 1 H), 2.67 (dd, *J* = 11.6, 10.1 Hz, 1 H), 2.35 (dd, *J* = 10.8, 10.5 Hz, 1 H), 2.30 (s, 3 H), 2.22 (ddd, *J* = 8.9, 8.9, 8.9 Hz, 1 H), 2.14 (dddd, *J* = 10.2, 6.0, 3.6, 2.8 Hz, 1 H), 1.91–1.81 (m, 2 H), 1.79– 1.70 (m, 1 H), 1.45–1.43 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 139.9, 138.5, 136.4, 129.1, 127.8, 125.1, 119.8, 62.5, 58.7, 53.6, 51.3, 50.8, 27.4, 21.1, 11.1; HRMS (ESI): calculated for [C₁₇H₂₃N₄]⁺: m/z = 283.1917, found: m/z = 283.1919; IR (v/cm⁻¹, neat): 3294, 2952, 2800, 1599, 1504, 1453, 1391, 1170, 1110, 943, 858, 765, 696.

(*R*)-*tert*-Butyl 2,2-dimethyl-4-((3*S*,8a*S*)-octahydropyrrolo[1,2-*a*]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3)

The photocatalytic synthesis of **20c** followed the general procedure with **14** (93.2 mg, 0.5 mmol, 1.0 equiv) and (*S*)-(–)-3-(*tert*-butoxycarbonyl)-4-formyl-2,2-dimethyl-1,3-oxazolidine (114.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (94.7 mg, 58%, dr > 20:1). The relative stereochemistry was determined by analogy to **21b**.

 $[\alpha]_D^{26}$ (c = 1.0, CHCl₃) = -31.5; ¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 4.15 (br, 1 H), 4.07 (br, 1 H), 3.95 (br, 1 H), 3.87 (dd, J = 9.4, 6.4 Hz, 1 H), 3.28 (d, J = 10.6 Hz, 1 H), 3.18 (d, J = 10.6 Hz, 1 H), 3.14–3.09 (m, 2 H), 2.65 (dd, J = 10.9, 10.9 Hz, 1 H), 2.26 (ddd, J = 8.8, 8.2, 8.2 Hz, 1 H), 2.17–2.13 (m, 2 H), 1.87–1.71 (m, 3 H), 1.54 (s, 3 H), 1.45–1.39 (m, 13 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = <u>153.0*</u>, <u>152.3</u>, <u>94.3</u>, <u>93.9*</u>, 80.6, 64.2, 62.8, <u>59.3*</u>, <u>58.9</u>, 56.0, 53.5, <u>53.2*</u>, <u>52.8</u>, 49.9, 28.5, 27.0, <u>26.9*</u>, <u>26.1</u>, <u>23.9*</u>, <u>22.4</u>, 21.0; ¹⁵ **HRMS** (ESI): calculated for [C₁₇H₃₂N₃O₃]⁺: m/z = 326.2438, found: m/z = 326.2438; **IR** (v/cm⁻¹, neat): 3319, 2975, 2938, 2879, 2807, 1696, 1378, 1365, 1256, 1172, 1088, 848, 734.

cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3)

The photocatalytic synthesis of **21a** followed the general procedure with **15** (100.2 mg, 0.5 mmol, 1.0 equiv) and 2,4,6-trimethylbenzaldehyde (73.7 μ L, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 5% MeOH in CH₂Cl₂) as a yellowish oil (87.5 mg, 68%, dr > 20:1). The relative stereochemistry was determined by analogy to **21b**.

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 6.79 (s, 2 H), 4.58 (dd, J = 11.2, 3.2 Hz, 1 H), 3.01 (dd, J = 11.6, 2.9 Hz, 1 H), 2.92 (d, J = 11.6 Hz, 1 H), 2.83 ddt, J = 11.6, 10.9 Hz, 1 H), 2.75 (dd, J = 11.5, 3.2 Hz, 1 H), 2.66 (dd, J = 11.5, 11.2 Hz, 1 H), 2.50 (s, 6 H), 2.21 (s, 3 H), 2.27–2.17 (m, 2 H), 1.83–1.79 (m, 2 H), 1.69–1.58 (m, 2 H), 1.48–1.30 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 137.4, 136.7, 133.4, 130.3, 62.2, 57.6, 56.8, 55.6, 52.5, 29.0, 24.9, 23.8, 21.7, 20.7; HRMS (ESI): calculated for $[C_{17}H_{27}N_2]^+$: m/z = 259.2169, found: m/z = 259.2170; IR (v/cm⁻¹, neat): 3321, 2932, 2857, 2797, 1611, 1448, 1327, 1124, 1096, 1064, 924, 851, 733.

(15) Peaks from rotamers are underlined paired with asterisks indicating the major ones.

cis-3-(Pyrimidin-2-yl)octahydro-1*H*-pyrido[1,2-*a*]pyrazine (21b) (Scheme 3)

The photocatalytic synthesis of **21b** followed the general procedure with **15** (100.2 mg, 0.5 mmol, 1.0 equiv) and pyrimidine-2-carboxaldehyde (54.0 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 20% MeOH in CH₂Cl₂) as a brownish oil (56.6 mg, 52%, dr > 10:1), which can be recrystallized with CH₂Cl₂/EtOAc/hexanes as a yellowish solid. The relative stereochemistry was assigned by NOESY.

m.p.: compound decomposes at T > 180 °C; ¹**H** NMR (400 MHz, CD₂Cl₂): δ [ppm] = 8.68 (d, *J* = 4.9 Hz, 2 H), 7.17 (td, *J* = 4.9, 0.5 Hz, 1 H), 4.12 (dd, *J* = 10.6, 3.1 Hz, 1 H), 3.18 (dd, *J* = 11.1, 3.1 Hz, 1 H), 2.97 (dd, *J* = 12.4, 3.0 Hz, 1 H), 2.81 (apparent dtd, *J* = 11.2, 3.6, 1.5 Hz, 1 H), 2.65 (dd, *J* = 12.4, 10.2 Hz, 1 H), 2.55 (br, 1 H), 2.11–2.03 (m, 2 H), 1.85 (dddd, *J* = 10.4, 10.2, 3.0, 2.7 Hz, 1 H), 1.78–1.73 (m, 1 H), 1.64–1.57 (m, 2 H), 1.56–1.51 (m, 1 H), 1.37–1.16 (m, 2 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ [ppm] = 169.7, 157.4, 119.9, 62.9, 61.2, 61.0, 56.7, 52.3, 30.0, 26.3, 24.8.; HRMS (ESI): calculated for [C₁₂H₁₉N₄]⁺: m/z = 219.1604, found: m/z = 219.1607; **IR** (v/cm⁻¹, neat): 3396, 2936, 1672, 1568, 1425, 1330, 1200, 1128, 925, 800, 730.

tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-*a*]pyrazine]-1-carboxylate (21c) (Scheme 3)

The photocatalytic synthesis of **21c** followed the general procedure with **15** (100.2 mg, 0.5 mmol, 1.0 equiv) and *tert*-butyl 3-oxoazetidine-1-carboxylate (85.6 mg, 0.5 mmol, 1.0 equiv). The desired product was obtained by flash column chromatography (CH₂Cl₂ to 10% MeOH in CH₂Cl₂) as a yellowish oil (46.2 mg, 33%).

¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 3.97 (d, J = 8.9 Hz, 1 H), 3.71 (d, J = 8.9 Hz, 1 H), 3.66 (d, J = 9.2 Hz, 1 H), 3.54 (d, J = 9.2 Hz, 1 H), 2.83 (d, J = 11.1 Hz, 1 H), 2.74–2.69 (m, 2 H), 2.48 (t, J = 11.0, 11.0 Hz, 1 H), 2.13 (d, J = 11.1 Hz, 1 H), 2.02 (ddd, J = 11.2, 11.1, 4.3 Hz, 1 H), 1.81 (apparent t, J = 10.5 Hz, 1 H), 1.75–1.69 (m, 1 H), 1.61–1.51 (m, 2 H), 1.49–1.42 (m, 1 H), 1.41 (s, 9 H), 1.31–1.20 (m, 2 H), 1.16–1.10 (m, 1 H); ¹³**C** NMR (100 MHz, CDCl₃): δ [ppm] = 156.6, 79.5, 63.0, 61.4, 60.8 (br), 58.8 (br), 56.0, 52.4, 48.6, 29.4, 28.5, 25.6, 24.1; HRMS (ESI): calculated for [C₁₅H₂₈N₃O₂]⁺: m/z = 282.2176, found: m/z = 282.2175; **IR** (v/cm⁻¹, neat): 3308, 2933, 2874, 2803, 1702, 1406, 1169, 1114, 860, 771, 733.

3.4 Procedure for N-Bn deprotection

tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22)

Bn I N N Boc A solution of Boc₂O (436.5 mg, 2.0 mmol, 1.0 equiv) in CH₂Cl₂ (5.0 mL) was added dropwise to a stirred mixture of **9a** (540.7 mg, 2.0 mmol, 1.0 equiv) and Et₃N (333.6 μ L, 2.4 mmol, 1.2 equiv) in CH₂Cl₂ (5.0 mL) under N₂ at 0 °C. The reaction was allowed to warm to room temperature and stirred overnight before washed with sat. NaHCO_{3(aq)} (1×50 mL) and brine. The organic layer was dried over Na₂SO₄, filtered, and condensed under

vacuo. The residue was purified by flash column chromatography (2%–8% EtOAc in hexanes) to afford the desired product (569.2 mg, 77%) as a yellowish oil.

¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.43–7.39 (m, 2 H), 7.35–7.25 (m, 5 H), 7.01–6.95 (m, 2 H), 5.21 (apparent s, 1 H), 3.90 (apparent d, J = 13.5 Hz, 1 H), 3.58 (d, J = 13.0 Hz, 1 H), 3.45 (d, J = 13.0 Hz, 1 H), 3.22 (apparent d, J = 12.0, 1 H), 3.00 (dt, J = 13.5, 7.1 Hz, 1 H), 2.83 (apparent d, J = 11.2 Hz, 1 H), 2.42 (dd, J = 12.0, 4.2 Hz, 1 H), 2.18 (apparent t, J = 11.2 Hz, 1 H), 1.48 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ [ppm] = 161.9 (d, J = 245.0 Hz), 155.0, 137.9 (apparent s), 136.4, 129.6 (d, J = 7.8 Hz), 129.3, 128.4, 127.4, 114.9 (d, J = 21.0 Hz), 80.2, 63.2, 55.2, 53.4, 52.8, 39.9, 28.6; ¹⁹F NMR (377 MHz, CDCl₃): δ [ppm] = -116.3; HRMS (ESI): calculated for [C₂₂H₂₈FN₂O₂]⁺: m/z = 371.2129, found: m/z = 371.2131; **IR** (v/cm⁻¹, neat): 2976, 2930, 2810, 2768, 1691, 1604, 1509, 1454, 1415, 1365, 1301, 1225, 1171, 1117, 1025, 844, 771.

2-(4-Fluorophenyl)piperazine (23)

The procedure was modified from the literature.¹⁶ To a stirred solution of **22** (120.0 mg, 0.32 mmol, 1.0 equiv) in 1,2-dichloroethane (1.0 mL) at room temperature was added 1-chloroethylchloroformate (104.8 μ L, 0.97 mmol, 3.0 equiv). This reaction was conducted in a closed vial (size: 3 mL). The reaction was heated under reflux overnight and cooled to room temperature before condensed under *vacuo*. The residue was dissolved in MeOH (2

mL) and the mixture was heated under reflux for additional 6 h. The reaction was cooled to room temperature and condensed under *vacuo*. The residue was dissolved in CH_2Cl_2 (5 mL) and stirred with sat. NaHCO_{3(aq)} (5 mL) at room temperature. After the organic layer was separated, the aqueous layer was extracted with CH_2Cl_2 (3×5 mL). The combined organics were washed with brine, dried over Na₂SO₄, filtered, and condensed under *vacuo* to afford the desired product **23** without further purification (a white solid, 57.1 mg, 98%).

m.p.: 98–99 °C; ¹**H NMR** (400 MHz, CDCl₃): δ [ppm] = 7.33 (ddd, J = 8.6, 5.4, 2.6 Hz, 2 H), 7.01–6.95 (m, 2 H), 3.71 (dd, J = 10.2, 2.8 Hz, 1 H), 3.10–3.05 (m, 1 H), 2.99–2.91 (m, 3 H), 2.88–2.81 (m, 1 H), 2.64 (dd, J = 12.1, 10.2 Hz, 1 H), 1.79 (br, 2 H); ¹³**C NMR** (100 MHz, CDCl₃): δ [ppm] = 162.2 (d, J = 245.1 Hz), 138.7 (d, J = 3.1 Hz), 128.5 (d, J = 7.9 Hz), 115.3 (d, J = 21.2 Hz), 61.4, 54.5, 47.9, 46.1; ¹⁹**F NMR** (377 MHz, CDCl₃): δ [ppm] = –115.3 ; **HRMS** (ESI): calculated for [C₁₀H₁₄FN₂]⁺: m/z = 181.1136, found: m/z = 181.1134; **IR** (v/cm⁻¹, neat): 3244, 3198, 2939, 2827, 1604, 1510, 1327, 1224, 1155, 1137, 879, 828.

(16) (a) Olofson, R. A.; Martz, J. T.; Senet, J. P.; Piteau, M.; Malfroot, T. J. Org. Chem. **1984**, 49, 2081–2082; (b) Yokoshima, S.; Watanabe, K.; Uehara, F.; Usui, Y.; Tanaka, H. *Bioorg. Med. Chem. Lett.* **2014**, 24, 5749–5751; (c) Firth, J. D.; O'Brien, P., Ferris, L. J. Am. Chem. Soc. **2016**, 138, 651–659.

4. X-ray crystallography

Crystals of **18c** (CCDC 1445313) were obtained by recrystallization from $Et_2O/EtOAc$. The X-ray data was collected to confirm the relative stereochemistry.

Figure S2. ORTEP representation of **18c**. Ellipsoids include 50% of the electron density. We thank Dr. Nils Trapp from the X-ray crystallographic service of the Laboratorium für Organische Chemie at ETH Zürich for performing the experiments.

Experimental

A suitable single crystal of **18c** $[C_{20}H_{28}N_2O_3, \text{ code: mo_jb141015_1_1_0m}]$ was selected and measured on a Bruker Apex2 Duo (Mo) diffractometer. The crystal was kept at 100.0(2) K during data collection. Using Olex2,¹⁷ the structure was solved with the XT¹⁸ structure solution program using Direct Methods and refined with the XL¹⁹ refinement package using Least Squares minimization.

(17) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

(18) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

⁽¹⁹⁾ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

Hsieh and Bode

Table S2. Crystal data and st	ructure refinement for 18c .
Identification code	mo_jb141015_1_1_0m
Empirical formula	$C_{20}H_{28}N_2O_3$
Formula weight	344.44
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	P21
a/Å	9.7442(9)
b/Å	6.1717(5)
c/Å	14.9524(13)
α/°	90
β/°	90.609(2)
$\gamma/^{\circ}$	90
Volume/Å ³	899.16(14)
Z	2
$\rho_{calc}g/cm^3$	1.272
μ/mm^{-1}	0.085
F(000)	372.0
Crystal size/mm ³	$0.16 \times 0.07 \times 0.04$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/	^o 4.18 to 54.974
Index ranges	$-12 \le h \le 12, -3 \le k \le 8, -19 \le l \le 18$
Reflections collected	5498
Independent reflections	$3053 [R_{int} = 0.0394, R_{sigma} = 0.0639]$
Data/restraints/parameters	3053/2/229
Goodness-of-fit on F ²	1.014
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0448, wR_2 = 0.0886$
Final R indexes [all data]	$R_1 = 0.0662, wR_2 = 0.0969$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.26
Flack parameter	-0.6(10)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **18c**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atomx		У	z	U(eq)
01	-799(2)	8764(4)	8856.0(14)	23.6(5)
02	2037(2)	8208(3)	3910.2(14)	21.0(5)
03	3664(2)	5987(4)	4487.8(14)	19.1(5)
N1	469(2)	6762(4)	6701.0(16)	15.0(6)
N2	2169(2)	5437(4)	8247.7(16)	15.0(6)
C1	4607(3)	1449(5)	8701.4(19)	17.3(7)
C2	6012(3)	1041(5)	8685(2)	20.5(7)
C3	6936(3)	2665(5)	8901(2)	19.9(7)
C4	6458(3)	4725(5)	9118.4(19)	18.9(7)
C5	5063(3)	5121(5)	9128.8(19)	17.7(7)
C6	4120(3)	3493(5)	8930.5(19)	15.1(6)
C7	2598(3)	3968(5)	8976(2)	17.3(7)
C8	755(3)	6161(5)	8349.1(19)	14.4(6)
C9	395(3)	7538(6)	9148(2)	19.6(7)
C10	-942(3)	8617(6)	7890(2)	21.1(7)
C11	415(3)	7704(5)	7588.9(19)	15.7(6)

Hsieh and Bode

C12	2236(3)	4291(5)	7383.0(19)	15.4(6)
C13	1810(3)	5671(5)	6569.8(19)	12.6(6)
C14	1663(3)	4163(5)	5767.8(19)	15.0(6)
C15	1328(3)	5355(5)	4898(2)	15.9(6)
C16	2409(3)	7038(5)	4707(2)	16.2(7)
C17	2611(3)	8595(5)	5489.4(19)	15.5(6)
C18	2917(3)	7379(5)	6361.6(19)	15.2(6)
C19	4362(4)	7384(7)	3893(3)	39.1(10)
C20	3299(3)	8966(6)	3539(2)	26.7(8)

Table S4. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for **18c**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

•		-	2 liku o o ₁₂]			
Aton	n U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
01	22.1(12)	30.7(13)	17.9(12)	-1.7(11)	2.8(9)	14.8(11)
02	18.5(11)	27.0(13)	17.3(12)	8.3(10)	-0.8(8)	2.0(9)
03	16.1(11)	19.3(11)	21.9(12)	1.9(10)	5.5(9)	3.0(9)
N1	11.4(12)	14.3(13)	19.1(14)	-1.0(11)	-1(1)	1(1)
N2	12.3(12)	17.4(14)	15.2(13)	0.7(11)	-0.1(10)	4.2(11)
C1	19.4(15)	16.4(16)	16.0(16)	2.2(13)	0.5(13)	2.0(13)
C2	23.4(17)	18.8(16)	19.4(17)	1.6(15)	6.0(13)	9.4(15)
C3	16.6(16)	26.0(17)	17.1(16)	1.0(15)	1.6(12)	5.4(15)
C4	19.8(16)	23.2(16)	13.6(16)	-0.7(14)	1.7(13)	-1.1(14)
C5	20.9(16)	19.6(16)	12.6(16)	-0.4(14)	-1.0(12)	4.5(14)
C6	18.2(15)	18.8(16)	8.3(14)	3.5(13)	0.5(11)	6.0(13)
C7	17.8(15)	17.4(16)	16.6(16)	1.6(14)	0.0(12)	1.0(13)
C8	12.1(14)	13.6(14)	17.4(16)	-0.2(13)	0.8(11)	0.7(13)
C9	16.7(15)	22.4(16)	19.8(17)	0.8(15)	1.4(12)	3.5(14)
C10	20.7(16)	25.7(18)	16.9(16)	0.0(15)	-0.1(12)	7.9(14)
C11	14.2(15)	13.8(15)	19.0(17)	1.2(13)	0.1(12)	2.2(13)
C12	16.0(15)	13.1(15)	16.9(16)	-0.3(13)	0.5(12)	2.1(13)
C13	12.6(14)	11.3(15)	13.9(15)	0.5(12)	-0.8(11)	1.6(12)
C14	16.9(15)	10.1(14)	18.0(15)	-1.4(13)	-2.1(12)	-0.8(12)
C15	14.4(15)	16.5(15)	16.8(15)	-3.2(13)	-2.4(12)	2.0(13)
C16	14.8(15)	18.7(17)	15.2(16)	0.2(13)	-0.8(12)	2.3(13)
C17	14.8(15)	12.0(14)	19.6(16)	2.3(14)	1.4(12)	-0.4(13)
C18	13.5(14)	15.9(15)	16.1(16)	-3.2(13)	-0.1(12)	1.5(13)
C19	26.8(19)	52(3)	38(2)	22(2)	8.3(16)	8.8(19)
C20	22.6(17)	34(2)	23.7(18)	9.9(17)	3.5(13)	-1.6(16)

Table S5. Bond Lengths for 18c.

Aton	n Aton	n Length/Å	Aton	1 Aton	n Length/Å
01	C9	1.451(3)	C4	C5	1.382(4)
01	C10	1.453(4)	C5	C6	1.391(4)
02	C16	1.436(4)	C6	C7	1.514(4)
02	C20	1.432(4)	C8	C9	1.510(4)
O3	C16	1.426(3)	C8	C11	1.517(4)
O3	C19	1.418(4)	C10	C11	1.511(4)
N1	C11	1.451(4)	C12	C13	1.538(4)
N1	C13	1.485(3)	C13	C14	1.524(4)

Hsieh and Bode

N2	C7	1.475(4)	C13	C18	1.542(4)
N2	C8	1.459(3)	C14	C15	1.526(4)
N2	C12	1.476(4)	C15	C16	1.509(4)
C1	C2	1.393(4)	C16	C17	1.525(4)
C1	C6	1.392(4)	C17	C18	1.531(4)
C2	C3	1.383(5)	C19	C20	1.515(5)
C3	C4	1.394(4)			

Table S6. Bond Angles for 18c.

Aton	n Aton	n Aton	n Angle/°	Aton	n Aton	n Aton	n Angle/°
C9	01	C10	109.5(2)	N1	C11	C10	117.5(2)
C20	02	C16	106.0(2)	C10	C11	C8	101.3(2)
C19	03	C16	106.6(2)	N2	C12	C13	114.4(2)
C11	N1	C13	110.1(2)	N1	C13	C12	112.1(2)
C7	N2	C12	109.7(2)	N1	C13	C14	107.8(2)
C8	N2	C7	111.9(2)	N1	C13	C18	109.6(2)
C8	N2	C12	106.8(2)	C12	C13	C18	110.8(2)
C6	C1	C2	120.4(3)	C14	C13	C12	107.8(2)
C3	C2	C1	120.2(3)	C14	C13	C18	108.6(2)
C2	C3	C4	119.8(3)	C13	C14	C15	113.2(2)
C5	C4	C3	119.7(3)	C16	C15	C14	110.5(2)
C4	C5	C6	121.2(3)	O2	C16	C15	109.5(2)
C1	C6	C7	121.5(3)	O2	C16	C17	110.4(2)
C5	C6	C1	118.7(3)	03	C16	02	104.3(2)
C5	C6	C7	119.7(3)	03	C16	C15	109.4(2)
N2	C7	C6	110.8(2)	03	C16	C17	111.0(2)
N2	C8	C9	118.8(2)	C15	C16	C17	111.9(2)
N2	C8	C11	108.2(2)	C16	C17	C18	111.6(3)
C9	C8	C11	100.9(2)	C17	C18	C13	112.1(2)
01	C9	C8	104.4(2)	03	C19	C20	106.3(3)
01	C10	C11	104.1(2)	O2	C20	C19	104.0(3)
N1	C11	C8	115.1(3)				

Tabl	e S7. 7	orsior	n Angle	es for 18c .					
Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
01	C10	C11	N1	162.0(2)	C9	C8	C11	C10	-43.9(3)
01	C10	C11	C8	35.7(3)	C10	01	C9	C8	-14.5(3)
02	C16	C17	C18	176.3(2)	C11	N1	C13	C12	44.7(3)
03	C16	C17	C18	-68.5(3)	C11	N1	C13	C14	163.2(2)
03	C19	C20	O2	-4.9(4)	C11	N1	C13	C18	-78.8(3)
N1	C13	C14	C15	62.3(3)	C11	C8	C9	01	36.2(3)
N1	C13	C18	C17	-62.8(3)	C12	N2	C7	C6	69.8(3)
N2	C8	C9	01	154.3(2)	C12	N2	C8	C9	-175.6(3)
N2	C8	C11	N1	62.7(3)	C12	N2	C8	C11	-61.5(3)
N2	C8	C11	C10	-169.4(2)	C12	C13	C14	C15	-176.4(2)
N2	C12	C13	N1	-50.6(3)	C12	C13	C18	C17	173.0(2)
N2	C12	C13	C14	-169.1(2)	C13	N1	C11	C8	-52.6(3)
N2	C12	C13	C18	72.2(3)	C13	N1	C11	C10	-171.9(3)
C1	C2	C3	C4	-1.2(4)	C13	C14	C15	C16	57.0(3)

Table S8. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 18c .

Atom	x	у	Z	U(eq)
H1	-200(30)	5760(40)	6626(19)	18
H1A	3977	326	8555	21
H2	6337	-356	8526	25
H3	7894	2377	8901	24
H4	7088	5851	9259	23
H5	4741	6530	9274	21
H7A	2077	2595	8929	21
H7B	2387	4640	9560	21
H8	126	4882	8319	17
H9A	175	6621	9670	24
H9B	1162	8518	9310	24
H10A	-1109	10064	7623	25
H10B	-1709	7642	7720	25
H11	1101	8908	7613	19
H12A	1632	3003	7408	18
H12B	3186	3773	7296	18
H14A	926	3101	5888	18
H14B	2529	3349	5694	18
H15A	1281	4304	4399	19
H15B	421	6065	4946	19
H17A	1773	9479	5562	19
H17B	3381	9588	5359	19
H18A	2971	8432	6860	18
H18B	3820	6654	6317	18
H19A	4765	6546	3396	47
H19B	5108	8166	4211	47
H20A	3505	10459	3741	32
H20B	3260	8941	2877	32

5. NMR spectra

Table of contents

2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1)			
2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2)			
N^{1} -phenyl- N^{1} -((trimethylsilyl)methyl)ethane-1,2-diamine (2)			
2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3)			
N^{1} -benzyl- N^{1} -((trimethylsilyl)methyl)ethane-1,2-diamine (3)			
(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4)			
(S)-2-Amino-N-benzyl-N-((trimethylsilyl)methyl)propanamide (S5)			
(S) - N^1 -Benzyl- N^1 -((trimethylsilyl)methyl)propane-1,2-diamine (10)			
1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6)			
tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7)			
1-Amino-N-benzyl-N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8)			
1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11)			
trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (89)			
trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10)			
2-(trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11)			
<i>trans-N</i> ³ -Benzyl-N ³ -((trimethylsilyl)methyl)tetrahydrofuran-3,4-diamine (12)			
2-(trans-2-Aminocyclohexyl)isoindoline-1,3-dione (S12)			
2-(trans-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13)	53		
2-(trans-2-(Benzylamino)cyclohexyl)isoindoline-1,3-dione (S14)			
2-(trans-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15)	55		
<i>trans-N</i> ¹ -Benzyl-N ¹ -((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13)			
(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16)	57		
(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14)			
2,2,2-Trifluoro-N-(piperidin-2-ylmethyl)acetamide (S17)			
2,2,2-Trifluoro-N-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18)	60		
(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15)	61		
3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3)			
1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5-7 & Scheme 2)	63		
Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2)	64		
1-Benzyl-3-(o-tolyl)piperazine (9c) (Scheme 2)			
1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2)	66		
1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2)	67		
1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)			
4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2)			
1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2)	70		
1-Benzyl-3-(1-benzyl-1 <i>H</i> -imidazol-5-yl)piperazine (9i) (Scheme 2)	71		
N-(4-((2R,6S)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3)	72		
NOESY of N-(4-((2R,6S)-4-benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a)	73		
(3S,5S)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3)	74		
4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3)	75		
5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3)	76		
2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3)	77		
5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3)			
(trans,cis)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-b]pyrazine (18a) (Scheme 3)	79		
(trans,cis)-1-Benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b) (Scheme 3)	80		
NOESY of (<i>trans,cis</i>)-1-benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4- <i>b</i>]pyrazine (18b)			
(trans)-4'-Benzylhexahydro-1'H-spiro[cyclohexane-1,2'-furo[3,4-b]pyrazin]-4-one ethylene ketal (18c) (Scheme 3)			
(trans,cis)-3-(Benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a) (Scheme 3)			
NOESY of (<i>trans,cis</i>)-3-(benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a)			
(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3)			
(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3)			
(3R,8aS)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-a]pyrazine (20a) (Scheme 3)			
(3 <i>R</i> ,8 <i>aS</i>)-3-(5-Methyl-1-phenyl-1 <i>H</i> -pyrazol-4-yl)octahydropyrrolo[1,2- <i>a</i>]pyrazine (20b) (Scheme 3)			
(R)-tert-Butyl 2,2-dimethyl-4-((3S,8aS)-octahydropyrrolo[1,2-a]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3)	89		
cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3)			
cis-3-(Pyrimidin-2-yl)octahydro-1H-pyrido[1,2-a]pyrazine (21b) (Scheme 3)	91		
NOESY of <i>cis</i> -3-(pyrimidin-2-yl)octahydro-1 <i>H</i> -pyrido[1,2- <i>a</i>]pyrazine (21b)	92		
tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-a]pyrazine]-1-carboxylate (21c) (Scheme 3)			
tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22)			
2-(4-Fluorophenyl)piperazine (23)	95		

2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1)

2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2)

N^1 -phenyl- N^1 -((trimethylsilyl)methyl)ethane-1,2-diamine (2)

Hsieh and Bode

2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3)

Hsieh and Bode

N^{1} -benzyl- N^{1} -((trimethylsilyl)methyl)ethane-1,2-diamine (3)

(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4)

(S)-2-Amino-N-benzyl-N-((trimethylsilyl)methyl)propanamide (S5)

(S)-N¹-Benzyl-N¹-((trimethylsilyl)methyl)propane-1,2-diamine (10)

Hsieh and Bode

1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6)

tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7)

1-Amino-N-benzyl-N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8)

1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11)

Hsieh and Bode

trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S9)

trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10)

2-(*trans*-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11)

*trans-N*³-Benzyl-*N*³-((trimethylsilyl)methyl)tetrahydrofuran-3,4-diamine (12)

2-(trans-2-Aminocyclohexyl)isoindoline-1,3-dione (S12)

2-(trans-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13)

2-(trans-2-(Benzylamino)cyclohexyl)isoindoline-1,3-dione (S14)

2-(*trans*-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15)

*trans-N*¹-Benzyl-*N*¹-((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13)

(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16)

(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14)

2,2,2-Trifluoro-N-(piperidin-2-ylmethyl)acetamide (S17)

2,2,2-Trifluoro-*N*-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18)

(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15)

3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3)

1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5–7 & Scheme 2)

Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2)

1-Benzyl-3-(o-tolyl)piperazine (9c) (Scheme 2)

1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2)

1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2)

1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)

4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2)

1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2)

1-Benzyl-3-(1-benzyl-1*H*-imidazol-5-yl)piperazine (9i) (Scheme 2)

N-(4-((2*R*,6*S*)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3)

NOESY of N-(4-((2R,6S)-4-benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a)

(3S,5S)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3)

4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3)

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3)

2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3)

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3)

38–05–11–bhsieh.10.fid Sample fly–11–087–CC group bode PRO CDCl3 /opt/v bhsieh 38

 $\overset{1}{} H \ \mathsf{NMR} \ (400 \ \mathsf{MHz}, \mathsf{CDCl}) \ \delta \ 7.80, \ 7.80, \ 7.79, \ 7.79, \ 7.79, \ 7.78, \ 7.45, \ 7.45, \ 7.45, \ 7.45, \ 7.44, \ 7.43, \ 7.43, \ 7.42, \ 7.42, \ 7.42, \ 7.37, \ 7.36, \ 7.35, \ 7$

 $\label{eq:constraints} \begin{array}{l} ^{1}\mathrm{H}\ \mathrm{NMR}\ (400\ \mathrm{MHz}, \mathrm{Chloroform}\ d)\ \delta\ 7.80-7.78\ (\mathrm{m}, 2\ \mathrm{H}),\ 7.45-7.42\ (\mathrm{m}, 3\ \mathrm{H}),\ 7.37-7.31\ (\mathrm{m}, 4\ \mathrm{H}),\ 7.29-7.25\ (\mathrm{m}, 1\ \mathrm{H}),\ 6.48\ (\mathrm{s}, 1\ \mathrm{H}),\ 4.47\ (\mathrm{dd},\ J=10.6,\ 2.6\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 3.60\ (\mathrm{d},\ J=13.3\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 3.46\ (\mathrm{d},\ J=13.3\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 3.15\ (\mathrm{dd},\ J=10.5,\ 2.6\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 2.79\ (\mathrm{d},\ J=11.1\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 1.51\ (\mathrm{dd},\ J=10.5,\ 2.6\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 2.79\ (\mathrm{d},\ J=11.1\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 1.51\ (\mathrm{dd},\ J=10.5,\ 2.6\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 2.79\ (\mathrm{d},\ J=11.1\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 1.51\ (\mathrm{dd},\ J=10.5,\ 2.6\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 2.79\ (\mathrm{dd},\ J=11.1\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 1.51\ (\mathrm{dd},\ J=10.5\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 2.79\ (\mathrm{dd},\ J=11.1\ \mathrm{Hz},\ 1\ \mathrm{H}),\ 1.51\ (\mathrm{dd},\ J=10.5\ \mathrm{Hz},\ 1\ \mathrm{Hz},$

(*trans,cis*)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-*b*]pyrazine (18a) (Scheme 3)

(*trans,cis*)-1-Benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-*b*]pyrazine (18b) (Scheme 3)

NOESY of (*trans,cis*)-1-benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b)

f1 (ppm)

(*trans*)-4'-Benzylhexahydro-1'*H*-spiro[cyclohexane-1,2'-furo[3,4-*b*]pyrazin]-4-one ethylene ketal (18c) (Scheme 3)

(*trans,cis*)-3-(Benzo[*d*][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a) (Scheme 3)

NOESY of (*trans,cis*)-3-(benzo[*d*][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a)

(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3)

(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3)

(3*R*,8a*S*)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-*a*]pyrazine (20a) (Scheme 3)

(3*R*,8a*S*)-3-(5-Methyl-1-phenyl-1*H*-pyrazol-4-yl)octahydropyrrolo[1,2-*a*]pyrazine (20b) (Scheme 3)

(*R*)-*tert*-Butyl 2,2-dimethyl-4-((3*S*,8a*S*)-octahydropyrrolo[1,2-*a*]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3)

cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3)

15–11–10–bhsieh.10.fid Sample fly–11–031–CC group bode PRO CDCI3 /opt/v bhsieh 15

 $\begin{array}{l} \text{'H NMR (400 MHz, CDCl_i) } \delta \, 6.79, 4.59, 4.57, 4.56, 3.02, 3.02, 3.02, 3.02, 2.99, 2.94, 2.91, 2.86, 2.83, 2.81, 2.77, 2.76, 2.74, 2.74, 2.69, 2.66, 2.63, 2.50, 2.27, 2.27, 2.25, 2.24, 2.23, 2.21, 2.20, 2.18, 2.17, 1.83, 1.82, 1.82, 1.81, 1.81, 1.80, 1.79, 1.69, 1.69, 1.68, 1.68, 1.67, 1.65, 1.65, 1.64, 1.62, 1.62, 1.61, 1.60, 1.59, 1.59, 1.58, 1.48, 1.48, 1.45, 1.45, 1.45, 1.42, 1.40, 1.39, 1.38, 1.37, 1.36, 1.34, 1.34, 1.33, 1.30. \end{array}$

¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (s, 2 H), 4.58 (dd, *J* = 11.2, 3.2 Hz, 1 H), 3.01 (dd, *J* = 11.6, 2.9 Hz, 1 H), 2.92 (d, *J* = 11.6 Hz, 1 H), 2.83 ddt, *J* = 11.6, 10.9 Hz, 1 H), 2.75 (dd, *J* = 11.5, 3.2 Hz, 1 H), 2.66 (dd, *J* = 11.5, 11.2 Hz, 1 H), 2.50 (s, 6 H), 2.21 (s, 3 H), 2.27–2.17 (m, 2 H), 1.83–1.79 (m, 2 H), 1.69–1.58 (m, 2 H), 1.48–1.30 (m, 2 H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 137.4, 136.7, 133.4, 130.3, 62.2, 57.6, 56.8, 55.6, 52.5, 29.0, 24.9, 23.8, 21.7, 20.7.

cis-3-(Pyrimidin-2-yl)octahydro-1*H*-pyrido[1,2-*a*]pyrazine (21b) (Scheme 3)

NOESY of *cis*-3-(pyrimidin-2-yl)octahydro-1*H*-pyrido[1,2-*a*]pyrazine (21b)

tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-*a*]pyrazine]-1-carboxylate (21c) (Scheme 3)

tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22)

¹H NMR (400 MHz, Chloroform-*d*) à 7.43–7.39 (m, 2 H), 7.35–7.25 (m, 5 H), 7.01–6.95 (m, 2 H), 5.21 (apparent s, 1 H), 3.90 (apparent d, J = 13.5 Hz, 1 H), 3.58 (d, J = 13.0 Hz, 1 H), 3.45 (d, J = 13.0 Hz, 1 H), 3.22 (apparent d, J = 12.0, 1 H), 3.00 (dt, J = 13.5, 7.1 Hz, 1 H), 2.83 (apparent d, J = 12.0, 4 H), 2.42 (dd, J = 12.0, 4 H), 2.18 (apparent t, J = 11.2 Hz, 1 H), 2.42 (dd, J = 12.0, 4.2 Hz, 1 H), 2.18 (apparent t, J = 11.2 Hz, 1 H), 1.48 (s, 9 H).

2-(4-Fluorophenyl)piperazine (23)

