Silicon amine reagents for the photocatalytic synthesis of piperazines from aldehydes and ketones

Supporting Information

Sheng-Ying Hsieh and Jeffrey W. Bode*
Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences ETH Zürich, Zürich 8093, Switzerland
bode@org.chem.ethz.ch

Table of Contents

1. General information. 2
1.1 Materials 2
1.2 Blue light reactor and the photocatalytic reaction 2
1.3 Reaction monitoring and purification. 3
1.4 Characterization instruments. 3
2. Preparation of SLAP reagents 4
2.1 Synthesis of SLAP reagent 2 4
2.2 Synthesis of SLAP reagent 3 6
2.3 Synthesis of SLAP reagent 10 7
2.4 Synthesis of SLAP reagent 11 9
2.5 Synthesis of SLAP reagent $\mathbf{1 2}$ 11
2.6 Synthesis of SLAP reagent 13 13
2.7 Synthesis of SLAP reagent 14 15
2.8 Synthesis of SLAP reagent 15 16
3. Photocatalytic synthesis of piperazines with SLAP reagents. 18
3.1 Optimized conditions for cyclization. 18
3.2 General procedure 20
3.3 Substrate scope 21
3.4 Procedure for N -Bn deprotection 29
4. X-ray crystallography 30
5. NMR spectra 35

1. General information

Reactions with anhydrous solvents were carried out in oven-dried glassware under N_{2} using standard manifold techniques. ${ }^{1}$

1.1 Materials

Compounds that are not described in the experimental part were synthesized according to literature procedures. Unless otherwise stated, chemicals were purchased from ABCR, Acros, Alfa Aesar, Apollo Scientific, Fluorochem, Maybridge, Merck, Sigma-Aldrich, Strem, or TCI, and were used without further purification. Common organic solvents were used as supplied (ACS or HPLC grade). Anhydrous MeCN, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and THF (HPLC grade) were freshly dried by passage over activated alumina under an inert atmosphere of N_{2}. 1,1,1,3,3,3-Hexafluoro-2-propanol is abbreviated to HFIP, and 2,2,2-trifluoroethanol to TFE.

All the synthesized SLAP reagents were stored under $4^{\circ} \mathrm{C}$ to avoid the decomposition.

1.2 Blue light reactor and the photocatalytic reaction

Nichia LumiFlex LED strip (blue light, $\lambda_{\max }=467 \mathrm{~nm}, 6 \mathrm{~W}$ for 30 LEDs) were purchased from Lumitronix ${ }^{\circledR}$ LED-Technik (http://www.leds.de/) and assembled in a $15 \times 12 \times 12 \mathrm{~cm}^{3}$ metal case with total 150 blue LEDs (maximum power: $\mathbf{3 0} \mathbf{W}$). The case was also equipped with a cooling fan $\left(12 \times 12 \mathrm{~cm}^{2}\right)$ to maintain the temperature at room temperature. Detailed specification of the blue LEDs can be found in this webpage: http://www.leds.de/en/LED-strips-modules-oxid-oxid-oxid/Flexible-LED-strips/LumiFlex-LED-Leiste-30-LEDs-50cm-24V-blue.html.

Photocatalytic reactions were carried out in closed glass vials (sizes depended on reaction scales), neither degassed beforehand nor conducted under dry conditions. The vials were exposed next to the blue LEDs as shown in Figure S1.

Figure S1. Blue light reactor/reaction setup. We thank Mr. Benedikt Wanner from the Bode group of Laboratorium für Organische Chemie at ETH Zürich for the construction of this blue reactor.
(1) Leonard, J.; Lygo, B.; Procter, G. Advanced Practical Organic Chemistry, Taylor \& Francis, 1998.

1.3 Reaction monitoring and purification

Thin layer chromatography (TLC) was performed on glass-backed plates pre-coated with silica gel (Merck, Silica Gel 60 F254), and visualized by UV quenching and by staining with basic KMnO_{4}, ninhydrin solution, or phosphomolybdic acid.

Flash column chromatography ${ }^{2}$ was performed on silica gel (Silicycle SiliaFlash F60, 230-400 mesh) using a forced flow of eluent at $0.4-0.5$ bar.

1.4 Characterization instruments

NMR spectra were recorded on Bruker Avance 400 MHz , and Varian Mercury 300 MHz spectrometers using CDCl_{3} as the solvent unless indicated otherwise. The residual signal of the CDCl_{3} was used as the internal standard (7.26 ppm in ${ }^{1} \mathrm{H}$ and 77.160 ppm in ${ }^{13} \mathrm{C}$ NMR). No additional internal standard was used in the measurement of ${ }^{19} \mathrm{~F}$ NMR. Peaks of ${ }^{13} \mathrm{C}$ NMR from the major rotamer were marked with asterisks if able to be recognized.

Infrared (IR) data was obtained on a $J A S C O$ FT-IR-4100 spectrometer with only major peaks being reported.
Optical rotations were measured on a $J A S C O$ P-2000 polarimeter operating with Tungsten-Halogen (WI) lamp at 589 nm through a 100 mm path length cell.

Melting points (m.p.) were measured on an Electrothermal Mel-Temp melting point apparatus and were uncorrected.

High resolution mass spectra were measured by the Mass Spectrometry Service Facility of Laboratorium für Organische Chemie at ETH Zürich on a Bruker Daltonics maXis for ESI-Q-TOF spectrometer (ESI-MS).
(2) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

2. Preparation of SLAP reagents

2.1 Synthesis of SLAP reagent 2

2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1)

The procedure was modified from the literature. ${ }^{3}$ A mixture of N-phenylethane-1,2-diamine ($2.62 \mathrm{~mL}, 20.00 \mathrm{mmol}, 1.00$ equiv) and phthalic anhydride ($2.96 \mathrm{~g}, 20.00 \mathrm{mmol}, 1.00$ equiv) in toluene (20 mL) was heated for reflux with Dean-Stark apparatus overnight. The reaction was cooled and condensed under vacuo. Treated with the mixture of EtOAc and hexanes, the desired product was obtained as a white solid ($4.24 \mathrm{~g}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.84(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{br}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=168.7$, 147.7, 134.2, 132.1, 129.4, 123.5, 117.7, 112.8, 43.1, 37.6; HRMS (ESI): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=267.1128$, found: $\mathrm{m} / \mathrm{z}=267.1129$.

2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2)

The procedure was modified from the literature. ${ }^{4}$ To an ice-cooled solution of $\mathbf{S 1}(1.07 \mathrm{~g}, 4.00$ mmol, 1.00 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.50 \mathrm{M})$ under N_{2} was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate ${ }^{5}(0.82 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.00$ equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by $5 \% \mathrm{NaOH}_{(a q)}(10 \mathrm{~mL})$, the mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product $(1.17 \mathrm{~g}, 83 \%)$ as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 6.79$ (apparent d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ (apparent $\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.61-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.3,148.8$, 134.0, 132.1, 129.1, 123.2, 115.7, 112.4, 50.0, 41.7, 33.9, -1.1 ; HRMS (ESI): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=353.1680$, found: $\mathrm{m} / \mathrm{z}=353.1678$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3060, 2952, 2897, 1772, 1714, 1597, 1505, 1394, 1249, 1184, 1122, 1039, 1022, 854, 719.

N^{1}-phenyl- N^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (2)

Hydrazine monohydrate ($1.62 \mathrm{~mL}, 33.20 \mathrm{mmol}, 10.00$ equiv) was added to a solution of $\mathbf{S} 2$ $(1.17 \mathrm{~g}, 3.30 \mathrm{mmol}, 1.00$ equiv) in $\operatorname{EtOH}(10 \mathrm{~mL}, 0.30 \mathrm{M})$. The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of $5 \% \mathrm{NaOH}_{(a q)}$ was added to dissolved the white precipitates. EtOH was removed under vacuo and the remained aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product $(0.69 \mathrm{~g}, 94 \%)$ as a colorless oil without further purification.
(3) Cul, A.; Daïch, A.; Decroix, B.; Sanz, G.; Van Hijfte, L. Tetrahedron 2004, 60, 11029-11039.
(4) Kawanishi, N.; Shirai, N.; Sato, Y.; Hatano, K.; Kurono, Y. J. Org. Chem. 1995, 60, 4272-4275.
(5) (a) The reagent was prepared from (trimethylsilyl)methanol and triflate anhydride by the procedure reported in Anderson, W. K.; Milowsky, A. S. J. Med. Chem. 1986, 29, 2241-2249; (b) d=1.16 g/mL.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{tt}, J=7.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{br}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=149.4,129.0,115.4,112.4,55.9,42.5,38.9,-0.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=223.1625$, found: $\mathrm{m} / \mathrm{z}=223.1627$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3366, 3296, 3060, 2952, 1597, 1505, 1382, 1248, 1193, 1034, 990, 850, 744, 693.

2.2 Synthesis of SLAP reagent 3

2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3)

A mixture of 2-(2-bromoethyl)isoindoline-1,3-dione ($7.62 \mathrm{~g}, 30.00 \mathrm{mmol}, 1.00$ equiv), N -benzyl-1-(trimethylsilyl)methanamine ($7.25 \mathrm{~mL}, 33.00 \mathrm{mmol}, 1.10$ equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.29 \mathrm{~g}$, $60.00 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{MeCN}(120 \mathrm{~mL}, 0.25 \mathrm{M})$ was heated under reflux for 2 days. The reaction was cooled to room temperature, filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was condensed and the residue was purified by flash column chromatography to afford the desired product ($8.63 \mathrm{~g}, 79 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.81(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-$ $7.09(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.2,139.8,133.8,132.4,128.8,128.1,126.8,123.1,61.9,54.9$, 46.3, 36.0, -1.2; HRMS (ESI): calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=367.1836$, found: $\mathrm{m} / \mathrm{z}=367.1838$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2952, 2793, 1772, 1714, 1395, 1248, 1085, 1069, 1018, 855, 721.

N^{1}-benzyl- N^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (3)

Hydrazine monohydrate ($11.15 \mathrm{~mL}, 228.70 \mathrm{mmol}, 10.00$ equiv) was added to a solution of $\mathbf{S 3}$ ($8.36 \mathrm{~g}, 22.90 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{EtOH}(46 \mathrm{~mL}, 0.50 \mathrm{M})$. The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of $5 \% \mathrm{NaOH}_{(a q)}$ was added to dissolved the white precipitates. EtOH was removed under vacuo and the remained aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product $(5.12 \mathrm{~g}, 94 \%)$ as a colorless oil without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{br}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=140.2$, 128.9, 128.3, 126.9, 62.4, 60.4, 46.4, 39.8, -1.2; HRMS (ESI): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{Si}^{+}\right]^{+} \mathrm{m} / \mathrm{z}=$ 237.1782, found: $\mathrm{m} / \mathrm{z}=237.1785$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3369,3028,2952,2789,1585,1453,1248,1028,854$, 738, 699 .

2.3 Synthesis of SLAP reagent 10

(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4)

The procedure was modified from the literature. ${ }^{6}$ To a mixture of N-Boc-L-alanine (3.78 g , $20.00 \mathrm{mmol}, 1.00$ equiv) and $N, N, N^{\prime}, N^{\prime}$-tetramethyl- O-(6-chloro- $1 H$-benzotriazol-1yl)uronium hexafluorophosphate (HCTU, $9.10 \mathrm{~g}, 22.00 \mathrm{mmol}, 1.10$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}, 0.20 \mathrm{M})$ was sequentially added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(7.61 \mathrm{~mL}, 44.00 \mathrm{mmol}, 2.20$ equiv) and N-benzyl-1-(trimethylsilyl)methanamine ($4.40 \mathrm{~mL}, 20.00 \mathrm{mmol}, 1.00$ equiv). The mixture was stirred under N_{2} at room temperature overnight. The reaction was washed with $1 \mathrm{NHCl}_{(a q)}(3 \times 50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3(a q)}(1 \times 50 \mathrm{~mL})$, and brine. The final organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product (6.68 g , 92%) as a colorless oil.
$[\alpha]_{D}^{24}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-27.7$; the ratio of rotamers was $75: 25$ as determined by ${ }^{1} \mathrm{H}$ NMR at room temperature; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.38-7.26(\mathrm{~m}, 3.00 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2.00 \mathrm{H}), 5.57(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.75 \mathrm{H}), 5.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1.00 \mathrm{H}), 4.66$ (d, $J=16.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.57(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.19(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.87(\mathrm{~s}, 1.50 \mathrm{H}), 2.83$ (s, 0.50 H$), 1.45(\mathrm{~s}, 2.25 \mathrm{H}), 1.43(\mathrm{~s}, 6.75 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.13$ (s, 2.25 H), $0.06(\mathrm{~s}, 6.75 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=172.7,172.3^{*}, 155.2^{*}, 155.0,136.9$, $136.4^{*}, 129.0,128.7^{*}, 127.8,127.7^{*}, 127.5^{*}, 126.8,79.5^{*}, 79.4,53.2^{*}, 50.2,46.4,46.0^{*}, 38.7^{*}, 38.1,28.44$, $28.43^{*}, 19.5^{*}, 19.4,-1.2^{*},-1.6$; HRMS (ESI): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}^{+}\right.$: $\mathrm{m} / \mathrm{z}=387.2074$, found: $\mathrm{m} / \mathrm{z}=387.2074$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3424,3311,2978,1713,1634,1453,1366,1249,1169,1028,854,731$, 698.

(S)-2-Amino- N -benzyl- N -((trimethylsilyl)methyl)propanamide (S5)

The procedure was modified from the literature. ${ }^{6}$ A solution of HCl in dioxane $(4.0 \mathrm{M}, 30.9$ $\mathrm{mL}, 123.4 \mathrm{mmol}, 15.0$ equiv) was added to $\mathbf{S} 4(3.0 \mathrm{~g}, 8.2 \mathrm{mmol}, 1.0$ equiv), and the mixture was stirred at room temperature for 4 h . The reaction was condensed under vacuo to remove the excess HCl in dioxane, and the residue was basified and partitioned with sat. $\mathrm{NaHCO}_{3(a q)}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and the basic aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for twice. Organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the deprotected amine ($2.1 \mathrm{~g}, 97 \%$) as a colorless oil without further purification.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-50.2$; the ratio of rotamers was $75: 25$ as determined by ${ }^{1} \mathrm{H}$ NMR at room temperature; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.63(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.37(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.06(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 0.25 \mathrm{H})$, $3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 0.75 \mathrm{H}), 2.83(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.68(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 0.25$ H), $2.57(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.70(\mathrm{br}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2.25 \mathrm{H})$, $0.10(\mathrm{~s}, 2.25 \mathrm{H}), 0.04(\mathrm{~s}, 6.75 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=176.1,175.7^{*}, 137.3$, 136.6*, $129.0^{*}, 128.7,127.81,127.77^{*}, 127.4,126.4^{*}, 52.8^{*}, 50.3,47.0,46.9^{*}, 38.9^{*}, 37.6,22.2^{*}, 21.4,-1.2^{*},-1.5$; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: \mathrm{m} / \mathrm{z}=265.1731$, found: $\mathrm{m} / \mathrm{z}=265.1734$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3364, 3297, 2953, 2897, 1633, 1453, 1248, 995, 851, 732, 697.
(6) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660-5661.

(S)- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)propane-1,2-diamine (10)

To an ice-cooled solution of $\mathbf{S 5}(1.85 \mathrm{~g}, 7.00 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF (35 mL , $0.20 \mathrm{M}), \mathrm{LiAlH}_{4}(0.80 \mathrm{~g}, 21.00 \mathrm{mmol}, 3.00$ equiv) was added slowly and portionwise (CAUTION! ${ }^{7}$). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with $20 \% \mathrm{NaOH}_{(a q)}$ before filtered and washed with EtOAc. The combined filtrate was condensed under vacuo, and the desired product was obtained as a colorless oil without further purification ($1.71 \mathrm{~g}, 98 \%$).
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=+85.8 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.2,9.1 \mathrm{~Hz}, 1$ H), $2.11(\mathrm{dd}, J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{br}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=140.0,129.0,128.3,127.0$, 66.7, 62.7, 47.0, 44.6, 21.0, -1.1; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=251.1938$, found: $\mathrm{m} / \mathrm{z}=$ 251.1941; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3359, 2956, 2790, 1585, 1453, 1365, 1248, 1062, 840, 740, 699.

[^0] the reaction returns gentle.

2.4 Synthesis of SLAP reagent 11

1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6)

${ }^{\mathrm{O}} \mathrm{OH} \quad$ The procedure was modified from the literature. ${ }^{8} \mathrm{~K}_{2} \mathrm{CO}_{3}(34.6 \mathrm{~g}, 250.0 \mathrm{mmol}, 2.5$ equiv $)$ was added to a solution of 1-aminocyclohexanecarboxylic acid ($14.3 \mathrm{~g}, 100.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. A solution of $\mathrm{Boc}_{2} \mathrm{O}(26.2 \mathrm{~g}, 120.0 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred for 16 h before condensed under vacuo. The residue was cooled to $0{ }^{\circ} \mathrm{C}$, acidified with $3 \mathrm{~N} \mathrm{HCl}_{(a q)}$ to $\mathrm{pH}=5$ (ca. 180 mL), and extracted with EtOAc $(4 \times 150 \mathrm{~mL})$. The extracts were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the crude product. After washed with $\mathrm{Et}_{2} \mathrm{O}$, the pure product was obtained as a white solid ($13.7 \mathrm{~g}, 56 \%$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=4.88(\mathrm{br}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=13.8,12.6,4.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=$ $178.8,157.3,80.1,59.8,33.6,28.8,26.5,22.5$.

tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7)

The procedure was modified from the literature. ${ }^{6}$ To a mixture of $\mathbf{S 6}(4.87 \mathrm{~g}, 20.00 \mathrm{mmol}$, 1.00 equiv) and $N, N, N^{\prime}, N^{\prime}$-tetramethyl- O-(6-chloro- 1 H -benzotriazol-1-yl)uronium hexafluorophosphate (HCTU, $9.10 \mathrm{~g}, 22.00 \mathrm{mmol}, 1.10$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ $\mathrm{mL}, 0.20 \mathrm{M}$) was sequentially added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(7.61 \mathrm{~mL}, 44.00 \mathrm{mmol}, 2.20$ equiv) and N -benzyl-1-(trimethylsilyl)methanamine ($4.40 \mathrm{~mL}, 20.00 \mathrm{mmol}, 1.00$ equiv). The mixture was stirred under N_{2} at room temperature overnight. The reaction was washed with $1 \mathrm{NHCl}_{(a q)}(3 \times 50 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3(a q)}(1 \times 50 \mathrm{~mL})$, and brine. The final organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product $(4.24 \mathrm{~g}, 51 \%)$ as a white solid.
m.p.: $120-121{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{br}, 1 \mathrm{H})$, $2.76(\mathrm{~s}, 2 \mathrm{H}), 2.11$ (apparent d, $J=13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.96 (apparent dt, $J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.72-1.59(\mathrm{~m}, 3$ H), $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=172.3$, 153.7, 137.5, 128.7, 127.3, 127.2, 79.7, 59.1, 53.3, 39.4, 33.2, 28.5, 25.3, 21.7, -0.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}^{+}: \mathrm{m} / \mathrm{z}=419.2724\right.$, found: $\mathrm{m} / \mathrm{z}=419.2721$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3286, 2931, 1693, 1619, 1496, 1390, 1366, 1247, 1163, 853, 731.

1-Amino- N-benzyl- N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8)

The procedure was modified from the literature. ${ }^{[6]}$ A solution of HCl in dioxane $(4.0 \mathrm{M}$, $60.0 \mathrm{~mL}, 240.0 \mathrm{mmol}, 15.0$ equiv) was added to $\mathbf{S} 7(6.7 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0$ equiv), and the mixture was stirred at room temperature for 4 h . The reaction was condensed under vacuo

[^1]to remove the excess HCl in dioxane, and the residue was basified and partitioned with sat. $\mathrm{NaHCO}_{3(a q)}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and the basic aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for twice. Organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the deprotected amine (5.1 g , quantitative) as a white solid without further purification.
m.p.: $65-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16$ (m, 2 H), $5.22(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.03$ (ddd, $J=13.9,10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.29(\mathrm{~m}, 10 \mathrm{H}), 0.04(\mathrm{~s}, 9$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta[\mathrm{ppm}]=175.3,138.4,128.7,127.1,126.8,58.4,54.4,39.8,37.4,25.6$, 22.2, -0.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: \mathrm{m} / \mathrm{z}=319.2200$, found: $\mathrm{m} / \mathrm{z}=319.2201$; IR ($\mathrm{v} / \mathrm{cm}^{-}$ ${ }^{1}$, neat): 2925, 2857, 1620, 1452, 1246, 853, 728, 697.

1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11)

To an ice-cooled solution of $\mathbf{S 8}(4.78 \mathrm{~g}, 15.00 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF (45 $\mathrm{mL}, 0.30 \mathrm{M}), \mathrm{LiAlH}_{4}(1.71 \mathrm{~g}, 45.00 \mathrm{mmol}, 3.00$ equiv) was added slowly and portionwise (CAUTION! ${ }^{7}$). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with $20 \% \mathrm{NaOH}_{(a q)}$ before filtered and washed with EtOAc. The combined filtrate was condensed under vacuo, and the desired product was obtained as colorless oil without further purification ($4.34 \mathrm{~g}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H})$, $2.23(\mathrm{~s}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 7 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ 140.4, 129.2, 128.2, 126.9, 69.6, 64.5, 52.0, 50.8, 37.6, 26.2, 22.0, -0.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=305.2408$, found: $\mathrm{m} / \mathrm{z}=305.2407$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2926, 2853, 1495, 1450, 1363, 1247, 1068, 855, 741, 699.

2.5 Synthesis of SLAP reagent 12

trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S9)

To a solution of 3,4-epoxytetrahydrofuran ($2.15 \mathrm{~mL}, 30.00 \mathrm{mmol}, 1.00$ equiv) in EtOH (10 $\mathrm{mL}, 3.00 \mathrm{M}$) was added (trimethylsilyl)methanamine ($4.22 \mathrm{~mL}, 31.50 \mathrm{mmol}, 1.05$ equiv). The mixture was heated under reflux for 2 days. The reaction was cooled to room temperature and condensed under vacuo to afford the desired product (5.67 g , quantitative) as a colorless oil without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=4.13(\mathrm{ddd}, J=4.3,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=$ $5.6,3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ $76.1,74.2,72.3,70.7,38.4,-2.6$; HRMS (ESI): calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=190.1258$, found: $\mathrm{m} / \mathrm{z}=$ 190.1262; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3390, 2953, 2871, 1660, 1464, 1421, 1249, 1074, 856.

trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10)

A mixture of $\mathbf{S 9}(5.67 \mathrm{~g}, 30.00 \mathrm{mmol}, 1.00$ equiv), $\mathrm{BnBr}(3.74 \mathrm{~mL}, 31.50 \mathrm{mmol}, 1.05$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.57 \mathrm{~g}, 31.50 \mathrm{mmol}, 1.05$ equiv) in $\mathrm{MeCN}(30 \mathrm{~mL}, 1.00 \mathrm{M})$ was heated under reflux overnight. The reaction was cooled to room temperature, filtered, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was condensed under vacuo to afford the desired product ($7.93 \mathrm{~g}, 95 \%$) as a yellowish oil without further purification.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=5.8,4.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (apparent d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.58(\mathrm{dd}, J=9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (ddd, $J=7.8,5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (br, 1 H), $2.12(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $=139.8,128.6,128.4,127.1,75.1,72.9,71.7,69.1,59.4,42.4,-1.3$; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}^{+}: \mathrm{m} / \mathrm{z}=280.1727\right.$, found: $\mathrm{m} / \mathrm{z}=280.1728$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3410, 2952, 2860, 1495, 1454, 1422, 1365, 1249, 1074, 856, 740, 699.

2-(trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11)

$\mathbf{S 1 0}$ ($5.55 \mathrm{~g}, 20.00 \mathrm{mmol}, 1.00$ equiv), phthalimide ($2.94 \mathrm{~g}, 20.00 \mathrm{mmol}, 1.00$ equiv), and $\mathrm{PPh}_{3}(5.25 \mathrm{~g}, 20.00 \mathrm{mmol}, 1.00$ equiv) were dissolved in anhydrous THF ($80 \mathrm{~mL}, 0.25 \mathrm{M}$) under N_{2}. This clear solution was cooled to $0^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate (DIAD, $3.94 \mathrm{~mL}, 20.00 \mathrm{mmol}, 1.00$ equiv) was added dropwise. The reaction was allowed to warm to room temperature and stirred under N_{2} overnight. After the solvent was removed under vacuo, the residue was purified by flash column chromatography to afford the trans
product $^{9}(6.67 \mathrm{~g}, 83 \%)$ as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 5 \mathrm{H}), 4.96$ (ddd, $J=8.7,8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J$ $=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=167.8,139.4,134.2,131.8,128.3,128.2,127.0,123.3,70.9,68.9,65.1,58.8,49.4,40.5,-$ 1.4; HRMS (ESI): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}^{+}: \mathrm{m} / \mathrm{z}=409.1942\right.$, found: $\mathrm{m} / \mathrm{z}=409.1943$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): $2953,2877,1773,1714,1387,1248,1088,924,857,720$.

trans- N^{3}-Benzyl- N^{3}-((trimethylsilyl)methyl)tetrahydrofuran-3,4-diamine (12)

Hydrazine monohydrate ($2.98 \mathrm{~mL}, 61.20 \mathrm{mmol}, 10.00$ equiv) was added to a solution of S11 ($2.50 \mathrm{~g}, 6.10 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{EtOH}(18 \mathrm{~mL}, 0.30 \mathrm{M})$. The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of $5 \% \mathrm{NaOH}_{(a q)}$ was added to dissolved the white precipitates. EtOH was removed under vacuo and the remained aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product $(1.62 \mathrm{~g}, 95 \%)$ as a colorless oil without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1$ H), 3.84-3.77 (m, 2 H), $3.69(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (apparent td, $J=6.7,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.28 (dd, $J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (apparent dt, $J=7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (s, 2 H), 1.25 (br, 2 $\mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=140.0,128.5,128.4,127.1,75.3,71.7,67.8,59.5$, 53.5, 41.7, -1.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: \mathrm{m} / \mathrm{z}=279.1887$, found: $\mathrm{m} / \mathrm{z}=279.1887$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): $3368,2951,2853,1602,1494,1453,1247,1052,838,738,698$.
(9) The reaction went through aziridinium intermediate.

2.6 Synthesis of SLAP reagent 13

2-(trans-2-Aminocyclohexyl)isoindoline-1,3-dione (S12)

The procedure was modified from the literature. ${ }^{10}$ A stirred suspension of $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($7.6 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0$ equiv) in xylenes $(200 \mathrm{~mL})$ was heated to reflux to remove water azeotropically (c.a. $1-2 \mathrm{~h}$). The resulting solution was allowed to cool to room temperature, followed by the addition of trans-cyclohexane-1,2-diamine ($4.6 \mathrm{~g}, 40.0 \mathrm{mmol}$, 1.0 equiv) and phthalic anhydride ($5.9 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0$ equiv). The mixture was again heated to remove water azeotropically overnight and allowed to cool to room temperature. The monoprotected $\mathbf{S 1 2 \cdot p}-\mathrm{TsOH}$ was obtained by recrystallization from hexanes/xylenes (a white solid, 16.0 g , $96 \%)$. S12• p - TsOH was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and stirred with sat. $\mathrm{NaHCO}_{3(a q)}(100 \mathrm{~mL})$ at room temperature overnight. After the organic layer was separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product $\mathbf{S 1 2}$ without further purification (a white solid, $7.8 \mathrm{~g}, 80 \%$ from diamine).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.82(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (ddd, $J=12.4,10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (ddd, $J=11.3,10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (dddd, $J=12.6,12.6$, 12.4, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.19$ (dddd, $J=12.8,11.3,3.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.9,134.0,132.1,123.3,58.7,51.0,36.8,29.5,25.8,25.2$.

2-(trans-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13)

The procedure was followed by the literature. ${ }^{10 \mathrm{a}}$ A solution of $\mathbf{S 1 2}(9.77 \mathrm{~g}, 40.00 \mathrm{mmol}$, 1.00 equiv) and benzaldehyde ($4.87 \mathrm{~mL}, 48.00 \mathrm{mmol}, 1.20$ equiv) in benzene $(100 \mathrm{~mL})$ with Dean-Stark apparatus overnight. The reaction was allowed to cool to room temperature and poured into hexanes. The desired product was obtained from the recrystallization as a white solid $(12.79 \mathrm{~g}, 96 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.63(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-$ 7.45 (m, 2 H), $7.22-7.15$ (m, 3 H), 4.33 (ddd, $J=12.7,10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (ddd, $J=10.6,10.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17$ (dddd, $J=12.7,12.7,11.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.6,160.9,136.3,133.8,131.9,130.6,128.5,128.2,123.1,69.5,55.8,34.3,28.9$, 25.7, 24.3.
(10) (a) Kaik, M.; Gawroński, J. Tetrahedron: Asymmetry 2003, 14, 1559-1563; (b) Bui, T.; Syed, S.; Barbas, C. F. J. Am. Chem. Soc. 2009, 131, 8758-8759.

2-(trans-2-(Benzylamino)cyclohexyl)isoindoline-1,3-dione (S14)

The procedure was modified from the literature. ${ }^{10 \mathrm{a}}$ To a solution of imine $\mathbf{S 1 3}(9.97 \mathrm{~g}$, $30.00 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{MeCN}(240 \mathrm{~mL}, 0.13 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{3} \mathrm{CN}$ ($4.71 \mathrm{~g}, 75.00 \mathrm{mmol}, 2.50$ equiv) and $\mathrm{AcOH}(0.17 \mathrm{~mL}, 3.00 \mathrm{mmol}, 0.10$ equiv) sequentially. The reaction was allowed to warm to room temperature and stirred overnight. After solvent was removed under vacuo, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. $\mathrm{NaHCO}_{3(a q)}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product ($9.14 \mathrm{~g}, 91 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-$ $7.04(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{ddd}, J=12.4,11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{td}, J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.9,141.2,133.8,132.2,128.2,128.0,126.7,123.2,56.5$, 56.1, 50.7, 33.3, 29.6, 25.8, 25.2.

2-(trans-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15)

The procedure was modified from the literature. ${ }^{4}$ To an ice-cooled solution of $\mathbf{S 1 4}(3.00 \mathrm{~g}$, $9.00 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL}, 0.20 \mathrm{M})$ under N_{2} was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate ${ }^{5}(1.83 \mathrm{~mL}, 9.00 \mathrm{mmol}, 1.00$ equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by $5 \% \mathrm{NaOH}_{(a q)}(10 \mathrm{~mL})$, the mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product ($2.88 \mathrm{~g}, 76 \%$) as a white solid.
m.p.: $78-79{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{ddd}, J=12.1,10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06-2.02(m, 1 H$), 1.91(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=\mathbf{1 6 8 . 5}, \mathbf{1 6 8 . 1}, 140.2,133.7,132.7, \mathbf{1 3 2 . 2}, 128.6,128.0,126.7,123.1$, 122.8, 59.7, 57.0, 51.9, 40.9, 29.8, 26.0, 25.2, 22.5, -1.2; HRMS (ESI): calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}$ $=421.2306$, found: $\mathrm{m} / \mathrm{z}=421.2307$; $\mathbf{I R}\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): 2933, 1767, 1708, 1389, 1246, 1076, 847, 718 .

trans- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13)

Hydrazine monohydrate ($5.85 \mathrm{~mL}, 120.00 \mathrm{mmol}, 10.00$ equiv) was added to a solution of S15 ($5.05 \mathrm{~g}, 12.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{EtOH}(120 \mathrm{~mL}, 0.10 \mathrm{M})$. The mixture was heated under reflux for 1 h and the white solids precipitated during the reaction. The reaction was cooled to room temperature and sufficient amount of $5 \% \mathrm{NaOH}_{(a q)}$ was added to dissolved the white precipitates. EtOH was removed under vacuo and the remained aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product ($3.25 \mathrm{~g}, 93 \%$) as a colorless oil without further purification.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.30(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=10.4,10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.07$ $(\mathrm{m}, 3 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=140.6,128.8,128.4$, $126.8,67.0,56.9,51.6,41.1,35.2,25.8,25.3,21.0,-1.1$; HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=$ 291.2251, found: $\mathrm{m} / \mathrm{z}=291.2250$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3359,2928,2856,1585,1450,1364,1248,1070,839$, 740.689.

2.7 Synthesis of SLAP reagent 14

(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16)

(S)-Pyrrolidine-2-carboxamide $\quad(2.28 \quad \mathrm{~g}, \quad 20.00 \mathrm{mmol}, 1.00$ equiv), (iodomethyl)trimethylsilane ($2.97 \mathrm{~mL}, 20.00 \mathrm{mmol}, 1.00$ equiv), and $\mathrm{Et}_{3} \mathrm{~N}(2.78 \mathrm{~mL}, 20.00$ mmol, 1.00 equiv) were mixed in anhydrous THF ($40 \mathrm{~mL}, 0.50 \mathrm{M}$) and heated to reflux under N_{2} overnight. The reaction was cooled to room temperature and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product ${ }^{11}(1.65 \mathrm{~g}$, 41%) as a colorless oil.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-112.7 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.08(\mathrm{br}, 1 \mathrm{H}), 6.52(\mathrm{br}, 1 \mathrm{H})$, 3.13-3.08 (m, 1 H), $2.83(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $[\mathrm{ppm}]=178.8,72.3,56.6,47.3,30.4,24.8,-1.6$; HRMS (ESI): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: \mathrm{m} / \mathrm{z}=$ 201.1418, found: $\mathrm{m} / \mathrm{z}=201.1418$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3430, 3258, 2954, 2790, 1682, 1574, 1249, 1107, 853, 763, 693.

(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14)

To an ice-cooled solution of $\mathbf{S 1 6}(1.50 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF (30 mL , $0.25 \mathrm{M}), \mathrm{LiAlH}_{4}(0.85 \mathrm{~g}, 22.50 \mathrm{mmol}, 3.00$ equiv) was added slowly and portionwise (CAUTION! ${ }^{7}$). After the addition was complete, the mixture was heated under reflux overnight. The reaction was cooled to room temperature and quenched with $20 \% \mathrm{NaOH}_{(a q)}$ before being filtered and washed with EtOAc. The combined filtrate was condensed under vacuo, and the desired product was obtained as colorless oil without further purification ($1.28 \mathrm{~g}, 92 \%$).
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-83.3 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.05(\mathrm{ddd}, J=8.9,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.69(\mathrm{dd}, J=13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ (dddd, $J=$ $7.4,5.1,4.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=8.9,8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.54$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{br}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=69.8,57.3,45.4$, 43.4, 27.2, 23.3, -1.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Si}^{+}\right]^{+} \mathrm{m} / \mathrm{z}=187.1625$, found: $\mathrm{m} / \mathrm{z}=187.1627$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3369,2953,2777,1582,1461,1418,1248,1113,850,762,692$.
(11) The product was found to decompose gradually at room temperature over a few weeks.

2.8 Synthesis of SLAP reagent 15

2,2,2-Trifluoro- N -(piperidin-2-ylmethyl)acetamide (S17)

The procedure was modified from the literature. ${ }^{12}$ To an ice-cooled solution of piperidin-2ylmethanamine ($3.64 \mathrm{~mL}, 30.00 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(4.59 \mathrm{~mL}, 33.00 \mathrm{mmol}, 1.10$ equiv) in $\mathrm{EtOH}(30 \mathrm{~mL}, 1.00 \mathrm{M}$), ethyl 2,2,2-trifluoroacetate ($3.75 \mathrm{~mL}, 31.50 \mathrm{mmol}, 1.05$ equiv) was added dropwise under N_{2}. The reaction was allowed to warm to room temperature and stirred for 18 h . After the solvents were removed under vacuo, the residue was further recrystallized with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes to afford the desired product $(4.63 \mathrm{~g}, 73 \%)$ as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.19(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.7$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (dddd, $J=12.4,4.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dddd, $J=10.9,7.5,4.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{br}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 1$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=157.6(\mathrm{q}, J=36.8 \mathrm{~Hz}), 116.0(\mathrm{q}, J=287.7 \mathrm{~Hz}), 55.0,46.5$, $45.0,30.3,26.5,24.1 ;{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-75.8$.

2,2,2-Trifluoro- N-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18)

The procedure was modified from the literature. ${ }^{4}$ To an ice-cooled solution of $\mathbf{S 1 7}(3.15 \mathrm{~g}$, 15.00 mmol , 1.00 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}, 0.50 \mathrm{M})$ under N_{2} was slowly added (trimethylsilyl)methyl trifluoromethanesulfonate ${ }^{5}(3.05 \mathrm{~mL}, 15.00 \mathrm{mmol}, 1.00$ equiv). The reaction was allowed to warm to room temperature and stirred overnight. After quenched by $5 \% \mathrm{NaOH}_{(a q)}(20 \mathrm{~mL})$, the mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired product ($2.66 \mathrm{~g}, 60 \%$) as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.19(\mathrm{br}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=13.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=13.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=12.0,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=12.0,10.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.27(\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=157.6(\mathrm{q}, J=37.1 \mathrm{~Hz}), 116.1(\mathrm{q}, J=$ $287.8 \mathrm{~Hz}), 60.9,54.8,44.7,41.6,28.5,24.7,23.6,-1.2 ;{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta[\mathrm{ppm}]=-75.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: \mathrm{m} / \mathrm{z}=297.1605$, found: $\mathrm{m} / \mathrm{z}=297.1607$; $\mathbf{I R}$ ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3341, 2939, 2859, 2788, 1727, 1525, 1250, 1165, 1065, 861, 702.

(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15)

To a solution of $\mathbf{S 1 8}\left(2.4 \mathrm{~g}, 8.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeOH}(20 \mathrm{~mL}, 0.4 \mathrm{M}), c a .25 \% \mathrm{NH}_{3(a q)}$ ($20 \mathrm{~mL}, 131.3 \mathrm{mmol}, 16.2$ equiv) was added. The mixture was stirred at room temperature for 2 days before the solvents were removed under vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. $\mathrm{NaHCO}_{3(a q)}$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product (1.6 g , quantitative) as a colorless oil without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.93-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=12.1,11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=11.7,11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}$,
(12) Fujita, M.; Chiba, K.; Tominaga, Y.; Hino, Chem. Pharm. Bull. 1998, 46, 787-796.
$3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, ~ J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=65.6,55.7,44.7,43.6,28.0,25.1,24.0,-0.9 ;$ HRMS (ESI): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{Si}\right]^{+}: \mathrm{m} / \mathrm{z}=201.1782$, found: $\mathrm{m} / \mathrm{z}=201.1783$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3369, 2933, 2857, 2778, 1683, 1582, 1462, 1248, 1201, 1130, 838, 692.

3. Photocatalytic synthesis of piperazines with SLAP reagents

3.1 Optimized conditions for cyclization

Table S1. Screening of cyclization conditions

entry	imine ${ }^{a}$	condition	result
1	4	$\mathrm{Cu}(\mathrm{OTf})_{2}$ (1.0 equiv), 2,6-lutidine (1.0 equiv), 1,2dichloroethane/HFIP (1:1, 0.10 M), RT, 16 h	imine recovered
2	4	$\left.\operatorname{Ir}[(\mathrm{ppy}))_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, blue light, RT, 16 h	imine recovered
3	5	$\left.\operatorname{Ir[(ppy)})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, blue light, RT, 3 h	8, $73 \%{ }^{\text {b }}$
4	6	$\left.\operatorname{Ir}[(\mathrm{ppy}))_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, blue light, RT, 3 h	9a, N.D. ${ }^{\text {b }}\left(59 \%^{c}\right)$
5	6	$\operatorname{Ir}\left[(\mathrm{ppy})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN} / \mathrm{MeOH}(9: 1,0.05 \mathrm{M})$, blue light, RT, 3 h	9a, $62 \%^{\text {b }}\left(67 \%{ }^{\text {c }}\right.$)
6	6	$\operatorname{Ir}\left[(\mathrm{ppy}){ }_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN} / \mathrm{HFIP}(9: 1,0.05 \mathrm{M})$, blue light, RT, 3 h	9a, $67 \%{ }^{\text {b }}\left(71 \%^{c}\right)$
7	6	$\operatorname{Ir}\left[(\text { ppy })_{2} \mathrm{dtbbpy}^{2}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$, $\operatorname{MeCN} /$ TFE $(9: 1,0.05 \mathrm{M})$, blue light, RT, 3 h	9a, $70 \%{ }^{\text {b }}$
8	6	No catalyst, MeCN (0.05 M), blue light, RT, 3 h	imine recovered
9	6	$\operatorname{Ir}\left[(\mathrm{ppy})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, dark, RT, 3 h	imine recovered
10	6	$\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, blue light, RT, 3 h	imine recovered + unidentified products
11	6	$\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{MeCN}(0.05 \mathrm{M})$, blue light, RT, 3 h	fully desilylated unidentified products
12	6	Mes-Acr-Me ($5 \mathrm{~mol} \%)$, MeCN (0.05 M), blue light, RT, 3 h	imine recovered
13	6	Mes-Acr-Ph (5 mol \%), MeCN (0.05 M), blue light, RT, 3 h	imine recovered
14	6	$\operatorname{Ir}\left[(\mathrm{ppy})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$, $\mathrm{MeOH}(0.05 \mathrm{M})$, blue light, RT, 3 h	9a, N.D. ${ }^{\text {b }}\left(55 \%{ }^{\text {c }}\right.$)
15	6	$\operatorname{Ir}\left[(\text { ppy })_{2}{ }_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$, $\operatorname{HFIP}(0.05 \mathrm{M})$, blue light, RT, 3 h	$\begin{aligned} & \text { imine recovered }+ \text { trace } \\ & \text { of hydrolysis } \end{aligned}$

${ }^{a}$ Imine formation was performed with p-fluorobenzaldehyde and MS 4A in MeCN. ${ }^{b}$ Isolated yield under 0.5 mmol scale. ${ }^{c}$ Calculated yield from crude ${ }^{1} \mathrm{H}$ NMR spectrum under 0.1 mmol scale with 1,3,5trimethoxybenzene as an internal standard. N.D. $=$ not determined.

$\operatorname{lr}\left[(p p y)_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}$

$\operatorname{lr}(\text { ppy })_{3}$

$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$

Mes-Acr-Me

Mes-Acr-Ph

3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3)

A mixture of the $2(112.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 4-fluorobenzaldehyde ($53.6 \mu \mathrm{~L}, 0.5$ mmol, 1.0 equiv), and $\mathrm{MS} 4 \mathrm{~A}(100.0 \mathrm{mg})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL}, 0.5 \mathrm{M})$ under N_{2} was stirred overnight at room temperature. The reaction was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed under vacuo and the residue was re-dissolved in MeCN $(10 \mathrm{~mL}, 0.05 \mathrm{M})$ in a vial $(20 \mathrm{~mL})$, followed by the addition of $\operatorname{Ir}\left[(\mathrm{ppy})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}{ }^{13}(4.6$ $\mathrm{mg}, 5.0 \mu \mathrm{~mol}, 0.01$ equiv). The reaction was stirred at room temperature under the exposure of blue LEDs with a cooling fan to maintain the temperature. $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added and the reaction was stirred for another 5 min . After the solvents were removed under vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the desired product ($93.9 \mathrm{mg}, 73 \%$) as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.47(\mathrm{ddd}, J=8.5,5.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07$ (m, 2 H), 7.00-6.97 (m, 2 H), 6.91 (tt, $J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=10.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 2$ H), 3.27 (ddd, $J=11.4,3.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{td}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{td}, J=11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74 (dd, $J=11.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=162.3(\mathrm{~d}, J=245.8$ $\mathrm{Hz}), 151.3,137.8(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.2,128.8(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 119.9,116.3,115.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 59.8$, $57.1(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 49.4,46.2 ;{ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-114.6$; HRMS (ESI): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=257.1449$, found: $\mathrm{m} / \mathrm{z}=257.1448$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3037, 2947, 2821, 1671, 1600, $1508,1449,1333,1234,1141,964,837,759,693$.

1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5-7)

A mixture of the 3 ($118.2 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 4-fluorobenzaldehyde ($53.6 \mu \mathrm{~L}, 0.5$ mmol, 1.0 equiv), and $\mathrm{MS} 4 \mathrm{~A}(100.0 \mathrm{mg})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL}, 0.5 \mathrm{M})$ under N_{2} was stirred overnight at room temperature. The reaction was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed under vacuo and the residue was re-dissolved in $\mathrm{MeCN} / \mathrm{MeOH}(9: 1,10 \mathrm{~mL}, 0.05 \mathrm{M})$ in a vial $(20 \mathrm{~mL})$, followed by the addition of $\operatorname{Ir}\left[(\text { ppy })_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}{ }^{13}(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 0.01$ equiv $)$. The reaction was stirred at room temperature under the exposure of blue LEDs with a cooling fan to maintain the temperature. $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added and the reaction was stirred for another 5 min . After the solvents were removed under vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the desired product (83.7 mg , 62\%) as a yellowish oil. (Entry 5)

- The photocatalytic reaction was conducted under MeCN/HFIP ($9: 1,10 \mathrm{~mL}, 0.05 \mathrm{M}$) for 3 h at room temperature. The desired product was obtained by flash column chromatography ($90.7 \mathrm{mg}, 67 \%$). (Entry 6)
- The photocatalytic reaction was conducted under $\operatorname{MeCN} / T F E(9: 1,10 \mathrm{~mL}, 0.05 \mathrm{M})$ for 3 h at room temperature. The desired product was obtained by flash column chromatography ($94.2 \mathrm{mg}, 70 \%$). (Entry 7)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.39-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.90$ (dd, $J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{ddd}, J=11.0,9.7$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{br}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=162.1(\mathrm{~d}, J=$ $245.2 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 138.0,129.3,128.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.3,127.1,115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz})$, $63.3,61.4(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 59.7,53.2,46.2 ;{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-115.2 ;$ HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FN}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=271.1605$, found: $\mathrm{m} / \mathrm{z}=271.1608$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): 3262, 2939, 2806, $1604,1509,1453,1318,1223,1133,1026,836,699$.
(13) (a) The iridium photocatalyst can be purchased from Sigma-Aldrich or prepared according to the literature: Ladouceur, S.; Fortin, D.; Zysman-Colman, E. Inorg. Chem. 2011, 50, 11514-11526; (b) Abbreviations: dtbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; ppy $=2$-phenylpyridine.

3.2 General procedure

 "SLAP" reagents	 aldehydes or ketones	imine: MS 4A, MeCN (0.5 M) RT, overnight or ketimine: MS 4A, benzene (0.5 M) reflux, overnight		$\begin{gathered} \operatorname{lr[(\text {ppy})_{2}\mathrm {dtbbpy}]\mathrm {PF}_{6}} \\ (1 \mathrm{~mol} \%) \end{gathered} \mathrm{MeCN} / \mathrm{TFE}^{(9: 1,0.05 \mathrm{M})} \begin{aligned} & \text { blue light, RT, } 3 \mathrm{~h} \end{aligned}$	 piperazine products

* Protecting groups (Pg) can be alkyl or aryl substituents.

General condition for imine formation:

A mixture of a SLAP reagent (0.5 mmol), an aldehyde $(0.5 \mathrm{mmol})$, and MS $4 \mathrm{~A}(100.0 \mathrm{mg})$ in $\mathrm{MeCN}(1.0$ $\mathrm{mL}, 0.5 \mathrm{M}$) under N_{2} was stirred at room temperature overnight. ${ }^{14}$ The reaction was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed under vacuo and used directly for cyclization.

General condition for ketimine formation:

A mixture of a SLAP reagent (0.5 mmol), a ketone (0.5 mmol), and MS 4A (100.0 mg) in benzene (1.0 mL , $0.5 \mathrm{M})$ under N_{2} was stirred at reflux overnight. The reaction was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was condensed under vacuo and used directly for cyclization.

General condition for photocatalytic cyclization:

The reaction was carried out in a closed vial (20 mL) with no need to be degased beforehand or under dry conditions. To a solution of the corresponding imine or ketimine ($0.5 \mathrm{mmol}, 1.00$ equiv) in MeCN/TFE ($9: 1$, $10.0 \mathrm{~mL}, 0.05 \mathrm{M}), \operatorname{Ir}\left[(\mathrm{ppy})_{2} \mathrm{dtbbpy}\right] \mathrm{PF}_{6}{ }^{13}(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 0.01$ equiv) was added. The reaction was stirred at room temperature under the exposure of blue LEDs (30 W) with a cooling fan to maintain the temperature. $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added and the reaction was stirred for another 5 min . After the solvents were removed under vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography to afford the desired piperazine product.
(14) If necessary, reaction time for imine formation can be shortened to $2-4 \mathrm{~h}$.

3.3 Substrate scope

Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2)

The photocatalytic synthesis of 9b followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and methyl 3-formylbenzoate ($82.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 5% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($102.1 \mathrm{mg}, 66 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.08(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, J=$ $7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (apparent $\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 3.97$ (dd, $J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (s, 3 H), 3.56 (s, 2 H), 3.13-3.03 (m, 2 H), 2.93-2.84 (m, 2 H$), 2.69$ (br, 1 H$), 2.25$ (td, $J=10.7,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12(\mathrm{dd}, J=11.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=167.0,142.7,137.8,131.8$, $130.3,129.2,128.8,128.5,128.30,128.27,127.2,77.2,63.3,60.9,60.0,53.0,52.1,46.0$; HRMS (ESI): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=311.1754$, found: $\mathrm{m} / \mathrm{z}=311.1755$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): 3327, 3028, 2948, $2807,1715,1673,1435,1287,1204,1105,1027,1001,818,737$.

1-Benzyl-3-(o-tolyl)piperazine (9c) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 c}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and 2 -methylbenzaldehyde ($57.8 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil ($73.6 \mathrm{mg}, 55 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{dd}, J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{ddd}, J=11.2,9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03(\mathrm{dd}, J=11.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=140.3,138.0,135.4,130.4,129.3$, 128.3, 127.12, 127.11, 126.3, 126.2, 63.3, 59.9, 56.4, 53.3, 46.4, 19.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=267.1856$, found: $\mathrm{m} / \mathrm{z}=267.1858$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3322, 3026, 2938, 2804, 1493, 1453, 1316, 1133, 1101, 1025, 756, 699.

1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 d}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and 3-methoxybenzaldehyde ($60.8 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($98.9 \mathrm{mg}, 70 \%$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.83$ (ddd, $J=8.2,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 2$ H), 2.95 (ddd, $J=11.0,2.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=10.7,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{br}, 1 \mathrm{H}), 2.24$ (ddd, $J=$ $10.7,10.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=159.7$, 144.1, 138.0, 129.4, 129.3, 128.3, 127.1, 119.5, 113.1, 112.5, 63.3, 61.1, 60.4, 55.3, 53.1, 46.2; HRMS (ESI): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=283.1805$, found: $\mathrm{m} / \mathrm{z}=283.1803$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3324, 2939, 2806, 1673, 1585, 1454, 1317, 1250, 1131, 1048, 910, 740, 699.

1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 e}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv) and cyclopropanecarboxaldehyde ($37.4 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil ($49.9 \mathrm{mg}, 46 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.13(\mathrm{br}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 3.61(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $(\mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=12.4,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=12.4,1.9 \mathrm{~Hz}, 1$ H), $2.60(\mathrm{ddd}, J=11.9,11.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=12.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, J=10.0,9.7,3.1 \mathrm{~Hz}$,

1 H), 1.19 (apparent dddd, $J=12.9,9.7,8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.76$ (dddd, $J=9.6,5.1,5.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.69-$ $0.56(\mathrm{~m}, 2 \mathrm{H}), 0.28($ dddd, $J=10.2,4.9,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=137.3$, $129.0,128.5,127.5,62.4,61.0,55.7,49.4,43.9,11.8,4.1,3.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}$ $=217.1699$, found: $\mathrm{m} / \mathrm{z}=217.1699$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3399,2927,2810,2714,2482,1590,1453,1314$, 1055, 1015, 741, 700.

1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 f}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and 3 -methylbutanal ($54.1 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil ($36.0 \mathrm{mg}, 37 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{br}, 1 \mathrm{H}), 3.49$ (apparent q, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.03 (apparent dt, $J=12.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94-2.87 (m, 2 H), 2.81-2.73 (m, 2 H), 2.15 (apparent td, $J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.85(\mathrm{dd}, J=11.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (apparent dh, $J=7.8$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (apparent dt, $J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{ddd}, J=14.0,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=137.9,129.2,128.3,127.2$, $63.3,59.2,53.2,52.8,45.3,42.7,24.3,23.0,22.6$; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=233.2012$, found: $\mathrm{m} / \mathrm{z}=233.2018$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3398,2957,2822,2718,2482,1590,1454,1368,1318,1140,922$, 736, 700.

4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 g}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and dihydro- $2 H$-pyran- $4(3 H)$-one ($46.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The photocatalytic cyclization was carried out in $\mathrm{MeCN} / \mathrm{MeOH}(9: 1,10.0 \mathrm{~mL}, 0.05 \mathrm{M})$. The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($41.1 \mathrm{mg}, 33 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{br}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=12.0,4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (apparent $\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=6.8,3.8 \mathrm{~Hz}, 2$ H), 2.50 (apparent br, 2 H), 1.93 (apparent $\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ 137.9, 128.8, 128.5, 127.4, 63.3, 62.6, 58.9, 52.7, 52.5, 39.9, 33.6; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=247.1805$, found: $\mathrm{m} / \mathrm{z}=247.1805$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3397, 2947, 2851, 2809, 2488, $1587,1454,1363,1239,1152,1107,1029,912,850,736,700$.

1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2)

The photocatalytic synthesis of $\mathbf{9 h}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and pyridine-2-carbaldehyde ($47.8 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil ($81.5 \mathrm{mg}, 64 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.51(\mathrm{ddd}, J=4.9,1.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.7,7.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.1,3.0 \mathrm{~Hz}, 1$ H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.14$ (ddd, $J=12.3,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=159.6,149.2,137.7,136.7,129.2,128.3,127.2,122.6$, 121.7, 63.2, $60.3,58.8,52.8,45.2$; HRMS (ESI): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3}\right]^{+}: \mathrm{m} / \mathrm{z}=254.1652$, found: $\mathrm{m} / \mathrm{z}=$ 254.1654; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3390, 2938, 2810, 2713, 2472, 1592, 1435, 1317, 1149, 1106, 912, 777, 743, 700.

1-Benzyl-3-(1-benzyl-1H-imidazol-5-yl)piperazine (9i) (Scheme 2)

The photocatalytic synthesis of $9 \mathbf{i}$ followed the general procedure with $\mathbf{3}(118.2 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv) and 1 -benzyl- $1 H$-imidazole- 5 -carbaldehyde ($93.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish solid ($125.0 \mathrm{mg}, 75 \%$).
m.p.: $112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.45(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 8 \mathrm{H})$, $7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (apparent br, 1 H$), 5.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (ddd, $J=10.0,2.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{dt}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (apparent $\mathrm{dq}, J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31(\mathrm{br}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (apparent td, $J=11.0,3.3$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=138.2,137.6,136.7,132.2,129.2,129.0,128.3,128.0$, $127.1,126.9,126.8,63.3,58.4,53.7,50.6,48.7,45.5$; HRMS (ESI): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4}\right]^{+}: \mathrm{m} / \mathrm{z}=$ 333.2074 , found: $\mathrm{m} / \mathrm{z}=333.2073$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3303,2811,1668,1496,1454,1342,1316,1267,1225$, 1111, 909, 814, 732.

N-(4-((2R,6S)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 6 a}$ followed the general procedure with $\mathbf{1 0}$ (125.2 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and N-(4-formylphenyl)acetamide ($81.6 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil $(149.7 \mathrm{mg}, 93 \%, \mathrm{dr}>20: 1)$. The relative stereochemistry was assigned by NOESY.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=+10.1 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=8.11(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.25(\mathrm{~m}, 7 \mathrm{H}), 3.94(\mathrm{dd}, J=10.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{dqd}, J=10.6,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{br}, 1 \mathrm{H})$, $2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{dd}, J=10.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=10.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=168.9,138.0,137.9,137.4,129.3,128.3,127.7,127.1,120.2,63.1$, $60.4,60.0,60.0,51.1,24.4,19.8$; HRMS (ESI): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=324.2070$, found: $\mathrm{m} / \mathrm{z}=$ 324.2071; IR (v/cm ${ }^{-1}$, neat): 3298, 3261, 3060, 3030, 2962, 2932, 2810, 1667, 1604, 1541, 1517, 1317, 1130, 909, 836, 732, 700.

(3S,5S)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 6 b}$ followed the general procedure with $\mathbf{1 0}(125.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and 5-bromopyridine-2-carbaldehyde ($93.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($89.4 \mathrm{mg}, 52 \%$, $\mathrm{dr}>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{1 6 a}$.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=+20.3 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24$ (m, 7 H), $4.07(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04$ (m, 2 H), $2.84(\mathrm{dd}, J=10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=$ $10.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=162.5,141.6,138.9$, 138.0, 129.2, 128.3, 127.1, 126.8, 120.2, 63.1, 60.5, 60.3, 58.7, 50.5, 19.9; HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{3}\right]^{+}: \mathrm{m} / \mathrm{z}=346.0913$, found: $\mathrm{m} / \mathrm{z}=346.0912$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3287,2960,2805,1581,1555$, $1435,1407,1315,1119,1061,985,791,739,699$.

4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 6 c}$ followed the general procedure with $\mathbf{1 0}(125.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and 1,3-oxazole-4-carboxaldehyde ($48.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 10% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($87.6 \mathrm{mg}, 68 \%$, dr $>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{1 6 a}$.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=+7.0 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.82(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{dd}, J=10.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.84$ (dd, $J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=10.9,10.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=151.0,141.2,137.9,134.5,129.2$,
128.3, 127.2, 63.1, 60.5, 57.7, 52.5, 50.7, 19.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=258.1601$, found: $\mathrm{m} / \mathrm{z}=258.1603$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3287,2961,2810,1669,1510,1455,1317,1137,1100,1061,914$, 744, 700.

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 7 a}$ followed the general procedure with $\mathbf{1 1}$ (152.3 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 2-fluoro-5-formylbenzonitrile ($74.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography ($1-10 \%$ EtOAc in hexanes) as a yellowish oil ($94.1 \mathrm{mg}, 52 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.76(\mathrm{dd}, J=6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.8,5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J$ $=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ $(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{br}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=162.3(\mathrm{~d}, J=258.2 \mathrm{~Hz}), 140.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 138.6,134.1(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 132.2$, $128.7,128.3,127.1,116.1(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 114.2,101.2(\mathrm{~d}, ~ J=15.4 \mathrm{~Hz}), 62.9,62.1,62.0,53.3,52.0,38.8$, 32.1, 26.4, 22.0, 21.8; ${ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-108.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FN}_{3}\right]^{+}: \mathrm{m} / \mathrm{z}=364.2184$, found: $\mathrm{m} / \mathrm{z}=364.2183$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2926, 2854, 2801, 2235, 1611, 1497, 1454, 1266, 1110, 834, 739, 699.

2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 7 b}$ was followed by the general procedure with $\mathbf{1 1}$ (152.3 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and thiazole-2-carbaldehyde ($43.9 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography ($5-30 \% \mathrm{EtOAc}$ in hexanes) as a yellowish oil ($61.4 \mathrm{mg}, 37 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.73(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1$ H), $3.24(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (apparent $\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=173.5,142.3,138.7,128.8,128.3,127.1,118.6,62.9,62.0,60.9,52.9,52.3$, 38.6, 32.2, 26.5, 22.0, 21.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{~S}\right]^{+}: \mathrm{m} / \mathrm{z}=328.1842$, found: $\mathrm{m} / \mathrm{z}=$ 328.1846; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2926, 2854, 2800, 1673, 1453, 1327, 1129, 781, 736, 698.

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 7} \mathbf{c}$ followed the general procedure with $\mathbf{1 1}$ (152.3 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 3-phenylisoxazole-5-carbaldehyde ($86.6 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv). The desired product was obtained by flash column chromatography ($1-5 \%$ EtOAc in hexanes) as a yellowish oil ($71.2 \mathrm{mg}, 38 \%$)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=10.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{dd}, J=10.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}]=174.1,162.3,138.5,130.0,129.2,128.9,128.8,128.4,127.2,126.9,98.7,62.9,62.0,58.5,52.1$, 47.9, 38.5, 32.0, 26.4, 21.9, 21.8; HRMS (ESI): calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=388.2383$, found: $\mathrm{m} / \mathrm{z}=$ 388.2383; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3061,3028,2928,2854,2803,1603,1579,1454,1442,1406,1308,1144,910$, 768, 735, 695.

(trans,cis)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-b]pyrazine (18a) (Scheme 3)

The photocatalytic synthesis of 18a followed the general procedure with $\mathbf{1 2}$ (139.2 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 3-bromobenzaldehyde ($58.3 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv).

The desired product was obtained by flash column chromatography ($10-50 \%$ EtOAc in hexanes) as a yellowish oil ($120.6 \mathrm{mg}, 65 \%, \mathrm{dr}>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{1 8 b}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.59(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=7.9,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.26(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=$ $10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.27 (ddd, $J=10.6,9.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $J=10.5,9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.05(\mathrm{dd}, J=11.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=144.0,137.5$, $130.9,130.4,130.1,129.2,128.4,127.5,126.1,122.6,69.9,69.8,68.2,62.0,61.8,61.0,60.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}\right]^{+}: \mathrm{m} / \mathrm{z}=373.0190$, found: $\mathrm{m} / \mathrm{z}=373.0906$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3299, 2938, 2868, 2820, 1676, 1568, 1453, 1324, 1034, 892, 785, 741, 698.

(trans,cis)-1-Benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 8 b}$ followed the general procedure with $\mathbf{1 2}$ (139.2 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 5 -methylisoxazole-3-carbaldehyde ($55.6 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil ($107.7 \mathrm{mg}, 72 \%, \mathrm{dr}>20: 1$). The relative stereochemistry was assigned by NOESY.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}$, $J=10.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (ddd, $J=10.7$, 9.1 , $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{ddd}, J=10.5,9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.13(\mathrm{dd}, J=11.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=169.5,163.9$, 137.3, 129.1, 128.3, 127.4, 100.0, 69.6, 69.4, 68.2, 61.7, 61.7, 57.9, 53.4, 12.2; HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=300.1707$, found: $\mathrm{m} / \mathrm{z}=300.1706$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3290, 2939, 2869, 1673, 1604, $1453,1322,1146,1087,1025,893,799,745,701$.
(trans)-4'-Benzylhexahydro-1'H-spiro[cyclohexane-1,2'-furo[3,4-b]pyrazin]-4-one ethylene ketal (18c) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 8 c}$ followed the general procedure with $\mathbf{1 2}(139.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and 1,4-dioxaspiro[4.5]decan-8-one ($78.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a white solid ($72.0 \mathrm{mg}, 42 \%$).
m.p.: $135-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.96$ (dd, $J=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.31$ (ddd, $J=10.7,9.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1$ H), 2.22 (ddd, $J=10.5,9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.58-1.41 (m, 5 H$) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=138.2,128.7,128.3,127.3,109.0,70.2,69.8$, 69.6, 64.3, 64.3, 63.0, 61.5, 56.8, 52.8, 35.7, 30.5, 30.4, 29.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$: $\mathrm{m} / \mathrm{z}=345.2173$, found: $\mathrm{m} / \mathrm{z}=345.2175$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2945, 2872, 1736, 1675, 1453, 1370, 1094, 1033, $938888,740,700$.
(trans,cis)-3-(Benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 9 a}$ followed the general procedure with $\mathbf{1 3}$ (145.3 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and benzo $[d][1,3]$ dioxole- 5 -carbaldehyde ($75.1 \mathrm{mg}, 0.5$ mmol, 1.0 equiv). The desired product was obtained by flash column chromatography ($10-50 \%$ EtOAc in hexanes) as a yellowish oil ($150.3 \mathrm{mg}, 86 \%, \mathrm{dr}>20: 1$). The relative stereochemistry was assigned by NOESY.

[^2]8.7, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=10.6,8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=147.5,146.7,138.8,136.9,129.2,128.2,126.8,120.2,108.0,107.7,100.9,65.6,61.1$, $60.8,60.2,57.2,32.8,29.1,25.4,24.9$; HRMS (ESI): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=351.2067$, found: $\mathrm{m} / \mathrm{z}=351.2069$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 2926, 2856, 2799, 1502, 1487, 1442, 1250, 1039, 934, 808, 735, 699.

(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3)

The photocatalytic synthesis of 19b followed the general procedure with $\mathbf{1 3}$ (145.3 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 1 -methyl- 1 H -benzo[d]imidazole-2-carbaldehyde (80.1 $\mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil $(153.2 \mathrm{mg}$, 85%). Relative stereochemistry was determined by analogy to 19a.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 4.32$ $(\mathrm{dd}, J=10.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=$ $11.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=10.8,8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=11.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 1$ H), 2.18 (br, 1 H), 1.98 (ddd, $J=10.8,8.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.32$ $(\mathrm{m}, 3 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=153.8,142.2,138.7,135.6,129.0$, $128.2,126.9,122.4,121.9,119.5,109.1,67.1,60.3,57.4,57.0,52.6,32.5,29.8,29.0,25.3$ (two carbons); HRMS (ESI): calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{4}\right]^{+}: \mathrm{m} / \mathrm{z}=361.2387$, found: $\mathrm{m} / \mathrm{z}=361.2390$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3257, 2931, 2857, 2802, 1472, 1443, 1332, 1132, 909, 742.

(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3)

The photocatalytic synthesis of $\mathbf{1 9 c}$ followed the general procedure with $\mathbf{1 3}$ (145.3 mg , $0.5 \mathrm{mmol}, 1.0$ equiv) and 3-methyl-2-butenal ($48.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil $(57.0 \mathrm{mg}, 40 \%, \mathrm{dr}>20: 1)$. The relative stereochemistry was determined by analogy to 19 a.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=11.7,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.29-2.24 (m, 1 H), 2.09-2.01 (m, 2 H), 1.86-1.76 (m, 2H), 1.73-1.68 (m, 1 H), $1.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.61(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=138.7$, 136.5 (br), $129.2,128.3,127.0,123.6$ (br), 64.8, 60.3, 57.5, 57.0, 54.0, 31.7, 29.1, 25.9, 25.1, 24.9, 18.5; HRMS (ESI): calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=285.2325$, found: $\mathrm{m} / \mathrm{z}=285.2326$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat): 3308, 2929, 2856, $2795,1673,1447,1375,1135,1084,749,739,699$.
(3R,8aS)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-a]pyrazine (20a) (Scheme 3)

The photocatalytic synthesis of $\mathbf{2 0 a}$ followed the general procedure with $\mathbf{1 4}(93.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and 2 -chloro- 4 -fluorobenzaldehyde ($79.3 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 10% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($71.8 \mathrm{mg}, 56 \%$, dr $>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{2 1 b}$.
$[\alpha]_{D}^{26}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-58.3 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.61(\mathrm{dd}, J=8.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ $(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=8.7,8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=10.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=$ $11.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=8.7,8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=11.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{br}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=8.8,8.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dddd}, J=10.0,6.5,6.0,2.9 \mathrm{~Hz}, 1$ H), $2.00(\mathrm{dd}, J=10.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=161.6(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.4$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=20.6 \mathrm{~Hz}), 62.8,58.3,55.4,53.5,51.0,27.4,21.3 ;{ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-113.5$; HRMS (ESI): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClFN}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=255.1059$, found: $\mathrm{m} / \mathrm{z}=255.1061$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3254,2962,2798,1675,1604,1581,1489,1232,1166,1136$, 1040, 911, 857, 822.

(3R,8aS)-3-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)octahydropyrrolo[1,2-a]pyrazine (20b) (Scheme 3)

The photocatalytic synthesis of $\mathbf{2 0 b}$ followed the general procedure with $\mathbf{1 4}(93.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and 5-methyl-1-phenyl- 1 H -pyrazole-4-carbaldehyde ($93.1 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($91.9 \mathrm{mg}, 63 \%$, $\mathrm{dr}>20: 1$). The relative stereochemistry was determined by analogy to 21b.
$[\alpha]_{D}^{25}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-20.0 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.67(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 5 \mathrm{H})$, $3.93(\mathrm{dd}, J=10.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{br}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=10.8,3.1 \mathrm{~Hz}, 1$ H), 3.12-3.07 (m, 1 H), 2.67 (dd, $J=11.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=10.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.22 (ddd, $J=8.9,8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dddd}, J=10.2,6.0,3.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.79-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=139.9,138.5,136.4,129.1$, $127.8,125.1,119.8,62.5,58.7,53.6,51.3,50.8,27.4,21.1,11.1$; HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4}\right]^{+}$: $\mathrm{m} / \mathrm{z}=283.1917$, found: $\mathrm{m} / \mathrm{z}=283.1919$; IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right.$, neat) $: 3294,2952,2800,1599,1504,1453,1391,1170$, 1110, 943, 858, 765, 696.
(R)-tert-Butyl 2,2-dimethyl-4-((3S,8aS)-octahydropyrrolo[1,2-a]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3)

The photocatalytic synthesis of 20c followed the general procedure with $\mathbf{1 4}(93.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and (S)-(-)-3-(tert-butoxycarbonyl)-4-formyl-2,2-dimethyl-1,3oxazolidine ($114.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a yellowish oil $(94.7 \mathrm{mg}$, $58 \%, \mathrm{dr}>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{2 1 b}$.
$[\alpha]_{D}^{26}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)=-31.5 ;{ }^{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=4.15(\mathrm{br}, 1 \mathrm{H}), 4.07(\mathrm{br}, 1 \mathrm{H}), 3.95$ (br, 1 H), 3.87 (dd, $J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.09$ (m, $2 \mathrm{H}), 2.65(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=8.8,8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.71$ $(\mathrm{m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=153.0^{*}, 152.3,94.3$, $93.9^{*}, 80.6,64.2,62.8,59.3^{*}, 58.9,56.0,53.5,53.2^{*}, 52.8,49.9,28.5,27.0,26.9^{*}, 26.1,23.9^{*}, 22.4,21.0 ;^{15}$ HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{+}: \mathrm{m} / \mathrm{z}=326.2438$, found: $\mathrm{m} / \mathrm{z}=326.2438$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3319, 2975, 2938, 2879, 2807, 1696, 1378, 1365, 1256, 1172, 1088, 848, 734.

cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3)

The photocatalytic synthesis of 21a followed the general procedure with $\mathbf{1 5}(100.2 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and 2,4,6-trimethylbenzaldehyde ($73.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 5% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($87.5 \mathrm{mg}, 68 \%$, $\mathrm{dr}>20: 1$). The relative stereochemistry was determined by analogy to $\mathbf{2 1 b}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.79(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=11.6,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83 \mathrm{ddt}, J=11.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (dd, $J=11.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.58$ (m, 2 H), 1.48-1.30(m, 2 H$) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=137.4,136.7,133.4,130.3,62.2$, $57.6,56.8,55.6,52.5,29.0,24.9,23.8,21.7,20.7$; HRMS (ESI): calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=259.2169$, found: $\mathrm{m} / \mathrm{z}=259.2170$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3321,2932,2857,2797,1611,1448,1327,1124,1096,1064,924$, 851, 733.
(15) Peaks from rotamers are underlined paired with asterisks indicating the major ones.

cis-3-(Pyrimidin-2-yl)octahydro-1H-pyrido[1,2-a]pyrazine (21b) (Scheme 3)

The photocatalytic synthesis of $\mathbf{2 1 b}$ followed the general procedure with $\mathbf{1 5}$ ($100.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and pyrimidine-2-carboxaldehyde ($54.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a brownish oil ($56.6 \mathrm{mg}, 52 \%$, $\mathrm{dr}>10: 1$), which can be recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} /$ hexanes as a yellowish solid. The relative stereochemistry was assigned by NOESY.
m.p.: compound decomposes at $\mathrm{T}>180^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=8.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2$ H), $7.17(\mathrm{td}, J=4.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=12.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (apparent dtd, $J=11.2,3.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, $J=12.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (br, 1 H), 2.11-2.03 (m, 2 H), 1.85 (dddd, $J=10.4,10.2,3.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57$ (m, 2 H$), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=169.7,157.4$, $119.9,62.9,61.2,61.0,56.7,52.3,30.0,26.3,24.8$.; HRMS (ESI): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{4}\right]^{+}: \mathrm{m} / \mathrm{z}=$ 219.1604, found: $\mathrm{m} / \mathrm{z}=219.1607$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $3396,2936,1672,1568,1425,1330,1200,1128,925$, 800, 730.

tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-a]pyrazine]-1-carboxylate (21c) (Scheme 3)

The photocatalytic synthesis of 21c followed the general procedure with $\mathbf{1 5}(100.2 \mathrm{mg}, 0.5$ mmol, 1.0 equiv) and tert-butyl 3 -oxoazetidine-1-carboxylate ($85.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The desired product was obtained by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to 10% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a yellowish oil ($46.2 \mathrm{mg}, 33 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=11.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=11.2,11.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (apparent $\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.10(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=156.6,79.5,63.0,61.4,60.8(\mathrm{br}), 58.8(\mathrm{br}), 56.0,52.4,48.6$, 29.4, 28.5, 25.6, 24.1; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=282.2176$, found: $\mathrm{m} / \mathrm{z}=282.2175$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3308, 2933, 2874, 2803, 1702, 1406, 1169, 1114, 860, 771, 733.

3.4 Procedure for N-Bn deprotection

tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22)

A solution of $\mathrm{Boc}_{2} \mathrm{O}\left(436.5 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added dropwise to a stirred mixture of $9 \mathbf{a}\left(540.7 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(333.6 \mu \mathrm{~L}$, 2.4 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred overnight before washed with sat. $\mathrm{NaHCO}_{3(a q)}(1 \times 50$ mL) and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo. The residue was purified by flash column chromatography ($2 \%-8 \% \mathrm{EtOAc}$ in hexanes) to afford the desired product ($569.2 \mathrm{mg}, 77 \%$) as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.21$ (apparent s, 1 H), 3.90 (apparent d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.58(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (apparent d, $J=12.0,1 \mathrm{H}$), $3.00(\mathrm{dt}, J=13.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (apparent d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 $(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (apparent $\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=161.9(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 155.0,137.9($ apparent s$), 136.4,129.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.3,128.4,127.4$, $114.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 80.2,63.2,55.2,53.4,52.8,39.9,28.6 ;{ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=$ -116.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=371.2129$, found: $\mathrm{m} / \mathrm{z}=371.2131$; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): $2976,2930,2810,2768,1691,1604,1509,1454,1415,1365,1301,1225,1171,1117,1025,844,771$.

2-(4-Fluorophenyl)piperazine (23)

The procedure was modified from the literature. ${ }^{16}$ To a stirred solution of $22(120.0 \mathrm{mg}$, $0.32 \mathrm{mmol}, 1.0$ equiv) in 1,2-dichloroethane $(1.0 \mathrm{~mL})$ at room temperature was added 1 chloroethylchloroformate ($104.8 \mu \mathrm{~L}, 0.97 \mathrm{mmol}, 3.0$ equiv). This reaction was conducted in a closed vial (size: 3 mL). The reaction was heated under reflux overnight and cooled to room temperature before condensed under vacuo. The residue was dissolved in MeOH (2 mL) and the mixture was heated under reflux for additional 6 h . The reaction was cooled to room temperature and condensed under vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred with sat. $\mathrm{NaHCO}_{3(a q)}(5 \mathrm{~mL})$ at room temperature. After the organic layer was separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under vacuo to afford the desired product $\mathbf{2 3}$ without further purification (a white solid, $57.1 \mathrm{mg}, 98 \%$).
m.p.: $98-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.33(\mathrm{ddd}, J=8.6,5.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{dd}, J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}$, $J=12.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=162.2(\mathrm{~d}, J=245.1 \mathrm{~Hz}$), $138.7(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 61.4,54.5,47.9,46.1 ;{ }^{19}$ F NMR (377 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-115.3$; HRMS (ESI): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{FN}_{2}\right]^{+}: \mathrm{m} / \mathrm{z}=181.1136$, found: $\mathrm{m} / \mathrm{z}=$ 181.1134; IR ($\mathrm{v} / \mathrm{cm}^{-1}$, neat): 3244, 3198, 2939, 2827, 1604, 1510, 1327, 1224, 1155, 1137, 879, 828.
(16) (a) Olofson, R. A.; Martz, J. T.; Senet, J. P.; Piteau, M.; Malfroot, T. J. Org. Chem. 1984, 49, 2081-2082; (b) Yokoshima, S.; Watanabe, K.; Uehara, F.; Usui, Y.; Tanaka, H. Bioorg. Med. Chem. Lett. 2014, 24, 5749-5751; (c) Firth, J. D.; O’Brien, P., Ferris, L. J. Am. Chem. Soc. 2016, 138, 651-659.

4. X-ray crystallography

Crystals of $\mathbf{1 8 c}$ (CCDC 1445313) were obtained by recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}$. The X-ray data was collected to confirm the relative stereochemistry.

(CDCC 1445313)
Figure S2. ORTEP representation of 18c. Ellipsoids include 50\% of the electron density. We thank Dr. Nils Trapp from the X-ray crystallographic service of the Laboratorium für Organische Chemie at ETH Zürich for performing the experiments.

Experimental

A suitable single crystal of $\mathbf{1 8 c}\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$, code: mo_jb141015_1_1_0m] was selected and measured on a Bruker Apex2 Duo (Mo) diffractometer. The crystal was kept at 100.0(2) K during data collection. Using Olex $2,{ }^{17}$ the structure was solved with the XT^{18} structure solution program using Direct Methods and refined with the XL^{19} refinement package using Least Squares minimization.
(17) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339341.
(18) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
(19) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

Table S2. Crystal data and structure refinement for 18c.

Identification code	mo_jb141015_1_1_0m
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	344.44
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a/Å	9.7442(9)
b/ \AA	6.1717(5)
c / \AA	14.9524(13)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.609(2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	899.16(14)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.272
μ / mm^{-1}	0.085
F(000)	372.0
Crystal size/mm ${ }^{3}$	$0.16 \times 0.07 \times 0.04$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 4.18$ to 54.974	
Index ranges	$-12 \leq \mathrm{h} \leq 12,-3 \leq \mathrm{k} \leq 8,-19 \leq 1 \leq 18$
Reflections collected	5498
Independent reflections	$3053\left[\mathrm{R}_{\text {int }}=0.0394, \mathrm{R}_{\text {sigma }}=0.0639\right]$
Data/restraints/parameters	3053/2/229
Goodness-of-fit on F^{2}	1.014
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0448, \mathrm{wR}_{2}=0.0886$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0662, \mathrm{wR}_{2}=0.0969$
Largest diff. peak/hole / e $\AA^{-3} 0.34 /-0.26$	
Flack parameter	-0.6(10)

Table S3. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 18c. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
O1	$-799(2)$	$8764(4)$	$8856.0(14)$
O2	$2037(2)$	$8208(3)$	$3910.2(14)$
O3	$3664(2)$	$5987(4)$	$4487.8(14)$
N1	$469(2)$	$6762(4)$	$6701.0(16)$
N2	$2169(2)$	$5437(4)$	$8247.7(16)$
C1	$4607(3)$	$1449(5)$	$8701.4(19)$
C2	$6012(3)$	$1041(5)$	$8685(2)$
C3	$6936(3)$	$2665(5)$	$8901(2)$
C4	$6458(3)$	$4725(5)$	$15.1(5)$
C5	$5063(3)$	$5121(5)$	$9118.4(19)$
C6	$4120(3)$	$3493(5)$	$9128.8(19)$
C7	$2598(3)$	$3968(5)$	$8930.5(19)$
C8	$755(3)$	$6161(5)$	$8976(2)$
C9	$395(3)$	$7538(6)$	$8349.1(19)$
C10	$-942(3)$	$8617(6)$	$9148(2)$
C11	$415(3)$	$7704(5)$	$7890(2)$

C 12	$2236(3)$	$4291(5)$	$7383.0(19)$
C 13	$1810(3)$	$5671(5)$	$6569.8(19)$
C 14	$1663(3)$	$4163(5)$	$5767.8(19)$
C 15	$1328(3)$	$5355(5)$	$4898(2)$
C 16	$2409(3)$	$7038(5)$	$4707(2)$
C 17	$2611(3)$	$8595(5)$	$5489.4(19)$
C 18	$2917(3)$	$7379(5)$	$15.6(6)$
C 19	$4362(4)$	$7384(7)$	$3361.6(19)$
C 20	$3299(3)$	$8966(6)$	$3539(3)$

Table S4. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 18c. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom $\mathbf{U}_{\mathbf{1 1}}$	\mathbf{U}_{22}	\mathbf{U}_{33}	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
O1	$22.1(12)$	$30.7(13)$	$17.9(12)$	$-1.7(11)$	$2.8(9)$	$14.8(11)$
O2	$18.5(11)$	$27.0(13)$	$17.3(12)$	$8.3(10)$	$-0.8(8)$	$2.0(9)$
O3	$16.1(11)$	$19.3(11)$	$21.9(12)$	$1.9(10)$	$5.5(9)$	$3.0(9)$
N1	$11.4(12)$	$14.3(13)$	$19.1(14)$	$-1.0(11)$	$-1(1)$	$1(1)$
N2	$12.3(12)$	$17.4(14)$	$15.2(13)$	$0.7(11)$	$-0.1(10)$	$4.2(11)$
C1	$19.4(15)$	$16.4(16)$	$16.0(16)$	$2.2(13)$	$0.5(13)$	$2.0(13)$
C2	$23.4(17)$	$18.8(16)$	$19.4(17)$	$1.6(15)$	$6.0(13)$	$9.4(15)$
C3	$16.6(16)$	$26.0(17)$	$17.1(16)$	$1.0(15)$	$1.6(12)$	$5.4(15)$
C4	$19.8(16)$	$23.2(16)$	$13.6(16)$	$-0.7(14)$	$1.7(13)$	$-1.1(14)$
C5	$20.9(16)$	$19.6(16)$	$12.6(16)$	$-0.4(14)$	$-1.0(12)$	$4.5(14)$
C6	$18.2(15)$	$18.8(16)$	$8.3(14)$	$3.5(13)$	$0.5(11)$	$6.0(13)$
C7	$17.8(15)$	$17.4(16)$	$16.6(16)$	$1.6(14)$	$0.0(12)$	$1.0(13)$
C8	$12.1(14)$	$13.6(14)$	$17.4(16)$	$-0.2(13)$	$0.8(11)$	$0.7(13)$
C9	$16.7(15)$	$22.4(16)$	$19.8(17)$	$0.8(15)$	$1.4(12)$	$3.5(14)$
C10	$20.7(16)$	$25.7(18)$	$16.9(16)$	$0.0(15)$	$-0.1(12)$	$7.9(14)$
C11	$14.2(15)$	$13.8(15)$	$19.0(17)$	$1.2(13)$	$0.1(12)$	$2.2(13)$
C12	$16.0(15)$	$13.1(15)$	$16.9(16)$	$-0.3(13)$	$0.5(12)$	$2.1(13)$
C13	$12.6(14)$	$11.3(15)$	$13.9(15)$	$0.5(12)$	$-0.8(11)$	$1.6(12)$
C14	$16.9(15)$	$10.1(14)$	$18.0(15)$	$-1.4(13)$	$-2.1(12)$	$-0.8(12)$
C15	$14.4(15)$	$16.5(15)$	$16.8(15)$	$-3.2(13)$	$-2.4(12)$	$2.0(13)$
C16	$14.8(15)$	$18.7(17)$	$15.2(16)$	$0.2(13)$	$-0.8(12)$	$2.3(13)$
C17	$14.8(15)$	$12.0(14)$	$19.6(16)$	$2.3(14)$	$1.4(12)$	$-0.4(13)$
C18	$13.5(14)$	$15.9(15)$	$16.1(16)$	$-3.2(13)$	$-0.1(12)$	$1.5(13)$
C19	$26.8(19)$	$52(3)$	$38(2)$	$22(2)$	$8.3(16)$	$8.8(19)$
C20	$22.6(17)$	$34(2)$	$23.7(18)$	$9.9(17)$	$3.5(13)$	$-1.6(16)$

Table S5. Bond Lengths for 18c.

Atom Atom Length/ \AA									Atom Atom Length/ \AA			
O 1	C 9	$1.451(3)$	C 4	C 5	$1.382(4)$							
O 1	C 10	$1.453(4)$	C 5	C 6	$1.391(4)$							
O 2	C 16	$1.436(4)$	C 6	C 7	$1.514(4)$							
O 2	C 20	$1.432(4)$	C 8	C 9	$1.510(4)$							
O 3	C 16	$1.426(3)$	C 8	C 11	$1.517(4)$							
O 3	C 19	$1.418(4)$	C 10	C 11	$1.511(4)$							
N 1	C 11	$1.451(4)$	C 12	C 13	$1.538(4)$							
N 1	C 13	$1.485(3)$	C 13	C 14	$1.524(4)$							

N2	C7	1.475(4)	C13	C18	1.542(4)
N2	C8	1.459(3)	C14	C15	1.526(4)
N2	C12	1.476(4)	C15	C16	1.509(4)
C1	C2	1.393(4)	C16	C17	1.525(4)
C1	C6	1.392(4)	C17	C18	1.531(4)
C2	C3	$1.383(5)$	C19	C20	1.515(5)
C3	C4	1.394(4)			

Table S6. Bond Angles for 18c.

Atom Atom Atom Angle/ ${ }^{\circ}$				Atom Atom Atom Angle ${ }^{\circ}$			
C9	O1	C10	109.5(2)	N1	C11	C10	117.5(2)
C20	O2	C16	106.0(2)	C10	C11	C8	101.3(2)
C19	O3	C16	106.6(2)	N2	C12	C13	114.4(2)
C11	N1	C13	110.1(2)	N1	C13	C12	112.1(2)
C7	N2	C12	109.7(2)	N1	C13	C14	107.8(2)
C8	N2	C7	111.9(2)	N1	C13	C18	109.6(2)
C8	N2	C12	106.8(2)	C12	C13	C18	110.8(2)
C6	C1	C2	120.4(3)	C14	C13	C12	107.8(2)
C3	C2	C1	120.2(3)	C14	C13	C18	108.6(2)
C2	C3	C4	119.8(3)	C13	C14	C15	113.2(2)
C5	C4	C3	119.7(3)	C16	C15	C14	110.5(2)
C4	C5	C6	121.2(3)	O2	C16	C15	109.5(2)
C1	C6	C7	121.5(3)	O2	C16	C17	110.4(2)
C5	C6	C1	118.7(3)	O3	C16	O2	104.3(2)
C5	C6	C7	119.7(3)	O3	C16	C15	109.4(2)
N2	C7	C6	110.8(2)	O3	C16	C17	111.0(2)
N2	C8	C9	118.8(2)	C15	C16	C17	111.9(2)
N2	C8	C11	108.2(2)	C16	C17	C18	111.6(3)
C9	C8	C11	100.9(2)	C17	C18	C13	112.1(2)
O1	C9	C8	104.4(2)	O3	C19	C20	106.3(3)
O1	C10	C11	104.1(2)	O2	C20	C19	104.0(3)
N1	C11	C8	115.1(3)				

Table S7. Torsion Angles for 18c.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	${\mathbf{A n g l e} /{ }^{\circ}}^{\mathbf{A}}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	Angle $/^{\circ}$
O 1	C 10	C 11	N 1	$162.0(2)$	C 9	C 8	C 11	C 10	$-43.9(3)$
O 1	C 10	C 11	C 8	$35.7(3)$	C 10	O 1	C 9	C 8	$-14.5(3)$
O 2	C 16	C 17	C 18	$176.3(2)$	C 11	N 1	C 13	C 12	$44.7(3)$
O 3	C 16	C 17	C 18	$-68.5(3)$	C 11	N 1	C 13	C 14	$163.2(2)$
O 3	C 19	C 20	O 2	$-4.9(4)$	C 11	N 1	C 13	C 18	$-78.8(3)$
N 1	C 13	C 14	C 15	$62.3(3)$	C 11	C 8	C 9	O 1	$36.2(3)$
N 1	C 13	C 18	C 17	$-62.8(3)$	C 12	N 2	C 7	C 6	$69.8(3)$
N 2	C 8	C 9	O 1	$154.3(2)$	C 12	N 2	C 8	C 9	$-175.6(3)$
N 2	C 8	C 11	N 1	$62.7(3)$	C 12	N 2	C 8	C 11	$-61.5(3)$
N 2	C 8	C 11	C 10	$-169.4(2)$	C 12	C 13	C 14	C 15	$-176.4(2)$
N 2	C 12	C 13	N 1	$-50.6(3)$	C 12	C 13	C 18	C 17	$173.0(2)$
N 2	C 12	C 13	C 14	$-169.1(2)$	C 13	N 1	C 11	C 8	$-52.6(3)$
N 2	C 12	C 13	C 18	$72.2(3)$	C 13	N 1	C 11	C 10	$-171.9(3)$
C 1	C 2	C 3	C 4	$-1.2(4)$	C 13	C 14	C 15	C 16	$57.0(3)$

C 1	C 6	C 7	N 2	$-110.9(3)$	C 14	C 13	C 18	C 17	$54.7(3)$
C 2	C 1	C 6	C 5	$1.0(4)$	C 14	C 15	C 16	O 2	$-177.2(2)$
C 2	C 1	C 6	C 7	$-178.4(3)$	C 14	C 15	C 16	O 3	$69.0(3)$
C 2	C 3	C 4	C 5	$0.9(4)$	C 14	C 15	C 16	C 17	$-54.4(3)$
C 3	C 4	C 5	C 6	$0.4(4)$	C 15	C 16	C 17	C 18	$54.1(3)$
C 4	C 5	C 6	C 1	$-1.3(4)$	C 16	O 2	C 20	C 19	$25.0(3)$
C 4	C 5	C 6	C 7	$178.1(3)$	C 16	O 3	C 19	C 20	$-17.3(4)$
C 5	C 6	C 7	N 2	$69.7(3)$	C 16	C 17	C 18	C 13	$-54.6(3)$
C 6	C 1	C 2	C 3	$0.3(4)$	C 18	C 13	C 14	C 15	$-56.3(3)$
C 7	N 2	C 8	C 9	$64.4(3)$	C 19	O 3	C 16	O 2	$33.0(3)$
C 7	N 2	C 8	C 11	$178.5(2)$	C 19	O 3	C 16	C 15	$150.1(3)$
C 7	N 2	C 12	C 13	$-180.0(2)$	C 19	O 3	C 16	C 17	$-86.0(3)$
C 8	N 2	C 7	C 6	$-172.0(2)$	C 20	O 2	C 16	O 3	$-36.3(3)$
C 8	N 2	C 12	C 13	$58.7(3)$	C 20	O 2	C 16	C 15	$-153.3(3)$
C 9	O 1	C 10	C 11	$-13.5(3)$	C 20	O 2	C 16	C 17	$83.0(3)$
C 9	C 8	C 11	N 1	$-171.8(2)$					

Table S8. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 18c.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q)}$
H1	$-200(30)$	$5760(40)$	$6626(19)$	18
H1A	3977	326	8555	21
H2	6337	-356	8526	25
H3	7894	2377	8901	24
H4	7088	5851	9259	23
H5	4741	6530	9274	21
H7A	2077	2595	8929	21
H7B	2387	4640	9560	21
H8	126	4882	8319	17
H9A	175	6621	9670	24
H9B	1162	8518	9310	24
H10A	-1109	10064	7623	25
H10B	-1709	7642	7720	25
H11	1101	8908	7613	19
H12A	1632	3003	7408	18
H12B	3186	3773	7296	18
H14A	926	3101	5888	18
H14B	2529	3349	5694	18
H15A	1281	4304	4399	19
H15B	421	6065	4946	19
H17A	1773	9479	5562	19
H17B	3381	9588	5359	19
H18A	2971	8432	6860	18
H18B	3820	6654	6317	18
H19A	4765	6546	3396	47
H19B	5108	8966	3741	32
H20A	3505	10459	2877	271
H20B	3260	8941		27

5. NMR spectra

Table of contents
2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1) 36
2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2) 37
N^{1}-phenyl- N^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (2) 38
2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3). 39
N^{1}-benzyl- N^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (3) 40
(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4). 41
(S)-2-Amino- N-benzyl- N-((trimethylsilyl)methyl)propanamide (S5) 42
(S)- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)propane-1,2-diamine (10) 43
1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6). 44
tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7). 45
1-Amino- N-benzyl- N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8) 46
1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11) 47
trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S9) 48
trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10) 49
2-(trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11) 50
trans- N^{3}-Benzyl- $N^{3}-(($ trimethylsilyl $) m e t h y l)$ tetrahydrofuran-3,4-diamine (12) 51
2-(trans-2-Aminocyclohexyl)isoindoline-1,3-dione (S12). 52
2-(trans-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13) 53
2-(trans-2-(Benzylamino)cyclohexyl)isoindoline-1,3-dione (S14). 54
2-(trans-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15) 55
trans- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13) 56
(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16) 57
(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14) 58
2,2,2-Trifluoro- N -(piperidin-2-ylmethyl)acetamide (S17) 59
2,2,2-Trifluoro- N-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18). 60
(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15) 61
3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3) 62
1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5-7 \& Scheme 2) 63
Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2) 64
1-Benzyl-3-(o-tolyl)piperazine (9c) (Scheme 2) 65
1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2) 66
1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2) 67
1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)68
4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2). 69
1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2) 70
1-Benzyl-3-(1-benzyl-1H-imidazol-5-yl)piperazine (9i) (Scheme 2) 71
N-(4-((2R,6S)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3). 72
NOESY of N-(4-((2R,6S)-4-benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a). 73
(3S,5S)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3). 74
4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3) 75
5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3) 76
2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3) 77
5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3). 78
(trans,cis)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-b]pyrazine (18a) (Scheme 3). 79
(trans,cis)-1-Benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b) (Scheme 3) 80
NOESY of (trans,cis)-1-benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b) 81
(trans)-4'-Benzylhexahydro-1'H-spiro[cyclohexane-1,2'-furo[3,4-b]pyrazin]-4-one ethylene ketal (18c) (Scheme 3). 82
(trans, cis)-3-(Benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a) (Scheme 3) 83
NOESY of (trans,cis)-3-(benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a). 84
(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3) 85
(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3). 86
(3R,8aS)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-a]pyrazine (20a) (Scheme 3) 87
(3R,8aS)-3-(5-Methyl-1-phenyl-1 H-pyrazol-4-yl)octahydropyrrolo[1,2-a]pyrazine (20b) (Scheme 3). 88
(R)-tert-Butyl 2,2-dimethyl-4-((3S,8aS)-octahydropyrrolo[1,2-a]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3) 89
cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3) 90
cis-3-(Pyrimidin-2-yl)octahydro-1 H -pyrido[1,2-a]pyrazine (21b) (Scheme 3) 91
NOESY of cis-3-(pyrimidin-2-yl)octahydro-1H-pyrido[1,2-a]pyrazine (21b) 92
tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-a]pyrazine]-1-carboxylate (21c) (Scheme 3). 93
tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22). 94
2-(4-Fluorophenyl)piperazine (23) 95

2-(2-(Phenylamino)ethyl)isoindoline-1,3-dione (S1)

57-24-03-bhsieh. $10 . \mathrm{fi}$
Sample fly-09--088
group bode
gRoup CDCl3 $/$ opt/v bhsieh 57

					$\begin{aligned} & \text { TH } \\ & \hline \text { O} \\ & \end{aligned}$	$\begin{aligned} & \curvearrowleft \\ & -1 \\ & \underset{m}{2} \end{aligned}$				$\begin{aligned} & 10 \\ & \text { ¢े } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{0}{N} \end{aligned}$								
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

57-24-03-bhsieh.11.fid
Sample fly-09-088
group bode
group bode
CAR CDCl3
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.86,7.86,7.85,7.84,7.83,7.83,7.82,7.81,7.73,7.73,7.73$, $7.72,7.71,7.71,7.70,7.69,7.69,7.69,7.17,7.16,7.16,7.16,7.15,7.15,7.14,7.14,7.14,7.13$, 6.62, 6.62, 6.62, 6.61, 4.03, 3.98, 3.97, 3.95, 3.45, 3.44, 3.42.

$$
\begin{aligned}
& \text { 'H NMR }(400 \mathrm{MHz}, \text { Chloroform-d) } \delta 7.84(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd} \text {, } \\
& J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{br}, 1 \mathrm{H}) \text {, }
\end{aligned}
$$

$$
3.97(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .
$$

2-(2-(Phenyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S2)

```
41-27-10-bhsieh.10.fid
Sample fly-10-037
\({ }^{\mathrm{H}} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.83,7.82,7.81,7.81,7.80,7.79,7.78,7.78,7.71,7.71,7.70,7.69,7.68,7.67,7.67,7.17,7.17,7.17,7.16,7.16\), \(7.15,7.15,7.14,7.13,7.13,7.12,6.80,6.78,6.57,6.55,6.53,3.90,3.89,3.88,3.88,3.88,3.87,3.86,3.61,3.60,3.60,3.59,3.57,2.93,0.11\)
H NMR ( 400 MHz , Chloroform- \(d\) ) \(\delta 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.68(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.79\) (apparent d, \(J=7.9\) \(\mathrm{Hz}, 2 \mathrm{H}), 6.55\) (apparent \(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})\).
```



```
41-27-10-bhsieh. 11 .fid Sample fly-10-0
group bode
```


${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,148.8,134.0,132.1,129.1,123.2,115.7,112.4,50.0$, 41.7, 33.9, -1.1.

N^{1}-phenyl- N^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (2)

21-13-06-bhsieh.10.fid Sample fly-10-038
 Sample fly-10-038 group bode

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22,7.21,7.21,7.21,7.20,7.19,7.19,7.18,7.18,7.17,7.17,6.70,6.70,6.70,6.69,6.69$, $6.68,6.68,6.68,6.68,6.65,6.65,6.64,6.63,6.63,6.62,6.61,6.61,6.61,3.39,3.37,3.35,2.93,2.91,2.90,2.89,1.14,0.08$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{tt}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{br}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.4, 129.0, 115.4, 112.4, 55.9, 42.5, 38.9, -0.9.

2-(2-(Benzyl((trimethylsilyl)methyl)amino)ethyl)isoindoline-1,3-dione (S3)

```
41-17-10-bhsieh.10.fid
```

Sample fly-10-120
group bode
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82,7.82,7.81,7.80,7.72,7.71,7.70,7.69,7.17,7.17,7.16$
$7.16,7.15,7.15,7.14,7.13,7.13,7.12,7.12,7.12,7.11,7.11,7.10,7.09,3.79,3.77,3.75,3.54$, 2.62, 2.60, 2.58, 2.09, 0.03.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.81(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2$ H), 7.17-7.09 (m, 5 H), $3.77(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}$, $2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.

 41-17-10-bhsieh.11.fid Sample fly-10-1
group bode
$\stackrel{\sim}{\infty}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,139.8,133.8,132.4,128.8,128.1,126.8$,

N^{1}-benzyl- \boldsymbol{N}^{1}-((trimethylsilyl)methyl)ethane-1,2-diamine (3)

5-20-08-bhsieh. 10. fid
Sample fly-10-151
group bode
PRO CDCl3 $/$ opt $/$ v bhsieh 5
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35,7.35,7.34,7.33,7.32,7.32,7.32,7.31,7.30,7.30,7.28$, $7.27,7.26,7.26,7.25,7.25,7.24,7.24,7.24,7.23,7.23,3.53,2.74,2.72,2.71,2.40,2.39,2.38$ $2.00,1.30,0.10$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.35-7.23$ (m, 5 H), 3.53 (s, 2 H$), 2.72$ (t, $J=5.9 \mathrm{~Hz}, 2$
H), $2.39(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{br}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,128.9,128.3,126.9,62.4,60.4,46.4,39.8,-1.2$.

(S)-tert-Butyl (1-(benzyl((trimethylsilyl)methyl)amino)-1-oxopropan-2-yl)carbamate (S4)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,172.3^{*}, 155.2^{*}, 155.0,136.9,136.4^{*}, 129.0,128.7^{*}$, 127.8, 127.7* $127.5^{*}, 126.8,79.5^{*}, 79.4,53.2^{*}, 50.2,46.4^{2}, 46.0^{*}, 38.7^{*}, 38.1,28.44$, $127.8,127.7^{*}, 127.5^{*}, 126.8,79$
$28.43^{*}, 19.5^{*}, 19.4^{*}-1.2^{*},-1.6$

(S)-2-Amino- N -benzyl- N -((trimethylsilyl)methyl)propanamide (S5)

42-17-10-bhsieh.10.fid
Sample fly-10-135
Sample fly-10-135
group bode
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36,7.36,7.35,7.35,7.34,7.34,7.33,7.32,7.32,7.32$, $7.31,7.29,7.29,7.29,7.28,7.28,7.28,7.27,7.26,7.25,7.25,7.24,7.16,7.15,7.14$, $7.14,7.14,7.13,7.12,7.12,7.12,5.11,5.08,4.65,4.61,4.39,4.35,4.08,4.05,3.78$, $3.77,3.76,3.75,3.74,3.73,3.72,3.72,3.70,3.17,3.13,2.85,2.85,2.85,2.84,2.81$, $2.81,2.81,2.80,2.70,2.69,2.66,2.65,2.59,2.59,2.59,2.55,2.55,2.55,1.70,1.28$, $1.26,1.25,1.23,0.10,0.04$.

The ratio of rotamers was 75:25 as determined by H NMR at RT.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.10$ (d, $J=14.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.63(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.37(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.06$ (d, $J=14.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 0.75 \mathrm{H}), 2.83(\mathrm{~d}, J=$
$16.3 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.68 (d, $J=16.3 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.57 (d, $J=14.9 \mathrm{~Hz}, 0.75 \mathrm{H}$), 1.70 (br, 2 H), 1.27 (d, $J=6.8 \mathrm{~Hz}, 0.75 \mathrm{H}$), 1.27 (d, $J=6.7 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.10(\mathrm{~s}, 2.25 \mathrm{H}), 0.04(\mathrm{~s}$, 6.75 H).

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,175.7^{*}, 137.3,136.6^{*}, 129.0^{*}, 128.7,127.81,127.77^{*}, 127.4,126.4^{*}$, $52.8^{*}, 50.3,47.0,46.9^{*}, 38.9^{*}, 37.6,22.2^{*}, 21.4,-1.2^{*},-1.5$

(S)- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)propane-1,2-diamine (10)

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32,7.31,7.30,7.29,7.29,7.29,7.28,7.28,7.27,7.27,7.25$, $7.24,7.24,7.23,7.23,7.23,7.22,7.22,7.22,7.21,7.21,7.21,7.20,3.74,3.71,3.28,3.24,3.02$, $3.01,3.01,3.00,3.00,2.99,2.99,2.98,2.97,2.97,2.96,2.96,2.95,2.94,2.20,2.17,2.17,2.14$, $2.13,2.12,2.10,2.09,2.08,1.88,1.86,1.83,0.97,0.96,0.07$.

'H NMR (400 MHz , Chloroform- d) $\delta 7.32-7.27$ (m, 4 H), 7.24-7.20 (m, 1 H), 3.73 (d, $J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dd, $J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{br}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 0.97 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.0,129.0,128.3,127.0,66.7,62.7,47.0,44.6,21.0,-1.1$.

1-((tert-Butoxycarbonyl)amino)cyclohexanecarboxylic acid (S6)

43-25-10-bhsieh.10.fid
 Sample fly-10-102 group bode

${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD) $\delta 4.88,2.02,2.01,2.01,1.99,1.98,1.82,1.81,1.79,1.78,1.76,1.75,1.63$, $1.62,1.61,1.60,1.59,1.59,1.59,1.58,1.57,1.56,1.55,1.54,1.53,1.51,1.50,1.49,1.48,1.47,1.45,1.45$, $1.43,1.37,1.35,1.34,1.34,1.33,1.33,1.32,1.31,1.30,1.29,1.28,1.27,1.26,1.26,1.24,1.24,1.22$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol $-d_{4}$) $\delta 4.88(\mathrm{br}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=13.8,12.6,4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 1 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 178.8,157.3,80.1,59.8,33.6,28.8,26.5,22.5$.

tert-Butyl (1-(benzyl((trimethylsilyl)methyl)carbamoyl)cyclohexyl)carbamate (S7)

55-17-10-bhsieh. 10. fid
Sample fly-10-111
group bode
group bode
PRO CDCI3 /opt/v bhsieh 55
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36,7.34,7.32,7.29,7.28,7.27,7.25,7.21,7.20,4.90,4.77,2.76,2.13,2.09,1.99,1.98,1.96$, $1.95,1.92,1.91,1.72,1.71,1.70,1.69,1.67,1.67,1.64,1.63,1.62,1.61,1.60,1.59,1.42,1.35,1.32,1.32,1.30,1.29,0.04$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36-7.20(\mathrm{~m}, 5 \mathrm{H}$), $4.90(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{br}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 2.11$ (apparent d, $J=13.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.96$ (apparent dt, $J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,153.7,137.5,128.7,127.3,127.2,79.7,59.1,53.3$, 39.4, 33.2, 28.5, 25.3, 21.7, -0.8.

1-Amino- N-benzyl- N-((trimethylsilyl)methyl)cyclohexanecarboxamide (S8)

44-17-10-bhsieh. 10 .fid
 Sample fly-10-153 Sroup bode
 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36,7.35,7.35,7.34,7.34,7.33,7.32,7.32,7.31,7.27,7.27,7.27,7.26,7.25,7.25,7.24,7.23,7.23,7.19,7.18,7.18,7.17$, $7.17,7.16,5.22,2.73,2.07,2.06,2.04,2.03,2.02,2.01,2.00,1.67,1.66,1.65,1.65,1.64,1.64,1.63,1.62,1.61,1.60,1.58,1.58,1.56,1.55,1.54,1.54$, $1.53,1.51,1.50,1.50,1.49,1.48,1.47,1.45,1.45,1.44,1.37,1.36,1.35,1.35,1.34,1.34,1.33,1.33,1.32,1.31,1.31,1.30,1.30,1.29,0.04$.
 ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.03$ (ddd, $J=13.9,10.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.29(\mathrm{~m}, 10 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.

44-17-10-bhsieh.11.fid Sample fly-10-153
group bode

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,138.4,128.7,127.1,126.8,58.4,54.4,39.8,37.4,25.6$, 22.2, -0.8.

\qquad

1-((Benzyl((trimethylsilyl)methyl)amino)methyl)cyclohexanamine (11)

```
C/2-21-08-bhsieh.10.fid
Samplefly-10-159
M group bode (opt/v bhsieh 16
\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.36,7.35,7.35,7.34,7.33,7.33,7.32,7.31,7.31,7.31,7.30\),
\(7.29,7.29,7.26,7.25,7.25,7.24,7.24,7.23,7.22,3.61,2.37,2.23,1.52,1.51,1.50,1.50,1.49\),
\(1.49,1.48,1.47,1.47,1.46,1.45,1.44,1.44,1.43,1.41,1.40,1.38,1.37,1.36,1.35,1.29,1.28\),
\(1.28,1.26,1.24,1.24,1.22,1.22,1.21,1.20,1.20,1.19,1.19,1.18,0.12\).
\({ }^{1} \mathrm{H}\) NMR ( 400 MHz , Chloroform-d) \(\delta 7.36-7.29\) (m, 4 H ), 7.26-7.22 (m, 1 H\(), 3.61\) (s, 2 H ),
2.37 (s, 2 H ), \(2.23(\mathrm{~s}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 7 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H})\).
```


group bode
CAR CDCl3
/opt/v bhsieh 16

trans-4-(((Trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S9)

48-17-10-bhsieh. 10 .fid
Sample fly-10-024
group bode
PRO CDCI 13 /opt/v bhsieh 48
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14,4.14,4.14,4.13,4.13,4.13,4.12,4.06,4.05,4.04,4.02$
3.97, 3.95, 3.94, 3.93, 3.66, 3.66, 3.64, 3.63, 3.57, 3.56, 3.54, 3.53, 3.10, 3.09, 3.09, 3.08, 3.08, 3.08, 3.07, 2.20, 2.05, 0.02 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.13(\mathrm{ddd}, J=4.3,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=9.1,5.6$
$\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.1,3.4$
$\mathrm{Hz}, 1 \mathrm{H}), 3.08(\mathrm{ddd}, J=5.6,3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$.

48-17-10-bhsieh.11.fid
Sample fly-10-024
group bode
CAR CDCl3 /opt/v bhsieh 48

TiNin

trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-ol (S10)

```
42-27-10-bhsieh.10.fid
Sample fly-10
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39,7.38,7.37,7.36,7.36,7.36,7.36,7.35,7.34,7.34,7.34,7.33,7.33,7.32,7.32,7.32,7.32,7.29\), \(7.28,7.28,7.27,7.27,7.27,7.26,7.26,7.25,4.44,4.43,4.43,4.42,4.42,4.41,4.41,4.40,3.98,3.97,3.96,3.95,3.94,3.92,3.91,3.89\), \(3.73,3.72,3.70,3.69,3.66,3.65,3.60,3.59,3.58,3.56,3.28,3.27,3.27,3.26,3.25,3.25,3.24,2.20,2.14,2.10,2.06,2.02,0.10\).
\({ }^{1} \mathrm{H}\) NMR ( 400 MHz , Chloroform- \(d\) ) \(\delta 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=5.8,4.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.8\), \(5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65\) (apparent d, \(J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=9.8,4.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, J=7.8,5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})\).
```


42-27-10-bhsieh.11.fid
Sample fly-10-032
group bode
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.8,128.6,128.4,127.1,75.1,72.9,71.7,69.1,59.4,42.4,-1.3$.

\qquad

2-(trans-4-(Benzyl((trimethylsilyl)methyl)amino)tetrahydrofuran-3-yl)isoindoline-1,3-dione (S11)

43-27-10--bhsieh. 10 .fid
Sample fly-10-039
group bode
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84,7.83,7.82,7.81,7.81,7.81,7.80,7.79,7.75,7.75,7.74,7.73,7.73,7.73,7.72,7.71,7.10,7.09,7.09,7.08$ $7.08,7.07,7.07,7.06,7.06,7.05,7.05,7.05,7.04,7.04,7.04,7.03,7.03,7.02,7.02,7.01,7.01,7.00,4.98,4.97,4.96,4.95,4.94,4.93,4.14$,
$4.12,4.12,4.10,4.09,4.07,3.94,3.93,3.91,3.91,3.90,3.89,3.89,3.88,3.87,3.87,3.86,3.84,3.70,3.66,3.42,3.38,2.18,2.15,2.05,2.01$,
0.03 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 5 \mathrm{H}), 4.96(\mathrm{ddd}, J=8.7,8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-$
4.07 (m, 2 H), $3.99-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 0.03 ($\mathrm{s}, 9 \mathrm{H}$).

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,139.4,134.2,131.8,128.3,128.2,127.0,123.3,70.9,68.9,65.1,58.8,49.4,40.5,-1.4$.

trans- \boldsymbol{N}^{3}-Benzyl- N^{3}-((trimethylsilyl)methyl)tetrahydrofuran-3,4-diamine (12)

40-17-06-bhsieh. 10 .fid
Sample fly-10-042
group bode
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36,7.35,7.35,7.34,7.33,7.33,7.33,7.32,7.32,7.32,7.31,7.31,7.31,7.30,7.29,7.29,7.29,7.28$,
$7.26,7.25,7.25,7.24,7.24,7.23,7.23,7.22,7.22,7.21,4.02,4.00,4.00,3.98,3.84,3.82,3.82,3.81,3.80,3.79,3.78,3.77,3.71,3.67$, $7.26,7.25,7.25,7.24,7.24,7.23,7.23,7.22,7.22,7.21,4.02, ~ 4.00,4.00,3.98,3.84,3.82,3.82,3.81,3.80,3.79,3.7$
$3.54,3.52,3.51,3.50,3.49,3.48,3.47,3.29,3.28,3.27,3.26,3.04,3.03,3.02,3.02,3.01,3.00,2.05,1.25,0.07$
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.69$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (apparent td, $J=6.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (apparent $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50($ apparent td,.
$\mathrm{dt}, J=7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{br}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.

40-17-06-bhsieh.11.fid
Sample fly-10-042
Sample fly-10-
group bode

$\stackrel{m}{i}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,128.5,128.4,127.1,75.3,71.7,67.8,59.5,53.5,41.7,-1.3$.

2-(trans-2-Aminocyclohexyl)isoindoline-1,3-dione (S12)

42-24-10-bhsieh. 10 .
Sample fly-10-041
group bode
group bode

42-24-10-bhsieh.11.fid Sample fly-10-0
group bode

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84,7.84,7.83,7.82,7.81,7.81,7.80,7.79,7.71,7.71,7.70$, $7.69,7.69,7.68,7.67,7.67,3.83,3.82,3.80,3.80,3.79,3.79,3.77,3.76,3.44,3.43,3.41,3.41$, $3.40,3.40,3.39,3.38,2.24,2.23,2.21,2.20,2.17,2.17,2.14,2.13,2.07,2.06,2.06,2.06,2.05$, $2.05,2.05,2.04,2.04,2.03,2.03,2.03,2.02,2.02,2.02,2.01,2.01,1.84,1.84,1.83,1.83,1.82$, $1.82,1.81,1.81,1.81,1.81,1.80,1.80,1.80,1.79,1.78,1.78,1.78,1.77,1.77,1.76,1.75,1.75$,
${ }^{1} H$ NMR (400 MHz , Chloroform- d) $\delta 7.82$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.69(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2$ H), $3.79(\mathrm{ddd}, J=12.4,10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=11.3,10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dddd, J $=12.6,12.6,12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 4 \mathrm{H})$, 1.19 (dddd, $J=12.8,11.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$).

${ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,134.0,132.1,123.3,58.7,51.0,36.8,29.5,25.8,25.2$.

2-(trans-2-(Benzylideneamino)cyclohexyl)isoindoline-1,3-dione (S13)

42-25-10-bhsieh.10.fid
Sample fly-10-059.
Sample fly-10-0
group bode

(

1.0	9.5	9.0	8.5

42-25-10-bhsieh. 11.fid Sample fly-10-
group bode

2－（trans－2－（Benzylamino）cyclohexyl）isoindoline－1，3－dione（S14）

${ }^{1}{ }^{1} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81,7.80,7.80,7.79,7.71,7.70,7.69,7.69,7.10,7.10,7.09,7.09,7.08,7.08$ ， $7.07,7.07,7.06,7.06,7.05,7.05,7.05,7.05,7.04,3.99,3.98,3.96,3.96,3.95,3.95,3.93,3.92,3.82,3.79,3.61$ ， $3.57,3.29,3.28,3.26,3.25,3.24,3.23,2.31,2.30,2.29,2.28,2.28,2.27,2.27,2.26,2.25,2.25,2.24,2.23,2.22$ ， $2.21,2.20,1.84,1.84,1.83,1.82,1.82,1.82,1.81,1.80,1.79,1.79,1.78,1.78,1.77,1.77,1.45,1.44,1.43,1.41$ ， $1.41,1.40,1.40,1.39,1.38,1.37,1.37,1.36,1.36,1.35,1.34,1.34,1.34,1.33,1.32,1.31,1.30,1.29,1.18,1.18$ ， $1.17,1.17,1.16,1.15,1.15,1.14,1.14,1.12,1.12,1.11,1.11,1.09,1.09,1.08$ ．
${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，Chloroform－d）$\delta 7.80$（dd，$J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$ ）， $7.70(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.04$ （m， 5 H ）， 3.96 （ddd，$J=12.4,11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.81 （d，$J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$（td， $J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 2 \mathrm{H})$ ．
 Sample fly－10－063－CC－washed
group bode
CAR CDCl 13 ／opt／v bhsieh 5
｜｜़ ジア

${ }^{13}{ }^{3} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 168.9,141.2,133.8,132.2,128.2,128.0,126.7,123.2,56.5$ ， 56．1，50．7，33．3，29．6，25．8，25．2．

2-(trans-2-(Benzyl((trimethylsilyl)methyl)amino)cyclohexyl)isoindoline-1,3-dione (S15)

41-19-06--bhsieh. 10 .fid
Sample fly-10-050-CC
group bode
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80,7.79,7.78,7.73,7.72,7.72,7.72,7.71,7.70,7.70,7.17,7.16,7.16,7.15,7.14,7.14,7.13,7.09,7.08,7.07,7.07,7.07$,
$7.06,7.05,7.05,7.05,6.96,6.96,6.96,6.95,6.94,6.94,4.23,4.22,4.20,4.20,4.19,4.19,4.17,4.16,3.75,3.72,3.27,3.25,3.23,3.21,3.20,2.35,2.34,2.33$, $2.32,2.31,2.29,2.28,2.27,2.26,2.26,2.25,2.24,2.14,2.11,2.06,2.05,2.05,2.04,2.03,2.02,1.93,1.90,1.86,1.85,1.84,1.83,1.83,1.82,1.80,1.80,1.79$, $1.78,1.77,1.76,1.76,1.75,1.36,1.35,1.34,1.33,1.32,1.31,1.30,1.30,1.29,1.29,1.28,1.27,1.26,1.26,1.25,1.24,1.24,-0.05$.
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{ddd}, J=$ $12.1,10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H})$.

41-19-06-bhsieh.11.fid
Sample fly-10-050-CC
group bode
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,168.1,140.2,133.7,132.7,132.2,128.6,128.0,126.7$,
123.1, 122.8, 59.7, 57.0, 51.9, 40.9, 29.8, 26.0, 25.2, 22.5, -1.2

trans- N^{1}-Benzyl- N^{1}-((trimethylsilyl)methyl)cyclohexane-1,2-diamine (13)

```
M0-29-08--bhsieh.10.fid
M group bode (opt/v bhsieh 40
\({ }^{1}{ }^{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.31,7.30,7.25,7.24,7.24,7.23,7.23,7.23,7.22,7.22,7.22,7.21,7.21,7.20,7.20,3.85,3.81,3.28,3.25,2.63,2.62,2.60,2.59\), \(2.58,2.57,2.12,2.11,2.09,2.08,2.08,2.06,2.05,1.99,1.99,1.98,1.98,1.97,1.97,1.96,1.95,1.94,1.91,1.89,1.89,1.88,1.88,1.88,1.87,1.86,1.85,1.85\), \(1.84,1.81,1.80,1.79,1.79,1.78,1.78,1.77,1.77,1.76,1.76,1.76,1.65,1.65,1.64,1.64,1.63,1.63,1.63,1.62,1.61,1.61,1.60,1.25,1.25,1.24,1.23,1.22\), \(1.21,1.20,1.20,1.19,1.18,1.17,1.16,1.15,1.14,1.13,1.13,1.12,1.11,1.11,1.10,1.08,1.08,1.07,1.04,1.04,1.03,1.02,1.00,0.99,0.99,0.99,0.97,0.96\), \(0.95,0.94,0.93,0.06\)
\({ }^{1} \mathrm{H}\) NMR ( 400 MHz , Chloroform- \(d\) ) \(\delta 7.30(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}\) ), \(7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=10.4\), \(10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H})\), \(1.25-1.07(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})\).
```


${ }^{3} \mathrm{C}^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,128.8,128.4,126.8,67.0,56.9,51.6,41.1,35.2,25.8$, 25.3, 21.0, -1.1.

\qquad

(S)-1-((Trimethylsilyl)methyl)pyrrolidine-2-carboxamide (S16)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,72.3,56.6,47.3,30.4,24.8,-1.6$.

(S)-(1-((Trimethylsilyl)methyl)pyrrolidin-2-yl)methanamine (14)

18-23-08-bhsieh. 10 .fid
Sample fly-10-161
group bode
group bode
PRO CDCl3 /opt/v bhsieh 18
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.08,3.07,3.07,3.05,3.04,3.03,2.71,2.70,2.68,2.67,2.61,2.60,2.58,2.58,2.57,2.27,2.26,2.23,2.23,2.16,2.16,2.15,2.14,2.14,2.13,2.12$, $2.12,2.11,2.11,2.10,2.09,2.08,2.06,2.06,2.04,2.04,1.79,1.79,1.78,1.77,1.76,1.75,1.74,1.74,1.73,1.72,1.72,1.69,1.68,1.67,1.67,1.66,1.65,1.65,1.65,1.64,1.63,1.63$, $1.62,1.61,1.60,1.60,1.59,1.58,1.58,1.57,1.56,1.56,1.54,1.53,1.52,1.25,0.01$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 3.05(\mathrm{ddd}, J=8.9,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dddd}$, $J=7.4,5.1,4.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=8.9,8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{br}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$.

18-23-08-bhsieh. 11 .fid
Sample fly-15-16
Sample fly-10-161
group bode
CAR CDCl3
/opt/v bhsieh
18
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.8,57.3,45.4,43.4,27.2,23.3,-1.3$.

2,2,2-Trifluoro- N-(piperidin-2-ylmethyl)acetamide (S17)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19,3.42,3.41,3.39,3.38,3.18,3.17,3.15,3.13,3.10,3.09,3.08,3.08,3.07$, $3.06,3.06,3.05,3.05,3.04,2.78,2.77,2.77,2.76,2.75,2.74,2.74,2.73,2.72,2.72,2.65,2.65,2.62,2.62,2.62$, $2.59,2.59,1.87,1.86,1.86,1.86,1.85,1.85,1.85,1.84,1.84,1.83,1.83,1.82,1.82,1.81,1.81,1.80,1.68,1.6$.67, 1.66, 1.66, 1.66, 1.65, 1.65, 1.64, 1.64, 1.63, 1.62, 1.62, 1.61, 1.61, 1.60, 1.60, 1.60, 1.59, 1.59, 1.58, 1.47, $1.46,1.46,1.44,1.43,1.42,1.41,1.40,1.40,1.39,1.39,1.39,1.38,1.38,1.37,1.37,1.36,1.36,1.35,1.35,1.34$, $1.33,1.32,1.31,1.30,1.29,1.20,1.19,1.17,1.16,1.16,1.15,1.14,1.13,1.13,1.12,1.11,1.10$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.19(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.7,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07$ (dddd, $J=12.4,4.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dddd, $J=10.9,7.5,4.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{br}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 1 \mathrm{H})$.

41-24-10-bhsieh. 11 .fid
Sample fly-10-154 Sample fly-10-
group bode

觬

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1$, 157.7, 157.4, 157.0, 120.3, 117.5, 114.6, 111.8, 55.0, 46.5, 45.0, 30.3, 26.5, 24.1.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.6(\mathrm{q}, J=36.8 \mathrm{~Hz}$), $116.0(\mathrm{q}, J=287.7 \mathrm{~Hz}), 55.0,46.5,45.0,30.3,26.5,24.1$.

2,2,2-Trifluoro-N-((1-((trimethylsilyl)methyl)piperidin-2-yl)methyl)acetamide (S18)

50-24-08-bhsieh. 10. fid
Sample fly-10-156-CC
group bode
group bode
PRO CDCl3 /opt/v bhsieh 50
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19,3.51,3.50,3.47,3.46,3.32,3.31,3.28,3.27,2.98,2.97,2.96,2.95,2.94,2.93,2.30,2.29,2.28,2.28$,
$2.27,2.27,2.26,2.25,2.25,2.23,2.20,2.13,2.12,2.10,2.10,2.09,2.09,2.07,2.06,1.72,1.71,1.71,1.70,1.69,1.68,1.67,1.65,1.62,1.62$, $1.61,1.61,1.60,1.59,1.59,1.58,1.58,1.57,1.57,1.47,1.46,1.46,1.45,1.44,1.43,1.42,1.41,1.40,1.40,1.39,1.39,1.38,1.37,1.37,1.36$, $1.36,1.35,1.35,1.34,1.33,1.33,1.32,1.32,1.31,1.30,1.30,1.29,1.28,1.27,0.05$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.19(\mathrm{br}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=13.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=13.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=12.0$, $3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=12.0,10.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.27(\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.


```
\(50-24-08\)-bhsieh. 11 .fid
Sample fly-10-156-CC
```

Sample fly-1
group bode
group bode
CAR CDCl3
/opt/v bhsieh 50

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.6(\mathrm{q}, J=37.1 \mathrm{~Hz}$), $116.1(\mathrm{q}, J=287.8 \mathrm{~Hz}), 60.9$,
54.8, 44.7, 41.6, 28.5, 24.7. 23.6, -1.2

(
\qquad

(1-((Trimethylsilyl)methyl)piperidin-2-yl)methanamine (15)

```
S1-24-08-bhsieh.10.fid
group bode
\({ }^{1}{ }^{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 2.93,2.91,2.90,2.89,2.89,2.88,2.63,2.63,2.62,2.62,2.60,2.59,2.59,2.59,2.34,2.30,2.12,2.12,2.11,2.11,2.09\), \(2.09,2.09,2.08,2.06,2.06,2.06,2.05,2.02,2.01,2.00,2.00,1.99,1.98,1.98,1.97,1.97,1.97,1.96,1.70,1.69,1.68,1.67,1.66,1.65,1.64,1.64\), \(1.60,1.56,1.55,1.54,1.52,1.51,1.51,1.51,1.50,1.50,1.50,1.49,1.48,1.48,1.47,1.47,1.46,1.45,1.45,1.44,1.43,1.43,1.42,1.42,1.41,1.32\), \(1.32,1.31,1.31,1.30,1.30,1.29,1.29,1.28,1.28,1.27,1.27,1.27,1.27,1.26,1.25,1.25,1.25,1.24,1.23,1.22,1.22,1.21,0.03\).
\({ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}\), Chloroform- \(d\) ) \(\delta 2.93-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=12.1,11.4,3.3\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=11.7,11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.21\) (m, 1 H ), 0.03 (s, 9 H ).
```


51-24-08-bhsieh.11.fid
Sample fly-10-160
group bode
CAR CDCl3 /opt/v bhsieh 51
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.6,55.7,44.7,43.6,28.0,25.1,24.0,-0.9$.

3-(4-Fluorophenyl)-1-phenylpiperazine (8) (Table 1, entry 3)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50,7.49,7.49,7.48,7.47,7.46,7.46,7.45,7.33,7.33,7.33,7.32$, $7.32,7.31,7.31,7.30,7.29,7.29,7.29,7.28,7.11,7.10,7.09,7.09,7.08,7.07,7.07,7.00,7.00$, $6.99,6.99,6.98,6.98,6.98,6.97,6.93,6.93,6.93,6.91,6.91,6.91,6.90,6.89,6.89,4.02,4.02$, $4.00,3.99,3.67,3.67,3.66,3.66,3.65,3.65,3.64,3.64,3.63,3.63,3.62,3.62,3.29,3.28,3.28$, $3.27,3.26,3.26,3.25,3.25,3.22,3.22,3.19,3.19,3.17,3.16,2.97,2.96,2.94,2.94,2.92,2.91$, 2.77, 2.74, 2.74, 2.71, 2.41.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.47$ (ddd, $J=8.5,5.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{tt}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=10.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.27$ (ddd, $J=11.4,3.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{td}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{td}, J=11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=11.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{br}, 1 \mathrm{H})$.

											$\begin{aligned} & \text { T1 } \\ & \text { ö } \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { T } \\ & \substack{\text { in } \\ \sim \\ \hline} \end{aligned}$								
1.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	${ }^{5.0} \mathrm{f} 1(\mathrm{ppm})^{4.5}$	4.0	3.5	${ }^{1} .0$	2.5	2.0	1.5	1.0	0.5	0.0	-0
	$\begin{aligned} & 10-\mathrm{bh} \\ & \text { fly } \\ & \text { ode } \end{aligned}$	-cc			$\stackrel{\substack{\vec{n} \\ \stackrel{1}{\mid}}}{ }$								1	+ ${ }_{\text {+ }}^{+}$						

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,161.1,151.3,137.8,137.8,129.2,128.8,128.7,119.9$,
 $116.3,115.5,115.3,59.8,57.1,57.1,49.4,46.2$
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.3(\mathrm{~d}, J=245.8 \mathrm{~Hz}$), $151.3,137.8(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $129.2,128.8(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 119.9,116.3,115.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 59.8,57.1(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, 49.4, 46.2 .

1-Benzyl-3-(4-fluorophenyl)piperazine (9a) (Table 1, entry 5-7 \& Scheme 2)

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.39,7.39,7.38,7.37,7.36,7.36,7.35,7.34,7.34,7.33,7.33$,
$7.33,7.30,7.30,7.29,7.28,7.28,7.28,7.27,7.27,7.04,7.04,7.03,7.02,7.01,7.01,7.00,6.99$, $6.99,3.92,3.91,3.89,3.89,3.57,3.12,3.11,3.10,3.10,3.09,3.09,3.09,3.08,3.07,3.07,3.04$, $3.04,2.92,2.91,2.91,2.91,2.89,2.89,2.88,2.86,2.85,2.25,2.24,2.23,2.22,2.21,2.21,2.20$, 2.19, 2.09, 2.07, 2.04.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.33$ (m, 6 H), 7.30-7.27 (m, 1 H), 7.04-6.99 (m, 2 H), 3.90 (dd, $J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.22$ (ddd, $J=11.0,9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{br}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$.

42-06-10-bhsieh. 11 .fid
Sample fly-11
group bode

鼣き
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,160.9,138.5,138.4,138.0,129.3,128.7,128.6,128.3$, 127.1, 115.3, 115.1, 63.3, 61.4, 61.4, 59.7, 53.2, 46.2.

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.1(\mathrm{~d}, J=245.2 \mathrm{~Hz}$), $138.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 138.0$, $129.3,128.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.3,127.1,115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 63.3,61.4(\mathrm{~d}, J=1.2 \mathrm{~Hz})$, 59.7, 53.2, 46.2.

Methyl 3-(4-benzylpiperazin-2-yl)benzoate (9b) (Scheme 2)

$$
\begin{aligned}
& \text { 44-06-10--bhsieh. } 10 . \text { fid } \\
& \text { Sample fly-11-015-CC } \\
& \text { group bode }
\end{aligned}
$$

${ }^{1}{ }^{1} \mathrm{HMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09,8.08,8.08,7.96,7.96,7.95,7.94,7.94,7.93,7.62$, $7.61,7.61,7.60,7.60,7.59,7.40,7.39,7.37,7.36,7.35,7.34,7.34,7.33,7.32,7.32,7.32$, $7.31,7.31,7.30,7.30,7.29,7.28,7.28,7.27,7.26,7.26,7.25,7.25,7.24,7.24,3.99,3.98$, 3.97 , 3.96, 3.91, 3.56, 3.13, 3.13, 3.12, 3.11, 3.10, 3.10, 3.09, 3.09, 3.09, 3.07, 3.06, 3.06 $3.04,3.03,2.93,2.93,2.93,2.92,2.91,2.90,2.90,2.90,2.87,2.87,2.84,2.84,2.69,2.28$ 2.27, 2.25, 2.24, 2.24, 2.24, 2.22, 2.21, 2.15, 2.12, 2.12, 2.09.
${ }^{4} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.08(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}$, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (apparent $\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 3.97$ (dd, $J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 $(\mathrm{s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{br}, 1$

$(\mathrm{s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 312-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{br}$,
$\mathrm{H}), 2.25(\mathrm{dd}, J=10.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=11.0,10.2 \mathrm{~Hz}, 1 \mathrm{H})$.

f

44-06-10-bhsieh.11.fid
Sample fly-11
group bode
$\stackrel{\rightharpoonup}{\stackrel{0}{0}}$

篚筑
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,142.7,137.8,131.8,130.3,129.2,128.8,128.5,128.30,128.27$, 127.2, 77.2, 63.3, 60.9, 60.0, 53.0, 52.1, 46.0.

1－Benzyl－3－（o－tolyl）piperazine（9c）（Scheme 2）

12－08－11－bhsieh． 10. fid
Sample fly－11－012
group bode
PRO CDCl3／opt／v bhsieh 12
TNR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 7.57,7.55,7.37,7.37,7.35,7.35,7.35,7.33,7.32,7.31,7.31,7.28,7.28,7.27,7.27,7.26,7.25,7.25,7.24,7.24,7.22,7.22,7.21,7.20$ ， $7.19,7.18,7.17,7.16,7.16,7.14,7.13,7.12,7.12,4.14,4.14,4.12,4.11,3.62,3.59,3.57,3.53,3.13,3.12,3.11,3.11,3.10,3.10,2.91,2.91,2.90,2.90,2.89,2.89$ ， $2.88,2.88,2.87,2.86,2.48,2.35,2.29,2.28,2.27,2.27,2.26,2.25,2.24,2.23,2.06,2.03,2.03,2.01$ ．

${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，Chloroform－d ）$\delta 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{dd}, J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}$ ， $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{ddd}, J=11.2,9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=$ $11.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}$ ）

12－08－11－bhsieh． 11 ．fid
Sample fly－11－01
group bode
CAR CDCI
CAR CDCl3／opt／v bhsieh 12

－バゝ
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 140.3,138.0,135.4,130.4,129.3,128.3,127.12,127.11,126.3$ ， 126．2，63．3，59．9，56．4，53．3，46．4，19．3．

1-Benzyl-3-(3-methoxyphenyl)piperazine (9d) (Scheme 2)

1-Benzyl-3-cyclopropylpiperazine (9e) (Scheme 2)

15-28-10-bhsieh. 10 .
Sample fly-11-008
group bode
group bode
PRO CDCl3
/opt/v bhsieh
15

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13,7.35,7.35,7.34,7.33,7.33,7.32,7.32,7.31,7.29,7.29$,
$7.29,7.28,7.28,7.27,7.26,7.26,7.25,7.25,3.63,3.59,3.56,3.52,3.37,3.36,3.36,3.34,3.33$ $3.33,3.06,3.05,3.04,3.04,3.03,3.03,3.02,3.01,3.01,3.00,3.00,2.99,2.85,2.84,2.82,2.81$ 2.63, 2.62, 2.60, 2.59, 2.57, 2.56, 2.56, 2.53, 2.53, 2.50, 2.41, 2.40, 2.38, 2.38, 2.36, 2.35, 1.24 $1.23,1.22,1.21,1.21,1.20,1.19,1.18,1.18,1.17,1.17,1.16,1.15,0.79,0.78,0.76,0.75,0.74$, $0.73,0.69,0.67,0.66,0.65,0.64,0.64,0.63,0.62,0.62,0.61,0.60,0.60,0.58,0.58,0.57,0.56$, $0.31,0.30,0.28,0.27,0.26,0.25$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.13(\mathrm{br}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 3.61(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1$ H), 3.54 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (ddd, $J=12.4,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.83$ (dd, $J=12.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=11.9,11.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=12.1,10.0 \mathrm{~Hz}$, H), 2.38 (ddd, $J=10.0,9.7,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.19 (apparent ddda, $J=12.9,9.7,8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 0.76 (dddd, $J=9.6,5.1,5.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.69-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.28$ (dddd, $J=10.2,4.9,4.7,4.7$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,129.0,128.5,127.5,62.4,61.0,55.7,49.4,43.9,11.8$, 4.1, 3.9

1-Benzyl-3-isobutylpiperazine (9f) (Scheme 2)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30,7.30,7.30,7.29,7.28,7.27,7.25,7.24,7.24,7.24,7.23$,
$7.23,7.22,7.22,7.21,4.43,3.54,3.50,3.47,3.44,3.05,3.04,3.03,3.02,3.01,3.00,2.94,2.94$,
$2.93,2.92,2.92,2.92,2.91,2.91,2.91,2.90,2.89,2.89,2.88,2.88,2.88,2.87,2.81,2.81,2.81$,
$2.80,2.79,2.78,2.77,2.77,2.76,2.76,2.76,2.75,2.74,2.73,2.73,2.18,2.17,2.15,2.14,2.12$, .11, 1.87, 1.85, 1.85, 1.82, 1.71, 1.69, 1.69, 1.67, 1.67, 1.66, 1.66, 1.64, 1.64, 1.63, 1.62, 1.61, $1.39,1.37,1.36,1.34,1.32,1.27,1.25,1.25,1.23,1.22,1.21,1.20,0.88,0.87,0.86,0.86$.
${ }^{1} H$ NMR (400 MHz , Chloroform-d) $\delta 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{br}, 1 \mathrm{H})$,
3.49 (apparent q, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.03 (dt, $J=12.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94-2.87 (m, 2 H), 2.81-
$2.73(\mathrm{~m}, 2 \mathrm{H}), 2.15$ (apparent td, $J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=11.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (apparent dh, $J=7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (apparent dt, $J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.23 (ddd, $J=14.0$, $7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H})$

4-07-04-bhsieh.11.fid
Sample fly-
group bode
CAR CDCl3 /opt/v bhsieh 4

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,129.2,128.3,127.2,63.3,59.2,53.2,52.8,45.3,42.7$, 24.3, 23.0, 22.6.

4-Benzyl-9-oxa-1,4-diazaspiro[5.5]undecane (9g) (Scheme 2)

41-08-10-bhsieh. 10 .fid
Sample fly-10-145-cyoxo-CC
group bode
group bode

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35,7.35,7.35,7.34,7.33,7.33,7.32,7.32,7.31,7.31,7.31$, $7.29,7.29,7.28,7.28,7.28,7.27,7.26,7.26,6.47,3.85,3.84,3.83,3.82,3.81,3.80,3.53,3.44$, $3.42,3.41,3.39,3.38,3.12,3.11,3.10,2.66,2.65,2.64,2.63,2.50,1.94,1.93,1.92$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.26$ (m, 5 H), 6.47 (br, 1 H$), 3.83$ (dt, $J=12.0,4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (apparent $\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65$ (dd, $J=6.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.50(\mathrm{br}, 2 \mathrm{H}), 1.93$ (apparent $\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}$).

41-08-10-bhsieh. 11 .fid Sample fly-10-145-cyoxo-CC
group bode

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,128.8,128.5,127.4,63.3,62.6,58.9,52.7$, 52.5, 39.9, 33.6.

1-Benzyl-3-(pyridin-2-yl)piperazine (9h) (Scheme 2)

11-08-11-bhsieh. 11.fid
Sample fly-11-009
Sample fly-11
group bode
CAR CDCI3
group bode
CAR CDCl3
/opt/v bhsieh
11

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52,8.52,8.51,8.51,8.51,8.50,7.62,7.61,7.60,7.60,7.58,7.58,7.34,7.34,7.34,7.32,7.32$, $7.32,7.30,7.30,7.29,7.28,7.28,7.27,7.26,7.26,7.24,7.24,7.23,7.22,7.22,7.21,7.21,7.2,7.15,7.15,7.14,7.13,7.13$ $3.05,3.04,3.04,3.03,3.03,3.02,2.84,2.83,2.83,2.82,2.81,2.80,2.80,2.79,2.28,2.27,2.25,2.24,2.22,2.21,2.20$
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.51$ (ddd, $J=4.9,1.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (ddd, $\left.J=7.7,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34-7.20$ (m, $6 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{ddd}, J=12.3$, $2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,149.2,137.7,136.7,129.2,128.3,127.2,122.6,121.7$ 63.2, 60.3, 58.8, 52.8, 45.2.

1-Benzyl-3-(1-benzyl-1H-imidazol-5-yl)piperazine (9i) (Scheme 2)

60-01-09--bhsieh. 10 .fid
Smple fly
group bode
group bode
PRO CDCli3 /opt/v bhsieh 60
${ }^{H} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45,7.45,7.35,7.35,7.34,7.34,7.33,7.33,7.32,7.32,7.31$, $7.31,7.31,7.30,7.29,7.29,7.28,7.27,7.27,7.27,7.26,7.26,7.25,7.24,7.23,7.23,7.08,7.08$, $7.08,7.07,7.07,7.06,7.06,7.06,7.02,7.01,7.01,5.32,5.28,5.17,5.14,3.82,3.82,3.81,3.81$, $3.79,3.79,3.79,3.78,3.49,2.96,2.96,2.95,2.93,2.92,2.92,2.88,2.87,2.86,2.86,2.85,2.85$, $2.84,2.84,2.84,2.83,2.83,2.83,2.82,2.82,2.81,2.74,2.73,2.73,2.72,2.71,2.70,2.70,2.69$, $2.31,2.21,2.18,2.15,2.11,2.11,2.09,2.08,2.06,2.05$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.45$ (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.23(m, 8 H), 7.08-7.06 (m, 2 H), 7.01 (apparent br, 1 H), $5.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J$ $=10.0,2.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{dt}, J=12.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (apparent dq, $J=11.0,2.5 \mathrm{~Hz}, 1$ H), $2.31(\mathrm{br}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (apparent td, $J=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$).

60-01-09-bhsieh.11.fid
Sample fly-11-013-CC
Sample fly-
group bode
group bode
CAR CDCl3 /opt/v bhsieh 60

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 138.2, 137.6, 136.7, 132.2, 129.2, 129.0, 128.3, 128.0, 127.1, $126.9,126.8,63.3,58.4,53.7,50.6,48.7,45.5$.

N-(4-((2R,6S)-4-Benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a) (Scheme 3)

44-08-10-bhsieh. 11.fid
Sample fly-11-039-CC
group bode
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,138.0,137.9,137.4,129.3,128.3,127.7,127.1,120.2$, $63.1,60.4,60.0,60.0,51.1,24.4,19.8$.

NOESY of N-(4-((2R,6S)-4-benzyl-6-methylpiperazin-2-yl)phenyl)acetamide (16a)

16a

(3S,5S)-1-Benzyl-3-(6-bromopyridin-2-yl)-5-methylpiperazine (16b) (Scheme 3)

8-22-09-bhsieh. 10 .fid
Sample fly-11-045-CC
group bode
group bode
PRO CDCl3
/opt/v bhsieh 8

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50,7.48,7.46,7.36,7.36,7.35,7.34,7.33,7.33,7.32,7.32$, $7.31,7.31,7.29,7.29,7.29,7.28,7.27,7.27,7.26,7.26,7.25,7.25,7.24,7.24,4.09,4.08,4.07$, $4.06,3.60,3.57,3.55,3.52,3.12,3.11,3.10,3.10,3.09,3.09,3.08,3.08,3.08,3.07,3.07,3.06$, $3.06,3.06,3.05,3.04,2.85,2.85,2.83,2.82,2.20,2.05,2.02,1.99,1.77,1.75,1.72,1.12,1.10$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 7 \mathrm{H}), 4.07(\mathrm{dd}, J=$ $10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H})$, $2.84(\mathrm{dd}, J=10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1$ H), $1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.


```
8-22-09-bhsieh.11.fid
Sampe fly-1
group bode
CAR CDCl3
/opt/v bhsieh 8
```


Vị)
${ }^{3}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,141.6,138.9,138.0,129.2,128.3,127.1,126.8,120.2$ $63.1,60.5,60.3,58.7,50.5,19.9$

4-((2S,6S)-4-Benzyl-6-methylpiperazin-2-yl)oxazole (16c) (Scheme 3)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,141.2,137.9,134.5,129.2,128.3,127.2,63.1,60.5,57.7$, 52.5, 50.7, 19.8.

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-2-fluorobenzonitrile (17a) (Scheme 3)

56-10-10-bhsieh. 10.1
Sample fly
fly
group bode

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77,7.77,7.76,7.75,7.69,7.69,7.68,7.68,7.67,7.67,7.66$, $7.65,7.39,7.38,7.37,7.36,7.36,7.35,7.35,7.34,7.33,7.33,7.33,7.30,7.30,7.29,7.29,7.28$, $7.28,7.27,7.27,7.18,7.16,7.13,4.24,4.23,4.21,4.20,3.59,3.56,3.47,3.44,2.89,2.88,2.86$, $2.86,2.80,2.78,1.93,1.90,1.89,1.87,1.82,1.79,1.51,1.51,1.50,1.49,1.46,1.46,1.46,1.45$, $1.44,1.44,1.43,1.41,1.40,1.39,1.38,1.37$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.76$ (dd, $J=6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (ddd, $J=8.8,5.2,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=10.5$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=10.6,3.2 \mathrm{~Hz}$, H), 2.79 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (dd, $J=10.6,10.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.89 (br, 1 H), 1.81 (d, $J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 10 \mathrm{H})$.

56-10-10-bhsieh. 11 .fid
Sample fly $-11-046-\mathrm{CC}$
group bode
group bode

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,161.0,140.7,140.6,138.6,134.2,134.1,132.2,128.7$, 128.3, 127.1, 116.2, 116.1, 114.2, 101.2, 101.1, 62.9, 62.1, 62.0, 53.3, 52.0, 38.8, 32.1, 26.4, 22.0, 21.8 .
${ }^{3} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.3$ (d, $J=258.2 \mathrm{~Hz}$), 140.6 (d, $J=3.5 \mathrm{~Hz}$), 138.6, 134.1 (d, $J=8.2 \mathrm{~Hz}), 132.2,128.7,128.3,127.1,116.1$ (d, $J=19.3 \mathrm{~Hz}), 114.2,101.2$ (d, $J=$ $15.4 \mathrm{~Hz}), 62.9,62.1,62.0,53.3,52.0,38.8,32.1,26.4,22.0,21.8$.

2-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)thiazole (17b) (Scheme 3)

54-10-10-bhsieh. 10. fid
Sample fly-11-024-cC
group bode
group bode

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74,7.73,7.38,7.38,7.37,7.36,7.36,7.35,7.35,7.35,7.34$, $7.34,7.33,7.33,7.32,7.32,7.31,7.29,7.29,7.28,7.28,7.27,7.27,7.26,7.26,7.25,7.25,7.25$, $4.64,4.63,4.61,4.60,3.63,3.60,3.47,3.44,3.26,3.25,3.23,3.22,2.81,2.78,2.12,2.09,2.07$, $1.89,1.88,1.86,1.82,1.79,1.58,1.58,1.57,1.57,1.56,1.56,1.56,1.55,1.54,1.53,1.53,1.52$, $1.51,1.51,1.49,1.49,1.48,1.47,1.47,1.46,1.46,1.45,1.45,1.43,1.42,1.41,1.41,1.40,1.39$ $1.39,1.39,1.37,1.37,1.36,1.35,1.35,1.34,1.33,1.32$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.73$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.31$ (m, 4 H), $7.29-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}$, $J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (apparent $\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.48$ (m, 2 H), 1.47-1.32 (m, 7 H).

54-10-10-bhsieh. 11.fid Sample fly-11
group bode

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,142.3,138.7,128.8,128.3,127.1,118.6,62.9,62.0,60.9$, 52.9, 52.3, 38.6, 32.2, 26.5, 22.0, 21.8

5-(4-Benzyl-1,4-diazaspiro[5.5]undecan-2-yl)-3-phenylisoxazole (17c) (Scheme 3)

38-05-11-bhsieh. 10 .fid
Sample fly-11-087-CC
group bode
group bode
PRO CDCl3
/opt/v bhsieh 38

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.80,7.80,7.79,7.79,7.79,7.78,7.78,7.78,7.45,7.45,7.45,7.44,7.44,7.43,7.43,7.42,7.42,7.37,7.36$, $7.35,7.35,7.35,7.35,7.34,7.33,7.33,7.32,7.32,7.31,7.29,7.28,7.28,7.27,7.27,7.27,7.26,7.26,7.25,6.48,4.49,4.48,4.46,4.45,3.62$, $3.59,3.48,3.45,3.17,3.16,3.14,3.13,2.81,2.80,2.78,2.78,2.18,2.15,2.13,1.90,1.88,1.86,1.84,1.84,1.82,1.79,1.56,1.55,1.55,1.54$, $1.53,1.52,1.51,1.50,1.49,1.45,1.44,1.43,1.42,1.41,1.40,1.39,1.39,1.38,1.37,1.35,1.33$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.47$ (dd, $J=10.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=10.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{dd}, J=10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 7 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,162.3,138.5,130.0,129.2,128.9,128.8,128.4,127.2$ $126.9,98.7,62.9,62.0,58.5,52.1,47.9,38.5,32.0,26.4,21.9,21.8$.

(trans,cis)-1-Benzyl-3-(3-bromophenyl)octahydrofuro[3,4-b]pyrazine (18a) (Scheme 3)

（trans，cis）－1－Benzyl－3－（5－methylisoxazol－3－yl）octahydrofuro［3，4－b］pyrazine（18b）（Scheme 3）

53－23－09－bhsieh． 10 －fid
Sample fly－111－048－CC
group bode
PRO CDCl3／opt／v bhsieh 53
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 7.33,7.32,7.32,7.31,7.31,7.30,7.30,7.30,7.29,7.28,7.28,7.28,7.28,7.27,7.27,7.26,7.26$ $7.25,7.25,7.24,7.24,7.23,7.23,5.96,5.96,4.20,4.19,4.18,4.17,4.04,4.02,4.00,4.00,3.99,3.99,3.97,3.66,3.65,3.63$ ， $3.62,3.62,3.60,3.57,3.55,3.54,3.53,3.37,3.34,3.26,3.25,3.24,3.24,3.22,3.22,3.21,3.20,3.07,3.06,3.04,3.03,2.46$ ， $2.45,2.44,2.44,2.42,2.42,2.41,2.40,2.37,2.37,2.16,2.13,2.10,2.06$ ．
${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，Chloroform－d ）$\delta 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}$ ， $J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=$ $10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=10.7,9.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{ddd}$ ， $J=10.5,9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=11.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{br}, 1 \mathrm{H})$ ．

							$\begin{aligned} & \stackrel{1}{1} \\ & \text { no } \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \underset{i}{+} \\ & \underset{i}{2} \end{aligned}$	g̃o －								
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5			4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0

53－23－09－bhsieh．11．fid
Sample fly－11－0．48－CC
group bode
CAR CDCl3 $/$ opt／v bhsieh 53

解解辛
$\underset{\sim}{\tilde{1}}$
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 169.5,163.9,137.3,129.1,128.3,127.4,100.0,69.6,69.4,68.2$ ， 61．7，61．7，57．9，53．4，12．2．

NOESY of (trans,cis)-1-benzyl-3-(5-methylisoxazol-3-yl)octahydrofuro[3,4-b]pyrazine (18b)

18b

(trans)-4'-Benzylhexahydro-1'H-spiro[cyclohexane-1,2'-furo[3,4-b]pyrazin]-4-one ethylene ketal (18c)
(Scheme 3)

16-11-10-bhsieh. 10. fid
Sample fly-11-067-CC
group bode
group bode
PRO CDCl3 /opt/v bhsieh 16

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32,7.31,7.30,7.29,7.28,7.27,7.27,7.26,7.26,7.25,7.25,7.24,7.23,7.23$, $7.22,7.22,7.21,7.21,3.98,3.97,3.96,3.96,3.94,3.94,3.93,3.92,3.91,3.91,3.90,3.90,3.90,3.89,3.88$,
$3.88,3.87,3.87,3.86$
$3.85,3.61,3.57,3.55$
3.53
$3.53,3.53 .3 .52,3.51,3.50,3.50,3.48,3.34,3.32,3.32$, $3.88,3.87,3.87,3.86,3.85,3.61,3.57,3.55,3.53,3.53,3.53,3.52,3.51,3.50,3.50,3.48,3.34,3.32,3.32$, $3.31,3.30,3.30,3.29,3.27,3.21,3.18,2.74,2.71,2.25,2.23,2.22,2.22,2.21,2.21,2.20,2.19,2.18,2.12$, 2.11, 2.11, 2.10, 2.09, 2.08, 2.08, 2.07, 2.06, 1.80, 1.79, 1.78, 1.77, 1.76, 1.76, 1.75, 1.74, 1.74, 1.7, 1.7 , $1.50,1.50,1.49,1.48,1.47,1.47,1.46,1.46,1.45,1.45,1.44,1.44,1.43,1.43,1.42,1.42,1.41,1.41$.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=7.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{ddd}, J=10.7,9.4,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=10.5,9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 5 \mathrm{H})$.

16-11-10-bhsieh. 11. fid
Sample fly-11-067-CC
Sample fly-1
group bode
CAR CDCI3
group bode
CAR CDCl3 $/$ opt/v bhsieh 16

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2,128.7,128.3,127.3,109.0,70.2,69.8,69.6,64.3,64.3$, $63.0,61.5,56.8,52.8,35.7,30.5,30.4,29.3$.

（trans，cis）－3－（Benzo［d］［1，3］dioxol－5－yl）－1－benzyldecahydroquinoxaline（19a）（Scheme 3）

14－11－10－bhsieh． 10 ．fid
Sample fly－11－028－CC
group bode
group bode
PRO CDC13／opt／v bhsieh 14

\rightarrow（
 14－11－10－bhsieh． 111 fif
Sample fly－11－028－CC Sample fly－1
group bode
group bode
CAR CDCI3
／opt／v bhsieh 14

			－	$\begin{aligned} & \text { ò } \\ & \stackrel{\oplus}{\mathrm{o}} \end{aligned}$

9 璄
9月要
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 147.5,146.7,138.8,136.9,129.2,128.2,126.8,120.2,108.0$ ， 107．7，100．9，65．6，61．1，60．8，60．2，57．2，32．8，29．1，25．4，24．9．

H NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 7.34,7.33,7.32,7.31,7.29,7.29,7.29,7.27,7.26,7.25,7.25$ ，
$7.24,7.24,7.23,7.23,7.22,6.89,6.89,6.82,6.81,6.80,6.79,6.73,6.71,5.91,4.16,4.13,3.89$ ， $3.89,3.87,3.86,3.26,3.23,2.85,2.84,2.82,2.82,2.70,2.69,2.68,2.67,2.67,2.66,2.65,2.64$ ， $2.33,2.32,2.31,2.30,2.30,2.29,2.14,2.12,2.09,2.02,2.01,2.00,1.99,1.99,1.98,1.97,1.96$ ， $1.88,1.88,1.87,1.86,1.85,1.84,1.78,1.78,1.77,1.77,1.77,1.76,1.75,1.75,1.74,1.74,1.73$ ， ．72，1．71，1．49，1．48，1．46，1．46，1．45，1．43，1．41，1．40，1．40，1．39，1．38，1．38，1．37，1．36，1．35 $1.34,1.33,1.30,1.29,1.28,1.27,1.26,1.26,1.25,1.24,1.23,1.23,1.22,1.20,1.19$ ．
${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，Chloroform－d ）$\delta 7.31$（d，$J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$ ）， $7.29-7.21$（m， 1 H ）， 6.89 （d，$J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=10.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=10.9,2.8$ $\mathrm{Hz}, 1 \mathrm{H}$ ）， 2.67 （ddd，$J=10.6,8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}$, H）， 1.99 （ddd，$J=10.6,8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.84$（m，1 H）， $1.78-1.71$（m，3 H），1．49－1．33 $(\mathrm{m}, 3 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H})$

NOESY of (trans,cis)-3-(benzo[d][1,3]dioxol-5-yl)-1-benzyldecahydroquinoxaline (19a)

19a

(trans,cis)-1-Benzyl-3-(1-methyl-1H-benzo[d]imidazol-2-yl)decahydroquinoxaline (19b) (Scheme 3)

50-09-09-bhsieh. 10 .fid
Sample fly-11-029-CC
group bode
group bode
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ 8.75,7.74,7.74,7.74,7.73,7.73,7.72,7.72,7.71,7.35,7.34,7.34,7.33,7.32,7.32,7.31,7.31,7.30,7.30,7.29,7.29,7.29,7.28,7.28,7.27$, $7.27,7.27,7.25,7.25,7.24,7.24,7.24,7.23,7.23,7.22,7.22,7.21,7.21,7.20,7.20,7.20,7.20,4.33,4.33,4.31,4.30,4.23,4.20,3.67,3.22,3.19,3.05,3.04,3.02,3.01,2.72$, $2.71,2.70,2.69,2.69,2.68,2.67,2.66,2.47,2.44,2.44,2.42,2.35,2.35,2.34,2.34,2.32,2.32,2.31,2.31,2.18,2.01,2.01,2.00,1.99,1.98,1.98,1.97,1.96,1.95,1.94,1.91$, $1.90,1.90,1.89,1.89,1.87,1.87,1.86,1.85,1.85,1.84,1.83,1.81,1.80,1.80,1.80,1.79,1.79,1.78,1.78,1.77,1.77,1.45,1.44,1.43,1.41,1.41,1.40,1.39,1.38,1.37,1.36$, $1.36,1.35,1.35,1.34,1.33,1.32,1.29,1.28,1.28,1.27,1.26,1.25,1.25,1.24,1.23,1.22,1.22,1.21,1.19$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,142.2,138.7,135.6,129.0,128.2,126.9,122.4,121.9$, 119.5, 109.1, 67.1, 60.3, 57.4, 57.0, 52.6, 32.5, 29.8, 29.0, 25.3 (2 in 1)

(trans,cis)-1-Benzyl-3-(2-methylprop-1-en-1-yl)decahydroquinoxaline (19c) (Scheme 3)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,136.5,{ }^{*} 129.2,128.3,127.0,123.6, * 64.8,60.3,57.5$, 57.0, 54.0, 31.7, 29.1, 25.9, 25.1, 24.9, 18.5 .

(3R,8aS)-3-(2-Chloro-4-fluorophenyl)octahydropyrrolo[1,2-a]pyrazine (20a) (Scheme 3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62,7.61,7.60,7.59,7.08,7.08,7.06,7.05,6.97,6.96,6.95,6.94,6.93,6.92,4.35,4.34,4.33$,
$4.32,3.27,3.26,3.24,3.23,3.22,3.21,3.19,3.18,3.11,3.11,3.09,3.08,3.07,3.06,2.75,2.72,2.72,2.69,2.24,2.20,2.17,2.15$ $2.13,2.12,2.12,2.10,2.10,2.09,2.08,2.07,2.06,2.06,2.03,2.00,1.98,1.89,1.89,1.88,1.87,1.87,1.86,1.85,1.85,1.84,1.83$, $1.83,1.82,1.81,1.80,1.78,1.77,1.76,1.76,1.75,1.75,1.74,1.74,1.73,1.72,1.72,1.72,1.71,1.70,1.70,1.50,1.48,1.47,1.47$ $1.46,1.46,1.45,1.45,1.44,1.44,1.43,1.41,1.40$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.61(\mathrm{dd}, J=8.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.07(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (ddd, $J=8.7,8.3,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=10.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=8.7$, $8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=11.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{br}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=8.8,8.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dddd}, J=10.0,6.5$, $6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=10.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,160.3,135.6,135.6,133.8,133.7,129.4,129.3,116.9,116.7,114.3$, 114.1, 62.8, 58.3, 55.4, 53.5, 51.0, 27.4, 21.3.

${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.6(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=10.1 \mathrm{~Hz})$, $129.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=20.6 \mathrm{~Hz}), 62.8,58.3,55.4,53.5,51.0,27.4,21.3$.

(3R,8aS)-3-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)octahydropyrrolo[1,2-a]pyrazine (20b) (Scheme 3)

group bode
CAR CDCl3

${ }^{13}{ }^{1} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9,138.5,136.4,129.1,127.8,125.1,119.8,62.5,58.7,53.6,51.3,50.8,27.4,21.1,11.1$.

(R)-tert-Butyl 2,2-dimethyl-4-((3S,8aS)-octahydropyrrolo[1,2-a]pyrazin-3-yl)oxazolidine-3-carboxylate (20c) (Scheme 3)

```
l:-11-10-bhsieh.10.fid 
    'H NMR (400 MHz, CDCl }\mp@subsup{}{3}{*})\delta4.15, 4.07, 3.95, 3.89, 3.87, 3.86, 3.85, 3.30, 3.27, 3.20, 3.17, 3.14, 3.12, 3.12, 3.10, 3.09, 2.68, 2.65, 2.62, 2.29,
    2.27, 2.25, 2.23, 2.17, 2.14, 2.11, 1.89, 1.88, 1.87, 1.87,1.86, 1.85,1.84, 1.83,1.83,1.82, 1.81,1.80, 1.80, 1.79,1.78, 1.77, 1.76, 1.76, 1.75,
    1.74,1.73,1.73, 1.72, 1.72, 1.71, 1.70, 1.54, 1.45, 1.44, 1.44, 1.43, 1.42, 1.39.
    'H NMR ( }400\textrm{MHz},\mathrm{ Chloroform-d) }\delta4.15(\textrm{br},1\textrm{H}),4.07(\textrm{br,}1\textrm{H}),3.95(\textrm{br,},1\textrm{H}),3.87(\textrm{dd},J=9.4,6.4 Hz,1H), 3.28(d, J=10.6 Hz,1 H)
    3.18(d, J=10.6 Hz,1H), 3.14-3.09(m, 2 H), 2.65(dd, J=10.9,10.9 Hz,1 H), 2.26 (ddd, J= 8.8, 8.2, 8.2 Hz, 1 H), 2.17-2.13 (m, 2 H),
    1.87-1.71(m, 3 H), 1.54(s, 3 H), 1.45-1.39(m, 13 H).
```



``` \(\Omega\) N u
``` \(\qquad\)

``` 12-11-10-bhsieh. 11 .fid
Sample fly-11-030-CC Sample fly-11-030-CC
group bode Vinin
```


${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0^{*}, 152.3,94.3,93.9^{*}, 80.6^{*}, 64.2^{*}, 62.8^{*}, 59.3^{*}, 58.9,56.0^{*}, 53.5^{*}, 53.2^{*}, 52.8$, 49.9*, 28.5*, 27.0*, 26.9*, 26.1, 23.9*, 22.4, 21.0*.

cis-3-Mesityloctahydro-1H-pyrido[1,2-a]pyrazine (21a) (Scheme 3)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,136.7,133.4,130.3,62.2,57.6,56.8,55.6,52.5,29.0$
24.9, 23.8, 21.7, 20.7

cis-3-(Pyrimidin-2-yl)octahydro-1H-pyrido[1,2-a]pyrazine (21b) (Scheme 3)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.68,8.67,7.19,7.18,7.17,7.17,7.16,7.16,4.14,4.13,4.11$, $80,2.30 .79,2.79,268,2.65,2.65,2.62,2.55,2.11,2.09,2.08,2.07,2.07,2.05,2.05,2.04$ $2.04,2.03,1.89,1.88,1.87,1.86,1.85,1.85,1.83,1.83,1.82,1.78,1.78,1.78,1.77,1.77,1.77$, $1.76,1.76,1.75,1.75,1.74,1.74,1.74,1.73,1.73,1.64,1.64,1.63,1.63,1.62,1.62,1.62,1.61$, $1.61,1.61,1.60,1.60,1.60,1.59,1.59,1.58,1.58,1.57,1.56,1.55,1.55,1.55,1.54,1.54,1.54$, $1.53,1.53,1.52,1.52,1.51,1.51,1.51,1.37,1.36,1.36,1.35,1.35,1.34,1.34,1.34,1.33,1.32$, $32,1.31,131,131,130,130,129,129,128,128,127,127,126,126,125,125,125$, 23, 1.22, 1.22, 1.21, 1.20, 1.20, 1.19, 1.19, 1.18, 1.16, 1.16.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methylene Chloride- $\left.d_{2}\right) \delta 8.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=4.9,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=12.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (apparent dtd, $J=11.2,3.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.4,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{br}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (dddd, $J=10.4,10.2,3.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1$ H), $1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 2 \mathrm{H})$.

NOESY of cis-3-(pyrimidin-2-yl)octahydro-1H-pyrido[1,2-a]pyrazine (21b)

21b

tert-Butyl octahydrospiro[azetidine-3,3'-pyrido[1,2-a]pyrazine]-1-carboxylate (21c) (Scheme 3)

43-31-10-bhsieh. 10 .fid Sample fly $-11-071-\mathrm{B}$
 Sample fly-11-071-B
 group bode

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98,3.96,3.72,3.70,3.67,3.65,3.55,3.53,2.84,2.81,2.74,2.74,2.73,2.72,2.71,2.70,2.69,2.51$, $2.48,2.45,2.14,2.12,2.05,2.04,2.02,2.01,2.00,2.00,1.99,1.98,1.84,1.81,1.79,1.75,1.74,1.74,1.73,1.73,1.72,1.72,1.71,1.70$, $1.69,1.61,1.60,1.59,1.58,1.57,1.57,1.56,1.55,1.54,1.53,1.52,1.51,1.49,1.48,1.48,1.47,1.47,1.46,1.45,1.45,1.44,1.44,1.43$, $1.42,1.41,1.41,1.39,1.38,1.36,1.36,1.31,1.31,1.30,1.28,1.27,1.27,1.25,1.25,1.25,1.24,1.23,1.22,1.22,1.21,1.21,1.20,1.20$, $1.16,1.16,1.13,1.12,1.11,1.10$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 3.97$ (d, $\left.J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=11.2$, $11.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (apparent $\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.31-$ $1.20(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 1 \mathrm{H})$.


```
43-31-10-bhsieh.11.fic
Sample fly-11-071-B
```


${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,79.5,63.0,61.4,60.8,58.8,56.0,52.4,48.6,29.4,28.5,25.6,24.1$.

tert-Butyl 4-benzyl-2-(4-fluorophenyl)piperazine-1-carboxylate (22)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,160.6,155.0,137.9,136.4,129.6,129.5,129.3,128.4$, 127.4, 115.0, 114.8, 80.2, 63.2, 55.2, 53.4, 52.8, 39.9, 28.6.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.9$ (d, $J=245.0 \mathrm{~Hz}$), 155.0, 137.9 (apparent s), 136.4, $129.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.3,128.4,127.4,114.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 80.2,63.2,55.2,53.4,52.8$, 39.9, 28.6.

2-(4-Fluorophenyl)piperazine (23)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33$ (ddd, $J=8.6,5.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.01-6.95$ (m, $2 \mathrm{H}), 3.71(\mathrm{dd}, J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=12.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{br}, 2 \mathrm{H})$.

| 2-11-03-bhsieh.11.fid
 Sample fly-11-158-final-2
 group bode
 CAR CDCII /opt/v bhsieh 2 | I |
| :--- | :--- | :--- |

竍前
${ }^{3}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,161.0,138.7,138.7,128.5,128.5,115.4,115.2$, 1.4, 54.5, 47.9, 46.1.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.2$ (d, $J=245.1 \mathrm{~Hz}$), 138.7 (d, $J=3.1 \mathrm{~Hz}$), 128.5 (d, $J=7.9 \mathrm{~Hz}$), 115.3 (d, $J=21.2 \mathrm{~Hz}), 61.4,54.5,47.9,46.1$.

| 10 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |
| :--- |

[^0]: (7) The addition of LiAlH_{4} must be slow. Stop the addition if the reaction is too drastic, and continue the addition while

[^1]: (8) Prozymex A/S; Pedersen, J.; Lauritzen, C. WO2012/119941 A1, 2012.

[^2]: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1$ H), $6.80(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ $(\mathrm{dd}, J=10.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=10.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=10.6$,

