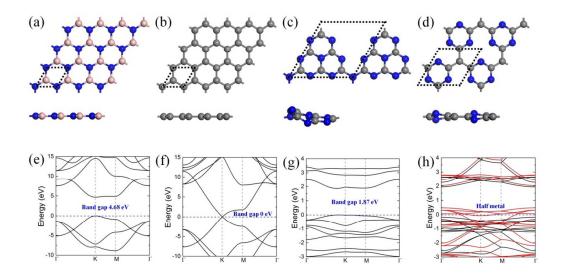
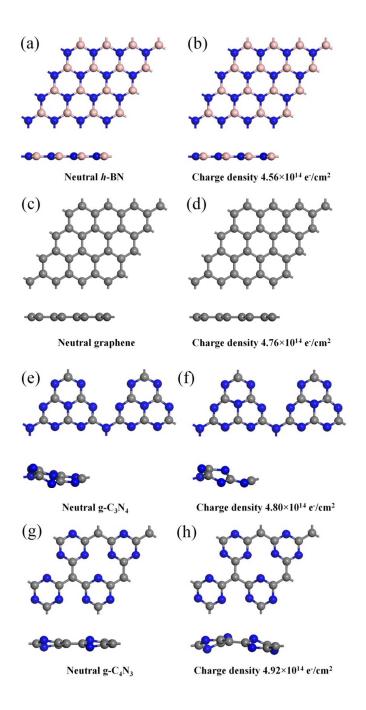
Supporting Information


A First Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces

Xin Tan, Hassan A. Tahini, Prasenjit Seal, Sean C. Smith*


Integrated Materials Design Centre (IMDC), School of Chemical Engineering, UNSW Australia,

Sydney, NSW 2052, Australia

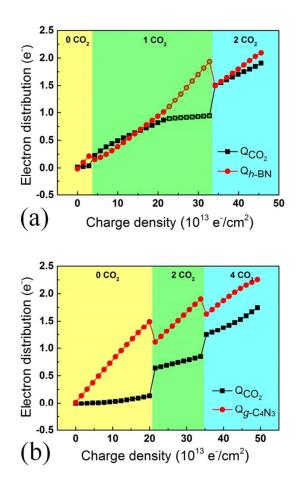

^{*} Corresponding author: sean.smith@unsw.edu.au

Figure S1. Top (upper) and side (lower) views of (a) a (4×4) *h*-BN supercell, (b) a (4×4) graphene supercell, (c) a (2×1) buckle g-C₃N₄ supercell, and (d) a (2×2) reconstructed g-C₄N₃ supercell. The light magenta, blue and grey balls represent B, N and C atoms, respectively, and the unit cells of each supercell are indicated by black dot lines. The calculated band structures of (e) a (1×1) *h*-BN, (f) a (1×1) graphene, (g) a (1×1) buckled g-C₃N₄, and (h) a (2×2) reconstructed g-C₄N₃. The blue dashed line denotes the Fermi level. The red and black lines in (h) denote the spin-up and spin-down states, respectively.

Figure S2. The optimized geometries of the (a) neutral and the (b) charged *h*-BN, the (c) neutral and the (d) charged graphene, the (e) neutral and the (f) charged $g-C_3N_4$, and the (g) neutral and the (h) charged $g-C_4N_3$. The charge densities are listed in the figures.

Figure S3. The electron distributions of CO₂ molecules on (a) *h*-BN and (b) g-C₄N₃ as a function of charge density. Q_{CO_2} , Q_{h-BN} and $Q_{g-C_4N_3}$ indicate the number of excess electrons of CO₂, *h*-BN and g-C₄N₃, respectively. The yellow, green and cyan regions in (a) denote 0, 1 and 2 CO₂ chemisorption. The yellow, green and cyan regions in (b) denote 0, 2 and 4 CO₂ chemisorption.