Asymmetric [3+2] Cycloaddition of Vinyl Cyclopropanes and α , β -Unsaturated Aldehydes by Synergistic Palladium and Organocatalysis

Kim Søholm Halskov, Line Næsborg, Fernando Tur and Karl Anker Jørgensen*

Department of Chemistry, Aarhus University DK-8000 Aarhus C, Denmark Fax (45) 8715 5956, e-mail: <u>kaj@chem.au.dk</u>

SUPPORTING INFORMATION

Contents

1.	General methods	S2
2.	Synthesis of starting materials	S 3
3.	General procedure for the asymmetric [3+2] cycloaddition	S4
4.	Synthetic transformations	S10
5.	Determination of the absolute and relative configuration in products	S12
6.	NMR spectra	S17
7.	UPC ² traces	S39

1. General methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer running at 400 MHz for ¹H, 100 MHz for ¹³C and 376 MHz for ¹⁹F. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.16 ppm for ¹³C NMR). For ¹⁹F NMR CFCl₃ was used as internal standard. The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. ¹³C NMR spectra were acquired in broad band decoupled mode. ¹⁹F NMR spectrum was acquired in proton decoupled mode. Mass spectra were recorded on a Bruker Maxis Impact mass spectrometer using electrospray (ES⁺) ionization (referenced to the mass of the charged species). Dry solvents were obtained from a MBraun MB SPS-800 solvent purification system. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by UV radiation or KMnO₄ stain. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Sigma-Aldrich) was used. Optical rotations were measured on a Bellingham+Stanley ADP440+ polarimeter, α values are given in deg·cm³·g⁻¹·dm⁻¹; concentration c in g (100 mL)⁻¹. The diastereomeric ratio (dr) of products was evaluated by ¹H NMR analysis of the crude mixture. The enantiomeric excess (ee) of products was determined by chiral stationary phase Waters ACQUITY UPC² (Daicel Chiralpak). Reference samples for UPC² analysis were prepared using a mixture of products obtained from reactions with cat 3 and ent-cat 3. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification.

2. Synthesis of starting materials

Vinyl cyclopropanes 1 were synthesized according to previously reported methods. Characterization data for **1a**,**b** matched those reported in the literature.¹ Characterization data for **1c** is provided below. Vinyl cyclopropanes **1b**,c were achieved and applied in the reaction as a diastereometric mixture. α , β -Unsaturated aldehydes 2 were either purchased from commercial sources or made by previously reported methods. Characterization data matched those reported in the literature.² All other reagents were purchased from commercial sources.

Benzyl 1-cyano-2-vinylcyclopropane-1-carboxylate, 1c

Isolated in 38% yield (0.86 g) as a colorless oil by FC on silica using EtOAc/pentane 1:8 as CO₂Bn eluent (3:1 diastereomeric mixture after purification). For NMR characterization * denotes the minor diastereoisomer, + denotes overlap of signals of both diastereoisomers, whereas no sign denotes the major diastereoisomer. ¹H NMR (400 MHz, CDCl₃): 7.43-7.31⁺ (m, 10H), 5.70-5.58⁺ (m, 2H), 5.43⁺ (d, J = 16.9 Hz, 2H), 5.38⁺ (d, J = 10.5 Hz, 2H), 5.29-5.19⁺ (m, 4H), 2.64^{*} (q, J = 8.9 Hz, 1H), 2.59 (q, J = 8.5 Hz, 1H), 2.00 (dd, J = 9.0; 5.1 Hz, 1H), 1.99-1.88* (m, 2H), 1.67 (dd, J = 7.9; 5.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 165.1*, 134.8*, 134.7, 132.0, 130.4*, 128.72⁺ (3C), 128.67 (2C), 128.6*, 128.2 (2C), 128.1* (2C), 121.6*, 121.0, 118.5*, 116.5, 68.4, 68.2*, 36.0*, 34.0, 24.1, 22.7*, 21.2, 20.4*. HRMS (ESI+) *m*/*z* calcd. for C₁₄H₁₃NO₂ [M+Na]⁺: 250.0838; found: 250.0841.

¹ (a) Wu, J.-Q.; Qiu, Z.-P.; Zhang, S.-S.; Liu, J.-G.; Lao, Y.-X.; Gu, L.-Q.; Huang, Z.-S.; Li, J.; Wang, H. Chem. Commun. 2015, 51, 77. (b) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.

² Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Org. Lett. **2003**, *5*, 777.

3. General procedure for the asymmetric [3+2] cycloaddition

Procedure:

A glass vial equipped with a magnetic stirring bar was charged with vinyl cyclopropane 1 (0.20 mmol, 1.0 equiv.), α , β -unsaturated aldehyde **2** (0.30 mmol, 1.5 equiv.), aminocatalyst **3** (0.02 mmol, 0.10 equiv.), PhCO₂H (0.02 mmol, 0.10 equiv.) and MeCN (0.5 mL). Pd(dba)₂ (0.006 mmol, 0.03 equiv.) was then added. The mixture was stirred for 16 h at ambient temperature. The crude product was concentrated in vacuo and then loaded onto the column using CH₂Cl₂. FC on silica gel yielded product 4.

NOTE: No precautions were taken to exclude moisture or air when setting up the reaction.

Characterization data for new compounds:

(2S,3S,4R)-3-formyl-2-phenyl-4-vinylcyclopentane-1,1-dicarbonitrile, 4a

Isolated in 90% yield (45 mg) as a colorless oil by FC on silica using EtOAc/pentane 1:11 as eluent. $[\alpha]_{D}^{22} = -21.2$ (c 1.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.67 (d, J = 1.3 Hz, 1H), 7.46-7.40 (m, 5H), 5.72 (ddd, J = 16.9; 10.0; 8.3 Hz, 1H), 5.35 (d, J = 16.9 Hz, 1H), 5.28 (d, J = 10.0 Hz, 1H), 4.26 (d, J = 9.5 Hz, 1H), 3.81-3.67 (m, 2H), 2.83 (dd, J = 13.4; 6.4 Hz, 1H), 2.36 (dd, J = 13.3; 10.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 133.8, 133.2, 129.5, 129.3 (2C), 128.3 (2C), 119.8, 114.8, 114.1, 55.7, 53.6, 43.60, 43.55, 41.7. **HRMS** (ESI+) *m/z* calcd. for C₁₆H₁₄N₂O [M+H]⁺: 251.1179; found: 251.1182. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile 4a'. UPC²: IA, CO₂/MeOH gradient, 3.0 mL·min⁻¹; t major = 2.79 min; t_{minor} = 2.64 min.

(2S,3S,4R)-3-Formyl-2-(4-methoxyphenyl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4b

Isolated in 89% yield (50 mg) as a yellow solid by FC on silica using EtOAc/pentane 1:10 -> 1:5 as eluent. $[\alpha]_{D}^{22} = -19.0$ (c 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66 (d, J = 1.2 Hz, 1H), 7.37 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 5.71 (ddd, J = 16.7; 10.0; 8.1 Hz, 1H), 5.34 (d, J = 16.7 Hz, 1H), 5.27 (d, J = 10.0 Hz, 1H), 4.23-4.18 (m, 1H), 3.80 (s, 3H),

3.77-3.63 (m, 2H), 2.85-2.77 (m, 1H), 2.38-2.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 160.4, 133.9, 129.5 (2C), 125.0, 119.7, 114.9, 114.7 (2C), 114.3, 55.9, 55.4, 53.3, 43.5, 43.4, 42.0. HRMS (ESI+) m/z calcd. for C₁₇H₁₆N₂O₂ [M+Na]⁺: 303.1104; found: 303.1106. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCO₂Bn to form the corresponding unsaturated ester 4b'. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; $t_{major} = 3.60$ min; $t_{minor} = 3.41$ min.

(2S,3S,4R)-2-(4-Chlorophenyl)-3-formyl-4-vinylcyclopentane-1,1-dicarbonitrile, 4c

Isolated in 89% yield (50.7 mg) as a yellow solid by FC on silica gel using EtOAc/pentane 1:10 as eluent. $[\alpha]_{D}^{22} = -27.1$ (c 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.68 (s, 1H), 7.47-7.34 (m, 4H), 5.77-5.64 (m, 1H), 5.42-5.26 (m, 2H), 4.27-4.17 (m, 1H), 3.80-3.66 (m, 2H), 2.85 (ddd, J = 13.3; 6.8; 3.1 Hz, 1H), 2.41-2.28 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.6,

135.7, 133.7, 131.7, 129.6 (4C), 120.2, 114.5, 114.0, 55.8, 53.1, 43.6, 43.5, 41.6. HRMS (ESI+) m/z calcd. for C₁₆H₁₃N₂OCI [M+H]⁺: 285.0789; found: 285.0792. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4c'**. UPC²: IA, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; $t_{major} = 3.05 \text{ min}$; $t_{minor} = 2.98 \text{ min}$.

Ethyl 4-((1S,4R,5S)-2,2-dicyano-5-formyl-4-vinylcyclopentyl)benzoate, 4d

Isolated in 84% yield (54.1 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane 1:20 -> 1:5 as eluent. $[\alpha]_D^{22} = -29.0$ (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.69 (s, 1H), 8.11 (dd, *J* = 11.4; 4.8 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 5.72 (ddd, *J* = 17.0; 10.0; 8.4 Hz, 1H), 5.38 (d, *J* = 17.0 Hz, 1H), 5.31 (d, *J* = 10.0 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 4.31 (d, *J* = 9.4 Hz, 1H), 3.78 (dq, *J* = 19.8; 10.9 Hz, 2H), 2.86 (dd, *J* = 13.4; 6.5 Hz, 1H), 2.36 (dt, *J* = 18.6; 9.3 Hz, 1H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 165.9, 138.0, 133.6, 131.7, 130.5 (2C), 128.4 (2C), 120.2, 114.5, 113.9, 61.4, 55.7, 53.4, 43.66, 43.61, 41.5, 14.4. HRMS (ESI+) *m/z* calcd. for C₁₉H₁₈N₂O₃ [M+H]⁺: 323.1390; found: 323.1391. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCO₂Bn to form the corresponding unsaturated ester 4d'. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 4.13 min; t_{minor} = 3.95 min.

(2S,3S,4R)-3-Formyl-2-(4-nitrophenyl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4e

Isolated in 92% yield (54.3 mg) as a yellow solid by FC on silica gel using EtOAc/pentane 1:5 as eluent. $[\alpha]_D^{22} = -67.3$ (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 8.36-8.25 (m, 2H), 7.71-7.60 (m, 2H), 5.77-5.64 (m, 1H), 5.46-5.31 (m, 2H), 4.41-4.26 (m, 1H), 3.89-3.72 (m, 2H), 2.94-2.86 (m, 1H), 2.39 (ddd, J = 10.2; 8.0; 3.8 Hz, 1H). ¹³C NMR (100

MHz, CDCI₃): δ 198.1, 148.7, 140.3, 133.4, 129.5 (2C), 124.5 (2C), 120.6, 114.2, 113.7, 55.8, 53.0, 43.6, 43.4, 41.2. **HRMS** (ESI+) *m/z* calcd. for C₁₆H₁₃N₃O₃ [M+H]⁺: 296.1030; found: 296.1033. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4e'**. **UPC**²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.30 min; t_{minor} = 3.17 min.

(2S,3S,4R)-3-Formyl-2-(3-methoxyphenyl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4f

Isolated in 89% yield (49.9 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 -> 1:5 as eluent. $[\alpha]_D^{22} = -16.0$ (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66 (d, *J* = 1.3 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.05-6.89 (m, 3H), 5.71 (ddd, *J* = 16.8; 10.1; 8.3 Hz, 1H), 5.34 (d, *J* = 16.8 Hz, 1H), 5.27 (d, *J* = 10.1 Hz, 1H), 4.22 (d, *J* = 9.5 Hz, 1H), 3.84-3.64 (m, 2H), 3.82 (s, *L* = 12.2; C 4 Hz, 1H), 2.25 (ddd, *L* = 12.2; 10.1 Hz, 1H), 13C NAPP (100 MHz, CDCl), 5 100.0

3H), 2.82 (dd, J = 13.3; 6.4 Hz, 1H), 2.35 (dd, J = 13.3; 10.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.0, 160.1, 134.7, 133.8, 130.3, 120.3, 119.8, 114.84, 114.82, 114.16, 114.13, 55.7, 55.4, 53.5, 43.6, 43.5, 41.6. HRMS (ESI+) m/z calcd. for $C_{17}H_{16}N_2O_2$ [M+H]⁺: 281.1285; found: 281.1287. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4f**'. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.15 min; t_{minor} = 3.25 min.

(2S,3S,4R)-3-Formyl-2-(o-tolyl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4g

Isolated in 82% yield (43.3 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane 1:20 -> 1:5 as eluent. $[\alpha]_D^{22} = -13.8$ (*c* 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66 (s, 1H), 7.49-7.41 (m, 1H), 7.33-7.21 (m, 3H), 5.74 (ddd, *J* = 17.1; 10.0; 8.4 Hz, 1H), 5.44-5.25 (m, 2H), 4.76 (d, *J* = 8.9 Hz, 1H), 3.85-3.65 (m, 2H), 2.88-2.79 (m, 1H), 2.61 (s, 3H), 2.39 (dd, *J* = 13.2;

10.6 Hz, 1H). ¹³**C NMR (100 MHz, CDCI₃)**: δ 199.3, 138.0, 133.7, 132.2, 131.4, 129.1, 127.0, 126.8, 119.9, 115.1, 114.5, 58.3, 47.9, 44.2, 44.1, 40.7, 20.1. **HRMS** (ESI+) *m/z* calcd. for C₁₇H₁₆N₂O [M+H]⁺: 265.1335; found: 265.1338. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4g'**. **UPC**²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 2.95 min; t_{minor} = 2.90 min.

(2R,3S,4R)-2-(2-Fluorophenyl)-3-formyl-4-vinylcyclopentane-1,1-dicarbonitrile, 4h

Isolated in 62% yield (33.3 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane 1:20 -> 1:5 as eluent. $[\alpha]_D^{22} = -37.1 (c \ 0.1, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl_3): δ 9.68 (d, J = 0.9Hz, 1H), 7.49-7.35 (m, 2H), 7.24-7.13 (m, 2H), 5.77 (ddd, J = 17.0; 10.1; 8.4 Hz, 1H), 5.38 (d, J = 17.0 Hz, 1H), 5.31 (d, J = 10.1 Hz, 1H), 4.65 (d, J = 9.2 Hz, 1H), 3.79 (dt, J = 15.8; 9.6 Hz, 2H), 2.85 (dd, J = 13.3; 6.4 Hz, 1H), 2.40 (dd, J = 13.3; 10.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl_3): δ 198.8, 161.4 (d, ¹ $J_{C-F} = 248.9$ Hz), 133.5, 131.3 (d, ³ $J_{C-F} = 8.7$ Hz), 129.3 (d, ⁴ $J_{C-F} = 3.1$ Hz), 125.0 (d, ³ $J_{C-F} = 3.7$ Hz), 120.9 (d, ² $J_{C-F} = 13.1$ Hz), 120.1, 116.6 (d, ² $J_{C-F} = 22.4$ Hz), 114.6, 114.2, 56.0 (d, ⁴ $J_{C-F} = 2.3$ Hz), 46.9, 43.9, 43.6, 40.7. ¹⁹F NMR (376 MHz, CDCl_3) δ -113.95. HRMS (ESI+) m/z calcd. for C₁₆H₁₃N₂OF [M+H]⁺: 269.1085; found: 269.1086. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile 4h'. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 2.56 min; t_{minor} = 2.65 min.

(2S,3S,4R)-2-(3,5-Dimethylphenyl)-3-formyl-4-vinylcyclopentane-1,1-dicarbonitrile, 4i

Isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow solid by FC on silica gel using EtOAc/pentane isolated in 83% yield (46.2 mg) as a pale yellow isolated in the form the corresponding unsaturated nitrile 4i'. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 2.55 min; t_{minor} = 2.45 min.

(2S,3S,4R)-3-Formyl-2-(naphthalen-1-yl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4j

Isolated in 86% yield (51.7 mg) as a white solid by FC on silica using EtOAc/pentane 1:10 as $eluent. [\alpha]_D^{22} = -26.3 (c 2.0, CH_2Cl_2). {}^{1}H NMR (400 MHz, CDCl_3): \delta 9.69 (d, J = 1.3 Hz, 1H), 7.93-7.85 (m, 4H), 7.58-7.52 (m, 3H), 5.73 (ddd, J = 16.9; 10.1; 8.7 Hz, 1H), 5.36 (d, J = 16.9 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 4.44 (d, J = 10.0 Hz, 1H), 3.93-3.88 (m, 1H), 3.76 (tdd, J = 11.3; 10.1; 1.4 Hz, 1H), 2.85 (dd, J = 11.3; 10.1 Hz, 1H), 2.39 (dd, J = 13.3; 10.6 Hz, 1H) . {}^{13}C NMR (100 MHz, CDCl_3): \delta 199.0, 133.8, 133.6, 133.3, 130.6, 129.3, 128.3, 128.0, 127.8, 127.0, 126.8, 125.3, 119.8, 114.8, 114.2, 55.8, 53.8, 43.64, 43.59, 41.7. HRMS (ESI+)$ *m/z*calcd. for C₂₀H₁₆N₂O [M+H]⁺: 301.1335; found: 301.1338. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile**4j'**. UPC²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t major = 3.60 min; tminor = 3.73 min.

(2R,3S,4R)-3-Formyl-2-(furan-2-yl)-4-vinylcyclopentane-1,1-dicarbonitrile, 4k

Isolated in 91% yield (43.7 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_{D}^{22} = -44.4$ (c 1.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, J = 1.2 Hz, 1H), 7.45 (dd, J = 1.8; 0.8 Hz, 1H), 6.43 (d, 3.3 Hz, 1H), 6.38 (dd, J = 3.4; 1.9 Hz, 1H), 5.70 (ddd, J = 16.9; 10.1; 8.6 Hz, 1H), 5.36 (d, J = 16.9 Hz, 1H) 5.28 (d, J = 10.1 Hz, 1H), 4.42 (d, J = 9.2 Hz, 1H), 3.81-3.76 (m, 1H), 3.73-3.63 (m, 1H), 2.77 (dd, J = 13.3; 6.5 Hz, 1H), 2.29 (dd, J = 13.3; 10.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 147.5, 143.8, 133.4, 120.1, 114.7, 113.8, 110.9, 109.6, 54.7, 47.4, 43.5, 43.1, 39.8. HRMS (ESI+) m/z calcd. for C₁₄H₁₂N₂O₂ [M+Na]⁺: 263.0791; found: 263.0794. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile

(2R,3S,4R)-2-Ethyl-3-formyl-4-vinylcyclopentane-1,1-dicarbonitrile, 4I

4k'. **UPC**²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t _{major} = 3.01 min; t_{minor} = 3.14 min.

Isolated in 89% yield (36 mg) as a clear oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_D^{22} = -27.0 \text{ (c } 0.2, \text{ CH}_2\text{Cl}_2). ^1\text{H NMR}$ (400 MHz, CDCl₃): δ 9.70 (d, J = 1.5 Hz, 1H), 5.66 (ddd, J = 1.5 Hz, 1H), 5. 16.9; 10.1; 8.4 Hz, 1H), 5.29 (d, J = 16.9 Hz, 1H), 5.24 (d, J = 10.1 Hz, 1H), 3.52-3.39 (m, 1H), 3.07 (q, J = 8.0 Hz, 1H), 3.02-2.95 (m, 1H), 2.64 (dd, J = 13.1; 6.2 Hz, 1H), 2.20 (dd, J = 13.1; 11.8 Hz, 1H), 1.90-1.78 (m, 1H), 1.74-1.62 (m, 1H), 1.06 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 133.5, 119.7, 115.6, 114.0, 57.3, 50.0, 44.1, 43.2, 38.6, 25.4, 12.5. HRMS (ESI+) m/z calcd. for C₁₂H₁₄N₂O [M+Na]⁺: 225.0998; found: 225.1005. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCOPh to form the corresponding unsaturated ketone **4I'**. **UPC²**: IC, CO₂/ *i*-PrOH 90:10, 3.0 mL·min⁻¹; t _{major} = 3.85 min; $t_{minor} = 3.46 min.$

Methyl (1R,2S,3S,4R)-1-cyano-3-formyl-2-phenyl-4-vinylcyclopentane-1-carboxylate, 4m

Isolated in 87% yield (49.3 mg) as a yellow solid by FC on silica using EtOAc/pentane 1:11 as eluent. $[\alpha]_{D}^{22} = -36.6$ (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.67 (d, J = 1.5 Hz, 1H), 7.35-7.29 (m, 5H), 5.78 (ddd, J = 16.7; 10.1; 8.3 Hz, 1H), 5.30 (dd, J = 16.7; 0.7 Hz, 1H), 5.21 (dd, J = 10.1; 0.8 Hz, 1H), 4.31 (d, J = 10.0 Hz, 1H), 3.75 (s, 3H), 3.73-3.69 (m, 2H), 2.63 (dd, J = 13.3; 6.9 Hz, 1H), 2.35 (dd, J = 13.3; 9.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 168.2,

135.4, 135.1, 128.9 (2C), 128.7, 128.2 (2C), 118.7, 117.9, 57.1, 55.4, 53.9, 52.5, 43.7, 43.2. HRMS (ESI+) m/z calcd. for $C_{17}H_{17}NO_3$ [M+H]⁺: 284.1281; found: 284.1276. Enantiomeric excess was measured after reduction with NaBH₄ (3 equiv.) to form the corresponding diol **4m'** (both aldehyde and ester moiety were reduced). **UPC²**: ID, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.44 min; t_{minor} = 3.52 min.

Methyl (1R,2S,3S,4R)-1-cyano-3-formyl-2-(4-methoxyphenyl)-4-vinylcyclopentane-1-carboxylate, 4n

Isolated in 87% yield (54.5 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_{D}^{22} = -32.3$ (c 2.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66 (d, J = 1.4 Hz, 1H), 7.26 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.78 (ddd, J = 16.8; 10.0; 8.5 Hz, 1H), 5.30 (d, J = 16.8 Hz, 1H), 5.21 (d, J = 10.0 Hz, 1H), 4.26 (d, J = 10.2 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.69-3.67 (m, 2H), 2.65-2.60 (m, 1H), 2.37-2.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ

200.4, 168.3, 159.7, 135.4, 129.3 (2C), 126.9, 118.6, 118.0, 114.3 (2C), 57.2, 55.5, 55.3, 53.9, 52.0, 43.5, 43.0. HRMS (ESI+) m/z calcd. for C₁₈H₁₉NO₄ [M+H]⁺: 314.1387; found: 314.1386. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4n'**. **UPC**²: IA, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t _{major} = 3.26 min; t_{minor} = 3.33 min.

Methyl (1R,2S,3S,4R)-2-(4-chlorophenyl)-1-cyano-3-formyl-4-vinylcyclopentane-1-carboxylate, 4o

Isolated in 88% yield (55.9 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_D^{22} = -37.0$ (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.67 (d, *J* = 1.3 Hz, 1H), 7.38-7.19 (m, 4H), 5.82-5.69 (m, 1H), 5.32 (d, *J* = 16.9 Hz, 1H), 5.23 (d, *J* = 10.1 Hz, 1H), 4.28 (d, *J* = 10.1 Hz, 1H), 3.88-3.62 (m, 2H), 3.78 (s, 3H), 2.65 (dd, *J* = 13.3; 6.9 Hz, 1H), 2.32 (dd, *J* = 13.3; 9.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 168.0, 135.2, 134.7, 133.7, 129.7

(2C), 129.2 (2C), 119.0, 117.8, 57.2, 55.2, 54.0, 51.7, 43.5, 43.2. **HRMS** (ESI+) m/z calcd. for C₁₇H₁₆N₃OCI [M+Na]⁺: 340.0711; found: 340.0712. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4o'**. **UPC**²: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.04 min; t_{minor} = 3.10 min.

Ethyl 4-((1S,2R,4R,5S)-2-cyano-5-formyl-2-(methoxycarbonyl)-4-vinylcyclopentyl)benzoate, 4p

Isolated in 80% yield (56.9 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 -> 1:5 as eluent. $[\alpha]_D^{22} = -28.0 (c \ 0.2, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl_3): δ 9.68 (s, 1H), 8.02 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 5.82-5.70 (m, 1H), 5.32 (d, J = 16.9 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 4.41-4.29 (m, 3H), 3.78-3.70 (m, 1H), 3.76 (s, 3H), 2.70-2.59 (m, 1H), 2.38-2.28 (m, 1H), 1.62-1.55 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃): δ 199.9, 168.0, 166.2, 140.1, 135.2, 130.9, 130.2 (2C), 128.3 (2C), 119.0, 117.7, 61.2, 57.1, 55.1, 54.1, 52.1, 43.6, 43.3, 14.5. **HRMS** (ESI+) m/z calcd. for C₂₀H₂₁NO₅ [M+H]⁺: 356.1492; found: 356.1496. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4p'**. **UPC**²: ID, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 2.84 min; t_{minor} = 2.99 min.

Benzyl (1R,2S,3S,4R)-1-cyano-3-formyl-2-phenyl-4-vinylcyclopentane-1-carboxylate, 4q

Isolated in 88% yield (63.2 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_D^{22} = -33.0$ (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.67 (d, *J* = 1.5 Hz, 1H), 7.36-7.18 (m, 10H), 5.83-5.71 (m, 1H), 5.29 (d, *J* = 17.0 Hz, 1H), 5.20 (d, *J* = 11.4 Hz, 1H), 5.19 (s, 2H), 4.27 (d, *J* = 10.0 Hz, 1H), 3.75-3.65 (m, 2H), 2.67-2.59 (m, 1H), 2.40-2.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 167.6, 135.4, 135.0, 134.5, 128.9 (2C), 128.8

(2C), 128.62, 128.60, 128.4 (2C), 128.3 (2C), 118.7, 117.9, 68.7, 57.3, 55.5, 52.6, 43.7, 43.1. **HRMS** (ESI+) m/z calcd. for C₂₃H₂₁NO₃ [M+Na]⁺: 382.1414; found: 382.1413. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4q'**. **UPC**²: IA, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 2.86 min; t_{minor} = 2.75 min.

Benzyl (1R,2S,3S,4R)-1-cyano-3-formyl-2-(4-methoxyphenyl)-4-vinylcyclopentane-1-carboxylate, 4r

Isolated in 87% yield (67.8 mg) as a yellow oil by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_D^{22} = -27.9$ (*c* 2.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.65 (d, *J* = 1.5 Hz, 1H), 7.35-7.33 (m, 3H), 7.24-7.16 (m, 2H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H) 5.82-5.73 (m, 1H), 5.28 (d, *J* = 16.6 Hz, 1H), 5.30-5.16 (m, 3H), 4.23 (d, *J* = 10.1 Hz, 1H), 3.77 (s, 3H), 3.68-3.66 (m, 2H), 2.65-2.60 (m, 1H), 2.38-2.33 (m, 1H). ¹³C NMR (100

MHz, CDCl₃): δ 200.3, 167.6, 159.7, 135.5, 134.5, 129.3 (2C), 128.7 (2C), 128.4 (2C), 126.8, 118.5, 118.0, 114.2 (3C), 68.5, 57.3, 55.6, 55.3, 52.1, 43.5, 42.9. **HRMS** (ESI+) *m/z* calcd. for C₂₄H₂₃NO₄ [M+H]⁺: 390.1700; found: 390.1708. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCO₂Bn to form the corresponding unsaturated ester **4r'**. **UPC²**: IC, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.95 min; t_{minor} = 4.13 min.

Benzyl (1R,2S,3S,4R)-1-cyano-3-formyl-2-(4-methoxyphenyl)-4-vinylcyclopentane-1-carboxylate, 4s

Isolated in 92% yield (72.3 mg) as a yellow oil by FC on silica gel using EtOAc/pentane 1:20 -> 1:5 as eluent. $[\alpha]_D^{22} = -37.3$ (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.65 (d, *J* = 1.3 Hz, 1H), 7.38-7.32 (m, 3H), 7.24-7.12 (m, 6H), 5.74 (ddt, *J* = 16.9; 10.0; 5.6 Hz, 1H), 5.30 (d, *J* = 16.9 Hz, 1H), 5.25-5.13 (m, 3H), 4.21 (d, *J* = 10.1 Hz, 1H), 3.73-3.61 (m, 2H), 2.67-2.59 (m, 1H), 2.36-2.28 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 167.3,

135.3, 134.5, 134.4, 133.5, 129.6 (2C), 129.1 (2C), 128.9, 128.8 (2C), 128.5 (2C), 118.9, 117.7, 68.7, 57.2, 55.2, 51.8, 43.5, 42.9. **HRMS** (ESI+) m/z calcd. for C₂₃H₂₀NO₃Cl [M+H]⁺: 394.1204; found: 394.1207. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4s'**. **UPC**²: IA, CO₂/*i*-PrOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.12 min; t_{minor} = 3.03 min.

Ethyl 4-((1S,2R,4R,5S)-2-((benzyloxy)carbonyl)-2-cyano-5-formyl-4-vinylcyclopentyl)benzoate, 4t

Isolated in 97% yield (83.7 mg) as a yellow oil by FC on silica gel using EtOAc/pentane 1:20 -> 1:5 as eluent. $[\alpha]_D^{22} = -26.6$ (*c* 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66 (s, 1H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.42-7.17 (m, 7H), 5.85-5.68 (m, 1H), 5.31 (d, *J* = 16.8 Hz, 1H), 5.25-5.13 (m, 3H), 4.37 (q, *J* = 7.1 Hz, 2H), 4.29 (d, *J* = 9.9 Hz, 1H), 3.78-3.67 (m, 2H), 2.68-2.60 (m, 1H), 2.38-2.28 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃): δ 199.8, 167.3, 166.2, 140.0, 135.2, 134.4, 130.7, 130.1 (2C), 128.9, 128.8 (2C), 128.6 (2C), 128.3 (2C), 119.0, 117.6, 68.8, 61.2, 57.2, 55.2, 52.2, 43.6, 43.1, 14.5. **HRMS** (ESI+) *m/z* calcd. for C₂₆H₂₅NO₅ [M+H]⁺: 432.1805; found: 432.1808. Enantiomeric excess was measured after Wittig reaction with Ph₃PCHCN to form the corresponding unsaturated nitrile **4t'**. **UPC²**: ID, CO₂/MeOH gradient, 3.0 mL·min⁻¹; t_{major} = 3.10 min; t_{minor} = 3.03 min.

4. Synthetic transformations

Reduction to form alcohol S1:

Procedure:

Aldehyde **4a** (0.20 mmol, 1.0 equiv.) was dissolved in a mixture $CH_2Cl_2/MeOH$ (1:1) mixture (2 mL) in a glass vial equipped with a magnetic stirring bar and cooled to 0 °C. NaBH₄ (0.3 mmol, 1.5 equiv.) was added. After stirring for 10 min., the reaction mixture was diluted with CH_2Cl_2 and washed with NH_4Cl (sat. aq.), H_2O and brine. The organic phase was dried over Na_2SO_4 , concentrated *in vacuo* and then subjected to purification by FC.

Isolated in 75% yield (37.8 mg) as a white solid by FC on silica using EtOAc/pentane 1:5 as eluent. $[\alpha]_D^{22}$ = +29.0 (*c* 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.34 (m, 5H), 6.04 (ddd, *J* = 8.5; 5.4; 2.8 Hz, 1H), 5.27 (d, *J* = 7.4 Hz, 1H), 5.24 (s, 1H), 3.73-3.64 (m, 2H), 3.52 (d, *J* = 11.3; 5.5 Hz, 1H), 3.33 (dq, *J* = 9.8; 7.5 Hz, 1H), 2.89-2.75 (m, 2H), 2.44 (dd, *J* = 13.2; 9.9 Hz, 1H). 1.41 (t, *J* = 5.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 133.8, 129.3, 129.2 (2C), 128.6 (2C), 118.4, 115.6, 114.7, 60.2, 56.1, 46.4, 43.8, 43.1, 41.8. HRMS (ESI+) *m/z* calcd. for C₁₆H₁₆N₂O [M+Na]⁺: 275.1155; found: 275.1159.

Hydrolysis to form amide 5:

Procedure:

In a 10 mL round bottom flask equipped with a magnetic stirring bar, alcohol **S1** (0.3 mmol, 1.0 equiv.) was dissolved in an EtOH/H₂O (1:1) mixture (5 mL) at 60 °C. Then, NaOH (0.6 mmol, 2.0 equiv.) was added and the reaction mixture stirred at 60 °C for 30 min. Once the reaction was completed, the mixture was diluted with EtOAc (30 mL), washed with brine (2 x 25 mL), dried over Na₂SO₄ concentrated *in vacuo* and then subjected to purification by FC.

Isolated in 70% yield (56.8 mg) as an off-white solid by FC on silica gel using EtOAc/pentane 1:1 as eluent. $[\alpha]_D^{22} = +17.4$ (*c* 0.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.29 (m, 5H), 6.08 (ddd, *J* = 17.1; 10.0; 9.2 Hz, 1H), 5.95 (s, 1H), 5.77 (s, 1H), 5.26 (d, *J* = 17.1 Hz, 1H), 5.20 (dd, *J* = 10.1; 1.1 Hz, 1H), 3.63 (d, *J* = 11.7 Hz, 1H), 3.58 (t, *J* = 5.4 Hz, 2H), 3.35-3.24 (m, 1H), 2.89 (ddd, *J* = 16.1; 11.2; 5.5 Hz, 1H), 2.50 (qd, *J* = 13.5; 8.3 Hz, 2H), 1.64 (t, *J* = 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 137.8, 135.9, 128.9 (2C), 128.60 (2C), 128.58, 120.4, 117.5, 61.5, 55.9, 54.9, 48.0, 43.1, 42.4. **HRMS** (ESI+) *m*/*z* calcd. for C₁₆H₁₈N₂O₂ [M+H]⁺: 271.1441; found: 271.1441.

Reductive amination/cyclization to form lactam 6:

Procedure:

A glass vial equipped with a magnetic stirring bar was charged with aldehyde **4m** (0.10 mmol, 1.0 equiv.), benzylamine (0.15 mmol, 1.5 equiv.) and CH_2Cl_2 (0.4 mL). Sodium triacetoxyborohydride (0.16 mmol, 1.6 equiv.) was then added. The mixture was stirred for 16 h at ambient temperature. The crude product was then loaded directly onto the column. FC on silica gel yielded product **6**.

Isolated in 60% yield (20.5 mg) as a pale grey oil by FC on silica using EtOAc/pentane 1:5 as eluent. $[\alpha]_D^{22} = -36.0 (c \ 0.2, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl_3): δ 7.42-7.28 (m, 10H), 5.35 (ddd, *J* = 17.0; 10.2; 7.8 Hz, 1H), 5.01 (d, *J* = 17.0 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 4.67 (d, *J* = 14.1 Hz, 1H), 4.45 (d, *J* = 14.1 Hz, 1H), 3.70 (s, 1H), 3.33-3.16 (m, 3H), 2.78-2.61 (m, 2H), 2.31 (dd, *J* = 14.4; 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl_3): δ 167.6, 137.0, 136.3, 136.1, 129.1 (2C), 129.0 (2C), 128.9 (2C), 128.2, 128.0, 127.7 (2C), 118.0, 117.8, 53.3, 51.3, 50.2, 48.9, 45.4, 41.8, 40.5. HRMS (ESI+) *m/z* calcd. for C₂₃H₂₂N₂O [M+H]⁺: 343.1805; found: 343.1806.

Iodoetherification to form 7:

Procedure:

Alcohol **S1** (0.20 mmol, 1.0 equiv.) was dissolved in a THF/NaHCO₃ (sat. aq.) (3:1) mixture (1.6 mL) in a glass vial equipped with a magnetic stirring bar and cooled to 5 °C. Iodine was then added 0.5 equiv. at the time every hour until a total amount of 3.0 equiv. had been added. The mixture was kept at 5 °C and stirred overnight. The reaction mixture was then quenched with H₂O and extracted with EtOAc (x 3). The organic phase was washed with Na₂S₂O₃ (sat. aq.), H₂O and brine. The organic phase was dried over Na₂SO₄, concentrated *in vacuo* and then subjected to purification by FC.

Isolated in 73% yield (55.2 mg) as a white crystalline solid by FC on silica using EtOAc/pentane 1:10 as eluent. $[\alpha]_D^{22} = +48.0 (c \ 0.2, \ CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.40 (m, 5H), 4.17 (ddd, J = 8.5; 5.4; 2.8 Hz, 1H), 3.99 (dd, J = 9.9; 5.8 Hz, 1H), 3.73 (dd, J = 9.9; 1.9 Hz, 1H), 3.50-3.36 (m, 2H), 3.25 (d, J = 10.0; 5.4 Hz, 1H), 3.20-3.04 (m, 3H), 2.42-2.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 132.7, 129.7, 129.4 (2C), 128.6 (2C), 114.4, 114.3, 86.1, 70.5, 59.7, 48.7, 47.5, 44.4, 44.2, 6.8. HRMS (ESI+) m/z calcd. for C₁₆H₁₅N₂OI [M+Na]⁺: 401.0121; found: 401.0125.

5. Determination of the absolute and relative configuration in products

Determination of absolute configuration in products 4:

Compounds **4a**,**m**,**n**,**o** are described in the literature and our characterization data for these compounds were in agreement with those previously reported.³ Absolute configuration was assigned based on comparison of measured values for optical rotation for **4a**,**n** as shown below. The absolute stereochemistry of the remaining products **4** was assigned by analogy.

Determination of relative configuration in product 5:

Colorless single crystals were obtained from a recrystallized sample of **5** with a minimum amount of chloroform. Stereochemical configuration of the newly formed stereocenter in **5** was determined by X-ray crystallography analysis. X-ray crystal structure of **5** (Figure S1) shows that primary amide moiety is positioned *syn* with respect to the allylic moiety and allows for determination of the relative stereochemical configuration at the center in question.

³ Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.; Ibrahem, I.; Córdova, A. *Angew. Chem. Int. Ed.* **2013**, *52*, 6050.

Figure S1. Ortep diagram of compound 5 (with thermal ellipsoids drawn at 50% probability).

Table S1. Crystal data and refinement details for compound 5.

Item	Value
Molecular formula	C16 H18 N2 O2
Formula weight	270.33
Crystal system	monoclinic
Space Group	P 1 2 1
a (Å)	8.94706
b (Å)	11.2291
c (Å)	14.9983
α (°)	90
β(°)	102.552
γ (°)	90
Volume (Å3)	1470.82
Z	4
T (K)	100
ρ (g cm ⁻¹)	1.2207
λ (Å)	0.71073
μ (mm-1)	0.081
# measured refl	16869
# unique refl	6730
R _{int}	0.0401
# parameters	378
R(F ²), all refl	0.067
R _w (F ²), all refl	0.1187
Goodness of fit	1.051

Crystal data for [**5**]: $C_{16}H_{18}N_2O_2$, M = 270.33, monoclinic, Space group P 1 2 1 (no. 3), a = 8.94706(18) Å, b = 11.2291(3) Å, c = 14.9983(3) Å, $\theta = 102.552(2)^\circ$, Flack parameter = 8.38, V = 1470.82(6) Å³, T = 100 K, Z = 4, $d_c = 1.2207$ g cm⁻³, μ (Mo K α , $\lambda = 0.71073$ Å) = 0.081 mm⁻¹, 16869 reflections collected, 6730 unique [$R_{int} = 0.0401$], which were used in all calculations. Refinement on F², final R(F) = 0.067, R_w(F2) = 0.1187. CCDC number 1458670.

Determination of relative configuration in product 7:

The stereochemical configuration of the newly formed stereocenter in **7** was determined by detailed NMR analysis. First, all hydrogen signals were assigned based on COSY NMR analysis. Subsequently, NOESY NMR analysis revealed the relative configuration of the new stereocenter as shown below.

Figure S2. 1D ¹H NMR of 7 (zoom of relevant region) with assigment of signals. Assignment was made with the aid of COSY (Figure S3) and NOESY (Figure S4) spectra.

Figure S3. COSY spectrum of 7 (zoom of relevant region).

Figure S4. NOESY spectrum of 7 (zoom of relevant region). Relevant couplings marked with green circles.

Figure S5. Overview of relevant cross-peaks observed in NOESY spectrum.

The spectra were interpreted as follows: From analysis of the 1D ¹H NMR and COSY spectra, hydrogen signals could be assigned. Notably, the signal at ~2.3 ppm must originate from one of the diastereotopic protons **4a** or **4b**. This signal was assigned to arise from **4b** from the NOESY spectrum since a correlation to proton **5** can be detected. The correlation between **4b** and **2** allow for determination of the stereochemical configuration at the center in question.

6. NMR spectra

7. UPC² traces

Enantiomeric excesses of compounds **4** were measured on the corresponding Wittig olefination products (**4a'-I'**, **4n'-t'**) or on the corresponding diol **4m'**.

