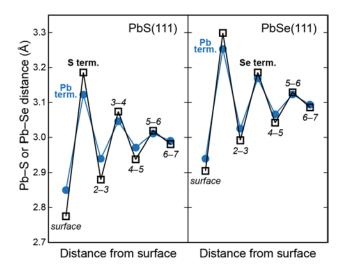
Supporting Information for the manuscript

Stabilities and Reconstructions of Clean PbS and PbSe Surfaces: DFT Results and the Role of Dispersion Forces

Volker L. Deringer^a and Richard Dronskowski^{a,b,*}


^aInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany ^bJülich–Aachen Research Alliance (JARA-HPC), RWTH Aachen University, 52056 Aachen, Germany

E-mail: drons@HAL9000.ac.rwth-aachen.de

		γ (meV Å ⁻²), PBE				
		PbS		PbSe		
	term.	Pb poor ^a	Pb rich ^b	Pb poor ^c	Pb rich ^b	
pristine	Pb	90	55	84	49	
	S/Se	51	87	39	74	
SV	Pb	45	27	43	26	
	S/Se	38	55	32	49	
MgO	Pb	72	54	69	51	
	S/Se	67	85	57	74	
2×1	Pb	22	22	20	20	
	S/Se	27	27	26	26	
oct	Pb	21	21	21	21	
	S/Se	21	21	20	20	

Table S1 (*as supplement to Table 3 in the main text*): Surface Energies of Pristine and Reconstructed PbS and PbSe (111) Surfaces at the DFT-PBE Level of Theory

^{*a*}Defined as $\mu_{Pb} = E_{PbS}^{(bulk)} - E_{S}^{(bulk)}$. ^{*b*}In both cases, defined as $\mu_{Pb} = E_{Pb}^{(bulk)}$. ^{*c*}Here, $\mu_{Pb} = E_{PbSe}^{(bulk)} - E_{Se}^{(bulk)}$.

Figure S2 (*as supplement to Figure 3 in the main text*): Course of Pb–S and Pb–Se bond lengths near the relaxed, pristine (111) surfaces. Results at the PBE level of theory are shown.

			d_1 (Å)	d_2 (Å)	d_3 (Å)
PbS	(2×1)	Pb-term.	2.65	2.77	
		S-term.	2.63	2.78	—
	oct.	Pb-term.	2.72	2.82	2.85
		S-term.	2.73	2.77	2.95
PbSe	(2×1)	Pb-term.	2.78	2.89	
		Se-term.	2.78	2.91	—
	oct.	Pb-term.	2.84	2.95	2.96
		Se-term.	2.86	2.89	3.07

Table S2 (as supplement to Table 4 in the main text): Structural Properties of Reconstructed PbS and PbSe (111) Surfaces at the PBE Level of Theory^{*a*}

^{*a*}The parameters d_1 , d_2 , and d_3 are defined in Figure 4 in the main text.