Supporting Information

Evidence for Spin Glass Ordering Near the Weak to Strong Localization Transition in Hydrogenated Graphene

Bernard R. Matis^{1,*}, Brian H. Houston¹, and Jeffrey W. Baldwin¹

¹ Naval Research Laboratory, Code 7130, Washington, DC 20375, United States *Correspondence to: bernard.matis@nrl.navy.mil

Sample Raman spectra and estimate of defect free domain size La:

Raman spectroscopy was used to confirm the presence of single layer graphene by fitting the shape of the 2D peak (2679 cm⁻¹, second-order D mode), and to quantify the degree of hydrogenation using the I_D/I_G ratio, which is the relative intensity of the D mode (1345 cm⁻¹, appearing due to symmetry breaking at defect sites) with respect to the G mode (1588 cm⁻¹, E_{2g} phonon mode). All Raman spectra were taken under ambient conditions using a 514 nm laser excitation.

Figure S1 shows two sample Raman spectra of a graphene device before and after hydrogenation; this particular data set corresponds to the hydrogenated device with $I_D/I_G \sim 1.6$ as described in the main text. A rough estimate of the defect free domain size L_a before and after hydrogenation is found from $L_a^2(nm^2) = (1.8 \times 10^{-9})\lambda^4(I_G/I_D)$, where $\lambda = 514$ nm is the excitation wavelength.^{SR1} For this particular data set shown in Figure S1 after hydrogenation and with $I_D/I_G \sim 1.6$ we find $L_a \sim 8.9$ nm, which is comparable to the value for the elastic mean free path $L_e \sim 7.46$ nm determined from the transport data.

Estimates of σ_S , *n*, and σ_D :

The short-range conductivity σ_s , the charge carrier density *n* at the Dirac point (DP), and the Drude conductivity σ_D are estimated from the measured transport of the graphene and hydrogenated graphene at zero magnetic field *B*. For example, Figure S2 shows the measured conductivity σ versus *n* at B = 0 T for one of our hydrogenated devices. Values for σ were obtained from $\sigma = L/RW$ where *L* and *W* are the sample length and width, respectively, and *R* is the sample resistance obtained by sourcing a current between electrodes 1 and 2, I_{12} , as labeled in Figure 1a of the main text and by measuring the resultant voltage drop along the current path using electrodes 3 and 4, V_{34} . Applying a back gate voltage V_g to the doped Si substrate allows us to vary *n*. We determine *n* from $n = 1/eR_H$ where *e* is the fundamental unit of electric charge and R_H is the Hall coefficient, defined as $R_H = R_{xy}/B$. R_{xy} was found from $R_{xy} = V_{78}/I_{12}$ (Figure 1a of the main text) with B = 2.6 T applied perpendicular to the plane of the graphene.

The data in Figure S2 for the hydrogenated graphene is well fitted by a diffusive transport model given by

$$\sigma(n) = \left(\frac{1}{ne\mu_L} + \rho_s + \rho_{ph}\right)^{-1}$$
(S1)

where μ_L is the *n*-independent mobility due to long-range, uncorrelated charged impurity scattering, and ρ_s and ρ_{ph} are the contributions to the resistivity due to short-range scattering and acoustic phonon scattering, respectively. Here, μ_L and ρ_s are the free fitting parameters and $\rho_{ph} = (0.1 \ \Omega/K) \times T$.^{SR2} From the data fitting with Equation S1 we can determine σ_S by $\sigma_S = 1/\rho_S$.

We estimate *n* at the DP using the full width at half maximum ΔW_{DP} of the $\rho = 1/\sigma$ vs. *n* peak. This results in an upper bound for the carrier density fluctuations δn_{max} due to charge carrier puddle formation near the DP. For example, for the data shown in Figure S2 we find $\delta n_{max} \sim 6.15 \times 10^{15} \text{ m}^{-2}$, which is comparable to that observed for exfoliated graphene on SiO₂.^{SR3} - SR5</sup> This value obtained here for δn_{max} indicates a scattering contribution from charged impurities at low *n*. Values for δn_{max} provide an estimate for *n* at the DP where contributions from charged impurity scattering dominates the transport.^{SR6}

Lastly, using Matthiessen's Rule we estimate σ_D from $\sigma^{-1} = \sigma_S^{-1} + \sigma_D^{-1}$ where σ is the overall conductivity measured through transport measurements.

Interpreting the various length scales:

As an example, for the hydrogenated device with $I_D/I_G \sim 1.6$:

The elastic mean free path $L_e = \sigma_D h / [2e^2(\pi n)^{1/2}]$ is found to be $L_e \sim 7.46$ nm, which is comparable to the defect free domain size $L_a \sim 8.9$ nm (see section above titled: **Sample Raman spectra and estimate of defect free domain size** L_a). The magnetic length L_B is determined by $L_B = (\hbar/e_B)^{1/2} = \frac{26 nm}{\sqrt{B}}$ and ranges from 58.1nm (at 0.2 T) to 16.1 nm at (2.6 T). The curved arc trajectory length r_c is determined by $r_c = \frac{m^* \mu}{e_B}$, where m^* is the effective mass of the charge carriers in graphene and μ the carrier mobility found from the transport, which ranges from 87 fm (at 0.2 T) to 7 fm at (2.6 T). The thermal length L_T is determined by

 $L_T = \left(\frac{\hbar D}{k_B T}\right)^{1/2}$, where *D* is the diffusion constant (see the main text) and k_B is Boltzmann's constant, and is $L_T \sim 116$ nm and is independent of *B*. The cyclotron radius L_C is determined by $L_C = \frac{\hbar k_F}{e_B} = \frac{\hbar (\pi n)^{1/2}}{e_B}$, where k_F is the Fermi wave vector, which ranges from 457 nm (at 0.2 T) to 35.2 nm at (2.6 T). Additionally, the Fermi wavelength is $\lambda_F = \frac{2 \pi}{k_F} = \frac{2 \pi}{(n \pi)^{1/2}} \sim 45 nm$. That λ_F is larger than L_a (the characteristic size of the system) suggests that quantum effects are important. However, if the transition to a linear MR for $B \sim B_S$ as described in the main text was governed by any of the calculated length scales then one may expect a transition of such a length scale from larger than to smaller than L_a when *B* is $\sim B_S$, yet such a transition is not observed to occur. Thus, we conclude that the transition to a negative linear MR at $B \sim B_S$ is not governed by any of these length scales.

Resistivity ρ versus V_g for varying B:

Plotted in Figure S3 is a sample trace of the resistivity ρ versus back gate voltage V_g taken at T = 4.2 K for B = 0 T (for both graphene and hydrogenated graphene) and B = 2.6 T (for the hydrogenated graphene). Figure S3 clearly shows that the largest change in the magnetoresistance occurs at the DP where the spin glass properties have been observed. As V_g is shifted to values above or below the DP, corresponding to higher electron and hole concentrations, respectively, the change in the magnetoresistance quickly tends to zero.

References:

SR1. Cancado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.;
Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in
Graphene *via* Raman Spectroscopy at Different Excitation Energies. *Nano Lett.* 2011, 11 (8),
3190-3196.

SR2. Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO₂. *Nature Nanotech.* **2008**, 3, 206-209.

SR3. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.;
Yacoby, A. Observation of Electron-Hole Puddles in Graphene Using a Scanning SingleElectron Transistor. *Nature Phys.* 2008, 4, 144-148.

SR4. Jalilian, R.; Jauregui, L. A.; Lopez, G.; Tian, J.; Roecker, C.; Yazdanpanah, M. M.; Cohn,
R. W.; Javanovic, I.; Chen, Y. P. Scanning Gate Microscopy on Graphene: Charge
Inhomogeneity and Extrinsic Doping. *Nanotechnology* 2011, 22, 295705.

SR5. Yan, J.; Henriksen, E. A.; Kim, P.; Pinczuk, A. Observation of Anomalous Phonon Softening in Bilayer Graphene. *Phys. Rev. Lett.* **2008**, 101, 136804.

SR6. Matis, B. R.; Houston, B. H.; Baldwin, J. W. Influence of Spatial Inhomogeneity on Electronic and Magnetotransport in Graphene. *Phys. Rev. B* **2015**, 91, 205406.

Supporting Information figures:

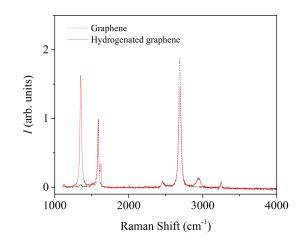


Figure S1. Sample Raman spectra of the initial graphene (dashed trace) and hydrogenated graphene (solid trace). The spectra have been normalized to the *G* mode intensity.

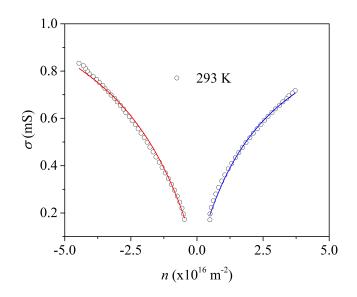


Figure S2. Sample trace of the conductivity σ *versus* charge carrier density *n* at magnetic field *B* = 0 T for hydrogenated graphene. The open circles are the experimental data and the solid lines are fits to Equation S1.

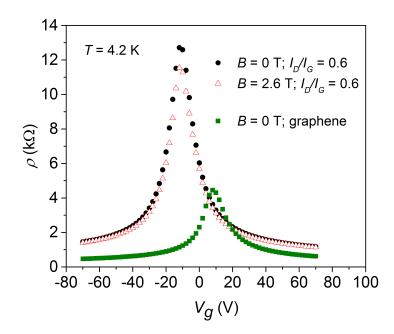


Figure S3. Sample traces of the resistivity ρ *versus* back gate voltage V_g for graphene (green trace) and hydrogenated graphene (black and red traces) at varying magnetic field *B* and for T = 4.2 K.

I_D/I_G	$ ho$ (B=0) (Ω)	ho(B=0)	Measured	Localization	k L _e
		$(h/2e^{2})$	spin glass	regime	
0.6	11,470	0.89		WL	7.07
0.7	15,968	1.23	\checkmark		5.08
0.8	17,072	1.32	\checkmark		4.75
1.6	13,594	1.05	\checkmark		5.97
2.0	71,597	5.55		SL	1.13

Table SI. Device characteristics for increasing I_D/I_G . The Ioffe-Regel parameter is given by $k L_e$.