Supporting Information

for:

SINGLE-ION BLOCK COPOLY(IONIC LIQUID)S AS ELECTROLYTES FOR ALL-SOLID STATE LITHIUM BATTERIES

Luca Porcarelli[†], Alexander S. Shaplov^{*,‡}, Maitane Salsamendi[§], Jijeesh R. Nair[†], Yakov S. Vygodskii[‡], David Mecerreyes[§] and Claudio Gerbaldi^{*,†}

[†]GAME Lab, Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

[‡]A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, 119991, GSP-1 Moscow, Russia

[§]POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain

Corresponding Authors

- * E-mail: shaploy@ineos.ac.ru
- * E-mail: claudio.gerbaldi@polito.it

RAFT agent Initiator Monomer Solvent (ml) Sample $(mol \times 10^{-3})$ $(\text{mol} \times 10^{-5})$ $(mol \times 10^{-5})$ CPADB (18.2) poly(PEGM) PEGM (21.3) AIBN (1.83) DMF (10.6) LiBC-1 AIBN (0.19) LiMTFSI (0.61) poly(PEGM) (2.8) DMF (2.3) LiBC-2 LiMTFSI (0.69) poly(PEGM) (2.4) AIBN (0.24) DMF (2.0) LiBC-3 LiMTFSI (0.98) poly(PEGM) (2.1) AIBN (0.21) DMF (2.0) poly(PEGM) (1.4) AIBN (0.27) LiBC-4 LiMTFSI (1.74) DMF (1.9)

Table S1. Polymerization conditions used for the synthesis of poly(PEGM)-b-poly(LiMTFSI) copolymers^a

^aPolymerization temperature: 70°C; time: 8h.

Figure S1. Molar mass and PDI evolution versus conversion for RAFT polymerization of PEGM determined in THF (a) and 0.1 M LiCl solution in H_2O/ACN mixture (4:1 v/v) (b). GPC traces for the poly(PEGM) precursors in THF (c).

Figure S2. FTIR spectra of poly(PEGM-b-LiMTFSI) block copolymer (LiBC-1).

Figure S3. (a) ¹H NMR, (b) ¹³C NMR and (c) ¹⁹F NMR spectra of poly(PEGM)-b-poly(LiMTFSI) block copolymer (LiBC-1).

	i (× 10 ⁻⁴ mA)	$R(\Omega)$	t_{Li^+}
initial	9.62	2140	0.83
steady state	8.21	2182	

Table S2. Lithium ion transference number measurement^a

^a potential bias applied: 10 mV

Figure S4. Lithium-ion transport number analysis: (a) Typical Nyquist plot of the a.c. impedance of a Li | LiBC-1 | Li cell at 70°C, (b) current variation with time during polarization of the symmetrical lithium cell.

Figure S5. Constant current charge/discharge potential *vs.* specific capacity profile extracted from cycle 2 at C/10 rate and cycle 50 at C/5 rate