Application of microwave-induced combustion and isotope dilution strategies for quantification of sulfur in coals via sector-field inductively coupled plasma mass spectrometry

Supplemental Information

Corresponding Author * Steven J. Christopher NIST Material Measurement Laboratory Chemical Sciences Division Environmental Chemical Sciences Group NIST Charleston Laboratory 331 Fort Johnson Road Charleston, SC 29412

Co-Author †Thomas W. Vetter NIST Material Measurement Laboratory Chemical Sciences Division Inorganic Measurement Science Group MS 8391 Gaithersburg, MD 20899

Table of Contents

Supplemental Table 1. Quantity descriptions for each variable in the sulfur isotope dilution measurement function	Supplemental Table 3. Uncertainty descriptions and esti- mates for each variable in the sulfur isotope dilution measurement function
Supplemental Table 2. Example input table for SRM 2682c showing the calculated S mass fraction result c_x , and corresponding metadata used to determine the mean and expanded uncertainty for a single permutation of the IDMS measurement function	Supplemental Figure 1. Absolute ID-MIC-SF-ICPMS procedure blanks in units of micrograms with associated standard uncertainties, showing reduction of average blanks as a function of method development progression
	Supplemental Figure 2. Truncated Kragten spreadsheet for SRM 2682cS-7

Quantity Symbol	Quantity Description	Quantity Symbol	Quantity Description	Quantity Symbol	Quantity Description
<i>c</i> _x (%)	mass fraction of test portion	c _{ык} (µmol/g)	amount content of procedure blank	K _{x1} (unitless)	mass bias correction of R_{x1} (32/34) in sample
az (g/mol)	primary standard molecular mass (SRM 3154)	K _b (unitless)	mass bias correction of R _b (34/32)	K _{x2} (unitless)	mass bias correction of $R_{x2}(33/32)$ in sample
a _x (g/mol)	sulfur molecular mass	K' _b (unitless)	mass bias correction of R' _b (34/32)	K _{x3} (unitless)	mass bias correction of R_{x3} (32/32) in sample
d _x (unitless)	test portion drying correction factor	K _{y1} (unitless)	mass bias correction of R_{yl}	K _{x4} (unitless)	mass bias correction of R_{x4} (36/32) in sample
m _x (g)	mass of test portion in blend	R _{x1} (unitless)	ratio sample-measured ratio of enriched isotope to refer- ence isotope (34/32)	K _{z1} (unitless)	mass bias correction of R_{z1} (34/32) in primary standard
<i>m′</i> y (g)	mass of spike in spike calibra- tion	R _{x2} (unitless)	ratio sample (33/32)	K _{z2} (unitless)	mass bias correction of R_{z2} (33/32) in primary standard
R _b (unitless)	measured ratio of blend 34/32 spike isotope/reference isotope	R _{x3} (unitless)	ratio sample (32/32)	K _{z3} (unitless)	mass bias correction of R_{z3} (32/32) in primary standard
R' _b (unitless)	measured ratio of spike calibra- tion back blend (34/32) spike isotope/reference isotope	R _{x4} (unitless)	ratio sample (36/32)	K _{z4} (unitless)	mass bias correction of R_{z4} (36/32) in primary standard
R _{y1} (unitless)	measured ratio of 34 spike iso- tope to 32 reference isotope in the ³⁴ S enriched spike material	R _{z1} (unitless)	ratio primary standard- measured ratio of enriched isotope to reference isotope (34/32)	C _{Rep} (unitless)	Constant = 1 used to in- corporate replication un- certainty
m _y (g)	mass of enriched spike in blend	R _{z2} (unitless)	ratio primary standard (33/32)	C _{dt} (unitless)	Constant = 1 used to in- corporate detector dead time uncertainty
m _z (g)	mass of primary assay standard in spike calibration back blend	R _{z3} (unitless)	ratio primary standard (32/32)	C _{bgd} (unitless)	Constant = 1 used to in- corporate background subtraction uncertainty
cz (µmol/g)	amount content of primary assay standard	R _{z4} (unitless)	ratio primary standard (36/32)		

Supplemental Table 1. Quantity descriptions for each variable in the sulfur isotope dilution measurement function.

Supplemental Table 2. Example input table for SRM 2682c showing the calculated S mass fraction result c_x , and corresponding metadata used to determine the mean and expanded uncertainty for a single permutation of the ID-MIC-SF-ICPMS measurement function (1 of 32 possible permutations, based on individual sample and spike solution pairs). The metadata are fed into a Kragten spreadsheet to estimate the uncertainty of the ID-MIC-SF-ICPMS method. The data for each quantity are presented in the following pattern: quantity value, reported uncertainty (standard deviation), method of evaluating uncertainty (Type A or Type B), standard uncertainty and degrees of freedom. Reported uncertainties evaluated by Type A methods were normalized to standard uncertainties by division by \sqrt{n} . Reported uncertainties with evaluated by Type B methods were modeled as rectangular distributions

(normalized to standard uncertainties by division by $\sqrt{3}$), with the exception of published expanded uncertainties, which were normalized to standard uncertainties using the published coverage factor. The S mass fraction data for SRM 2682c described in the text are based on the average of all permutations (0.4902 % ± 0.0068 %).

Quantity Symbol	Quantity Description	Quantity Symbol	uantity ymbol Quantity Description			Quantity Symbol	Quantity Description						
<i>c</i> _x (%)	0.4785 % ± 0.0066 % (this permutation)	c _{blk} (µmol/g)	0.028	9.48E- 03	A	3.87E- 03	5	K _{x1} (unitless)	1.000	1.00E- 03	В	5.77E- 04	×
a _z (g/mol)	32.064 3.21E- B 1.85E- 02 B 02 ∞	K _b (unitless)	0.915	9.15E- 04	В	5.28E- 04	8	K _{x2} (unitless)	1.000	1.00E- 03	В	5.77E- 04	8
a _x (g/mol)	32.063 3.21E- B 1.85E- ∞ 02 B 02 ∞	K' _b (unitless)	0.915	9.15E- 04	В	5.28E- 04	×	K _{x3} (unitless)	1.000	1.00E- 04	В	5.77E- 05	x
d _x (unitless)	0.882 6.48E-04 A 2.90E-04 4	K _{y1} (unitless)	1.000	1.00E- 03	В	5.77E- 04	×	K _{x4} (unitless)	1.000	1.00E- 03	В	5.77E- 04	x
m _x (g)	0.105 2.00E-05 B 1.15E-05 ∞	R _{x1} (unitless)	0.044	1.09E- 04	В	6.31E- 05	x	K _{z1} (unitless)	1.000	1.00E- 03	В	5.77E- 04	x
<i>m′</i> y (g)	0.900 2.00E-05 B 1.15E-05 ∞	R _{x2} (unitless)	0.008	1.95E- 05	В	1.13E- 05	×	K _{z2} (unitless)	1.000	1.00E- 03	В	5.77E- 04	x
R _b (unitless)	0.563 3.38E-03 A 1.51E-03 4	R _{x3} (unitless)	1.000	2.50E- 04	В	1.44E- 04	×	K _{z3} (unitless)	1.000	1.00E- 04	В	5.77E- 05	x
<i>R'</i> _b (unitless)	0.666 4.00E-03 A 1.79E-03 4	R _{x4} (unitless)	1.55E -04	3.86E- 07	В	2.23E- 07	×	K _{z4} (unitless)	1.000	1.00E- 03	В	5.77E- 04	x
R _{y1} (unitless)	842.908 1.69E+00 B 9.73E- 01 ∞	R _{z1} (unitless)	0.044	1.11E- 04	В	6.40E- 05	×	C _{Rep} (unitless)	1.000	1.32E- 02	A	4.67E- 03	7
т _у (g)	0.072 2.00E-05 B 1.15E-05 ∞	R _{z2} (unitless)	0.008	1.97E- 05	В	1.14E- 05	×	C _{dt} (unitless)	1.000	1.20E- 03	В	6.93E- 04	x
m _z (g)	0.909 2.00E-05 B 1.15E-05 ∞	R _{z3} (unitless)	1.000	2.50E- 04	В	1.44E- 04	×	C _{bgd} (unitless)	1.000	4.18E- 03	A	1.58E- 03	6
c _z (µmol/g)	158.3 2.31E-01 B 1.15E-01 ∞	R _{z4} (unitless)	1.55E- 04	3.86E- 07	В	2.23E- 07	x						

Supplemental Table 3. Uncertainty descriptions and estimates for each variable in the ID-MIC-SF-ICPMS measurement function. Reported uncertainties evaluated by Type A methods were normalized to standard uncertainties by division by \sqrt{n} . Reported uncertainties evaluated by Type B methods were modeled as rectangular distributions (normalized to standard uncertainties by division by $\sqrt{3}$), with the exception of published expanded uncertainties, which were normalized to standard uncertainties using the published coverage factor.

Quantity Symbol	Uncertainty Description	Quantity Symbol	Uncertainty Description	Quantity Symbol	Uncertainty Description
az (g/mol)	assume 0.1 % of quantity value, based on two times the IUPAC range of possible S atomic weights (range = 32.059 g/mol to 32.076 g/mol) ¹	K _b (unitless)	assume 0.1 % of quantity value	K _{x2} (unitless)	assume 0.1 % of quantity value
a _x (g/mol)	assume 0.1 % of quantity value, based on two times the IUPAC range of possible S atomic weights (range = 32.059 g/mol to 32.076 g/mol) ¹	K' _b (unitless)	assume 0.1 % of quantity value	K _{x3} (unitless)	assume 0.01 % of quantity value = 1
d _x (unitless)	absolute u_i for 5 moisture factor replicates from same bottle	K _{y1} (unitless)	assume 0.1 % of quantity value	K _{x4} (unitless)	assume 0.1 % of quantity value
m _x (g)	two times the 5-place balance readability of 0.00001 g,	R _{x1} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental measurement precision	K _{z1} (unitless)	assume 0.1 % of quantity value
<i>m′</i> y (g)	two times the 5-place balance readability of 0.00001 g	R _{x2} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental measurement precision	K _{z2} (unitless)	assume 0.1 % of quantity value
R _b (unitless)	% RSD of 5 replicate isotope ratio meas- urements across experiment run	R _{x3} (unitless)	assume 0.025 % of quantity value = 1	K _{z3} (unitless)	assume 0.01 % of quantity value = 1
R' _b (unitless)	% RSD of 5 replicate isotope ratio meas- urements across experiment run	R _{x4} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental measurement precision	K _{z4} (unitless)	assume 0.1 % of quantity value

1. Atomic Weights of the Elements 2011 (IUPAC Technical Report), Pure Appl. Chem. 2013, 85, 5, 1047-1078.

Supplemental Table 3 (continued). Uncertainty descriptions and estimates for each variable in the ID-MIC-SF-ICPMS measurement function. Reported uncertainties evaluated by Type A methods were normalized to standard uncertainties by division by \sqrt{n} . Reported uncertainties evaluated by Type B methods were modeled as rectangular distributions (normalized to standard uncertainties by division by $\sqrt{3}$), with the exception of published expanded uncertainties, which were normalized to standard uncertainties using the published coverage factor.

Quantity Symbol	Uncertainty Descrip- tion	Quantity Symbol	Uncertainty De- scription	Quantity Symbol	Uncertainty Description
R _{y1} (unitless)	assume 0.2 % of quantity value, based on infor- mation on the standard deviation of ³⁴ S enrich- ment, obtained from the spike certificate of analy- sis	R _{z1} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental meas- urement precision	C _{Rep} (unitless)	% RSD due to replication for <i>n</i> = 8 processed samples
my (g)	two times the 5-place balance readability of 0.00001g	R _{z2} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental meas- urement precision	C _{dt} (unitless)	% RSD of 34 S/ 32 S isotope ratio, based on using typical experimental count rates for 32 S and 34 S in a 10K trial Monte Carlo simulation of detector dead time correction calculations, using an experimentally derived instrumental detector dead time setting of 10 ns. An as- sumption is made that the uncertainty in the assigned dead time is ± 1 ns
m _z (g)	two times 5-place bal- ance readability of 0.00001g	R _{z3} (unitless)	assume 0.025 % of quantity value = 1	C _{bgd} (unitless)	% RSD based on the quotient of standard deviation of ³² S signal for an instrumental background solution of 1 % nitric acid mass fraction in water, measured at seven time points and the experimentally measured ³² S signal in the analytical sample
c _z (µmol/g)	SRM 3154 expanded uncertainty in µmol/g	R _{z4} (unitless)	assume 0.25 % of quantity value, based on usual in- strumental meas- urement precision		
$\frac{c_{blk}}{(\mu mol/g)}$	Standard deviation of blank in µmol/g	$\frac{K_{x1}}{(unitless)}$	assume 0.1 % of quantity value		

Supplemental Figure 1. Absolute ID-MIC-SF-ICPMS procedure blanks in units of micrograms with associated standard uncertainties, showing reduction of average blanks as a function of method development progression. The number of blanks were n = 5, for the SRM 2685b project and n = 6 for both the SRM 2684b and SRM 2682c projects.

Supplemental Figure 2. Truncated Kragten spreadsheet for SRM 2682c (10 of 34 input columns shown). The most significant sources of uncertainty are readily apparent in the last data column (uncertainties calculated relative to the total variance). The results are based on a single permutation of the ID-MIC-SF-ICPMS measurement function (1 of 32 possible permutations, based on individual sample and spike solution pairs). The S mass fraction data for SRM 2682c described in the text are based on the average of all permutations (0.4902 % \pm 0.0068 %).

		u(az)	u(ax)	u(dx)	u(mx)	u(m'y)	u(Rb)	u(R'b)	u(Rep)	u(dt)	u(Bgd)	
		0.019	0.019	0.000	0.000	0.000	0.002	0.002	0.005	0.001	0.002	
	ν_i	99999.000	99999.000	4.000	99999.000	99999.000	4.000	4.000	7.000	99999.000	6.000	
Quantity Name, Symbol	Quantity				Quantity Value $+ u_i$							rel $(c_i u_i)^2$
az	32.064	32.083	32.064	32.064	32.064	32.064	32.064	32.064	32.064	32.064	32.064	0.00%
ах	32.063	32.063	32.082	32.063	32.063	32.063	32.063	32.063	32.063	32.063	32.063	0.76%
dx	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.25%
mx	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.03%
m'y Dh	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.900	0.00%
RD R'h	0.565	0.565	0.565	0.565	0.565	0.565	0.564	0.563	0.565	0.565	0.565	19.62%
Rv1	842 908	842 908	842 908	842 908	842 908	842 908	842 908	842 908	842 908	842 908	842 908	19.23%
my	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.06%
mz	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.00%
CZ	158.288	158.288	158.288	158.288	158.288	158.288	158.288	158.288	158.288	158.288	158.288	1.22%
cblk	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.00%
Kb	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.91%
KD Kut	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.915	0.89%
Ry1	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.00%
Rx2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.00%
Rx3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.04%
Rx4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00%
Rz1	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.07%
	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.00%
Rz3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.04%
Kz4	1.000	1,000	1.000	1.000	1,000	1,000	1.000	0.000	1.000	1.000	1.000	0.00%
Kx2	1 000	1 000	1 000	1 000	1.000	1 000	1 000	1.000	1.000	1 000	1.000	0.01%
Kx3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.01%
Kx4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00%
Kz1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.01%
Kz2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00%
Kz3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.01%
Ren	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	49.93%
dt	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.000	1.10%
Bgd	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.002	5.72%
MF Value, Y	4785.343	4785.343	4788.107	4783.772	4784.816	4785.282	4771.343	4799.202	4807.676	4788.659	4792.900	100.00%
		-0.001	2.763	-1.571	-0.528	-0.061	-14.000	13.859	22.333	3.315	7.557	c _i u _i
Standard Uncertainty, u _c	31.605	0.000	7.636	2.468	0.278	0.004	196.011	192.065	498.751	10.992	57.104	$(c_i u_i)^2$
Degrees of Freedom, ν	18.172	0.00%	0.76%	0.25%	0.03%	0.00%	19.62%	19.23%	49.93%	1.10%	5.72%	rel (<i>c ¡u ¡</i>) ²
Coverage Factor, k	2.101	-0.031	149.279	-5423.971	-45683.649	-5319.927	-9270.188	7750.851	4785.343	4785.343	4785.343	Ci
Expanded Uncertainty, U	66.400										0.014	U,
← Show/Hide Extra Information												
					Quant	tity Value - u _i	(Results Only)					
MF Value, Y	4785.343	4785.344	4782.580	4786.915	4785.871	4785.405	4799.426	4771.484	4763.010	4782.028	4777.786	
	24.040	0.001	-2.763	1.572	0.528	0.061	14.083	-13.859	-22.333	-3.315	-7.557	C _i U _i
Standard Uncertainty, Uc	31.642	0.000	7.636	2.471	0.278	0.004	198.323	192.064	498.751	10.992	57.104	(c _i u _i)*
Degrees of Freedom, v	18.181	0.00%	0.76%	0.25%	0.03%	0.00%	19.81%	19.18%	49.81%	1.10%	5.70%	rel (c;u;)*
Coverage Factor, k	2.101	0.031	-149.279	5427.535	45693.721	5320.064	9324.708	-7750.821	-4785.343	-4785.343	-4785.343	Ci
Expanded Uncertainty, U	66.478										0.014	U,
Show/Hide Extra Information												
Einal Masurament Deult												
S Mass Expanded												
Measurement Function Value	Standard	Degrees of	Eactor	Expanded	Relative E	xpanded	Conversion	Fraction	Uncertainty			
Unc		reedon	Factor	Silvertainty	oncer	unity	Conversion	Value	U			
Y	U _c	V	k	U	U	r	mg/kg to %	%	%			
4785.343	31.624	18.167	2.101	66.439	0.0	14	10000	0.4785	0.0066	(T 14	(D)	
No Membra for Zoro Considuate Co-Mat-		u(az)	u(ax)	u(ax)	u(mx)	u(m'y)	U(KD)	U(R'D)	u(Rep)	u(Tat)	u(Bga)	
No warning for zero Sensitivity Coefficie	mes	0.00%	0.76%	0.25%	0.03%	0.00%	19.72%	19.21%	49.87%	1.10%	5.71%	rel (c ¡u ¡) ²
		-0.031	149.279	-5425.753	-45688.685	-5319.995	-9297.448	7750.836	4785.343	4785.343	4785.343	Ci