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FIG. S1. Schematic diagram illustrating the sample preparation procedure for 
superamphiphobic surfaces. 1) Candle soot is collected on a substrate by annealing 
glass in the flame of a parrafin candle. 2) Silica is deposited via chemical vapour 
deposition (CVD) of tetraethoxysilane (TEOS). 3) Sintering combusts the soot 
template leading to soot-templated silica surfaces. 4) Hydrophobization with a 
fluorosilane results in superamphiphobic surfaces.  

 
  



 
 
FIG. S2. a) Snapshots of a water drop receding on a superamphiphobic layer 
prepared on a 170 μm  thick glass substrate. The images were collected as the drop 
evaporated from the surface. The movement of the three phase contact line was 
imaged once every minute using an inverted laser scanning confocal microscope 
(LSCM, Leica TCS SP8 SMD). b) Plots of the receding contact angle as function of 
the distance traveled by the contact line during evaporation.  
 
 
  



Treatment of uncertainties 
 
In calculating the uncertainties associated with G’ and G” we assume that all the 
errors are randomly distributed and that the fractional uncertainties in the physical 
parameters in equations 2 and 3 can be added in quadrature. 
 
Starting with equation 2 we have 
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where here, w is the width of the vibrational peaks (note the change of variable name 
to avoid confusion in calculating uncertainties) and 
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Adding the fractional errors in quadrature* we have 
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where here ∆a represents the uncertainty in each variable, a, and  
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so that 
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Inserting typical values of parameters of f=50 +/- 0.1 Hz, w=20 +/- 0.1 Hz, l=8 +/- 0.1 
mm, γ=70 +/- 0.2 mJm-2 and ρ=1010 +/- 5 kgm-3 we obtain values for the fractional 
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The dominant term (by at least two orders of magnitude) is associated with the 
uncertainties in the profile length, l , of the drops and the formula above can be 
approximated to get the uncertainty in G’ as 
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A similar analysis for G” yields exactly the same form for the uncertainty in this 
variable i.e. 
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These formula were used to calculate the uncertainties of G’ and G” given in Figure 
3. 
 
*We note that the quadrature error formula used above is a simplified version of the 
error formula 
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