Supporting Information

In situ-Generated Chiral Co(I)-Catalyst for Asymmetric [2+2+2] Cycloadditions of Triynes

Phillip Jungk ${ }^{\dagger}$, Fabian Fischer ${ }^{\dagger}$ and Marko Hapke ${ }^{* \dagger}{ }^{\dagger}$;
${ }^{\dagger}$ Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, D-18059 Rostock (Germany)
${ }^{\ddagger}$ Institut für Katalyse, Johannes Kepler Universität Linz, Altenberger Strasse 69, A-4040 Linz (Austria)
> E-mail: marko.hapke@catalysis.de

Table of contents

General methods 2
Commercially available chiral P, P - and P, N-ligands 2
Ligand screening in glass reaction vial 3
Chiral ligand screening for catalytic reactions with CoBr_{2} in a reaction glass vial 3
Optimization of the catalytic Rreactions with CoBr_{2} in a Schlenk tube 4
Screening of catalyst loading 4
Synthesis of cobalt(II)-precursor complex 7 4
Oxidation of ($R, a R$)-N-PINAP (6) to SI-I 5
Catalytic evaluation of ligand SI-I 6
Substrate screening for catalytic reactions 6
Synthesis of cyclization substrates 7
Characterization of cyclization products 7
NMR spectra of compound SI-I: 13
HPLC analysis: 15
References: 39

General methods

All experiments were carried out under inert gas atmosphere (argon) in flame dried Schlenk tubes or glass reaction vials. The anhydrous solvents (tetrahydrofuran, toluene, dichloromethane and n-hexane) were dried in a solvent purification system MD-5 from Inert (former Innovative Technology). All NMR spectra were recorded on a Bruker AV 300, AV 400 or Fourier 300 NMR spectrometer. HPLC-analysis was performed on a Hewlett Packard HP 1100 with DAD, chiralyzer and RI-detector and chiral columns. HRMS (ESI-TOF) was performed at a Agilent 6210 Time-of-Flight LC/MS. Elemental analysis was performed at a Perkin Elmer AAS-Analyst 300 (Co), Leco Microanalysator-TruSpec CHNS (C, H), Radiometer Analytical SAS (Titrator) Titralab 870-TIM 870 (Br) and a Perkin Elmer UV/VIS-spectrometer Lambda 2 (P).
$\mathrm{CoBr}_{2}(0.05 \mathrm{M})$ and $\mathrm{ZnI}_{2}(0.25 \mathrm{M})$ were used as solutions in dry THF.

Commercially available chiral P, P - and P, N-ligands

(aR)-BINAP (4)

(aS)-QUINAP (5)

(aR)-QUINAP (5)

(R)-PHOX (11)

(R,aR)-N-PINAP (6)

($R, a S$)-N-PINAP

(S,aR)-N-PINAP

($R, a R$)-O-PINAP

($R, a S$)-O-PINAP

($a R, S$)-Ph-Bn-SIPHOX (12)

(S, S)-Et-DUPHOS (10)

Scheme S1: Available chiral P, P - and P, N-ligands

Ligand screening in glass reaction vial

adding substrate

2a
reaction:

3a

Table S1. Screening of chiral ligands in reaction glass vial under "semi-oxygen free" conditions

Entry	Chiral ligand	$\begin{gathered} \mathrm{t}_{1} \\ {[\mathrm{~h}]} \end{gathered}$	$\begin{gathered} \mathrm{t}_{2} \\ {[\mathrm{~h}\rceil} \end{gathered}$	yield [\%]	$\begin{gathered} \text { d/l: } \\ \text { meso } \end{gathered}$	$\begin{aligned} & \text { Sel. }{ }^{[b]} \\ & {[\% \text { ee] }]} \end{aligned}$
1	no ligand	0.5	40	$73{ }^{\text {c] }}$	1.4:1	--
2	(aR)-BINAP (4)	5 min	17	58	1.3:1	--
3	(aR)-QUINAP (5)	0.5	22	70	1.4:1	(+)6
4	(aS)-QUINAP (5)	2	21	>95	1.4:1	(-)57
5	(R)-PHOX (11)	2	26	77	1:1.2	(-)32
6	($R, a R$)-N-PINAP (6)	0.5	16	66	1:1.2	(+)17
7	(R,aS)-N-PINAP	0.5	16	>95	1:1.3	(-)25
8	(S, aR)-N-PINAP	0.5	16	58	1:1	(+)11
9	($R, a R$)-O-PINAP	0.5	16	51	1:1.4	--
10	($R, a S$)-O-PINAP	0.5	16	63	1:1.5	--

[a] Determined by integration from the proton NMR spectra. [b] Determined by chiral HPLC. [c] Conditions: $10 \mathrm{~mol} \% \mathrm{CoBr}_{2}, 10 \mathrm{~mol} \% \mathrm{ZnI}_{2}, 30 \mathrm{~mol} \% \mathrm{Zn}$.

Chiral ligand screening for catalytic reactions with CoBr_{2} in a reaction glass vial

CoBr_{2} ($5 \mathrm{~mol} \%$ in regard to the triyne), the respective chiral ligand ($5 \mathrm{~mol} \%$ in regard to the triyne) and Zn ($10 \mathrm{~mol} \%$ in regard to the triyne) were dissolved in THF (1 mL), ZnI_{2} (10 $\mathrm{mol} \%$ in regard to the triyne) was added and the solution stirred at $65^{\circ} \mathrm{C}$ for $5 \mathrm{~min}-2 \mathrm{~h}$. After cooling to room temperature the triyne $\mathbf{2 a}(0.25 \mathrm{mmol})$ was added and the mixture again heated to $65{ }^{\circ} \mathrm{C}$ for $16-40 \mathrm{~h}$. At the end of the reaction, the solvent was removed under reduced pressure and the residue purified by column chromatography (c-hexane/ethyl acetate $4: 1, \mathrm{v} / \mathrm{v}$) to yield the benzene derivative. The $e e$ values were determined by chiral HPLCanalysis. (Cellulose 2, n-heptane/isopropanol 95:5, v/v, $1 \mathrm{~mL} / \mathrm{min}$).

Optimization of the catalytic reactions with CoBr_{2} in a Schlenk tube

CoBr_{2} ($1-5 \mathrm{~mol} \%$ in regard to the triyne), the respective chiral ligand (1-5 mol \% in regard to the triyne), Zn (2-10 $\mathrm{mol} \%$ in regard to the triyne) were dissolved in THF (1 mL), $\mathrm{ZnI}_{2}(2-10$ $\mathrm{mol} \%$ in regard to the triyne) was added and the solution stirred at $0-65^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. After the triyne 2a (0.25 mmol) was added the mixture was again stirred at $0-65^{\circ} \mathrm{C}$ for $6-27 \mathrm{~h}$. At the end of the reaction, the solvent was removed under reduced pressure and the residue purified by column chromatography (c-hexane/ethyl acetate $4: 1, \mathrm{v} / \mathrm{v}$) to yield the benzene derivative. The $e e$ values were determined by chiral HPLC-analysis. (Cellulose 2, n-heptane/isopropanol 95:5, v/v, $1 \mathrm{~mL} / \mathrm{min}$).

Screening of catalyst loading

2a
CoBr_{2} ($\mathbf{x ~ m o l \%)}$
Zn (y mol\%)
Znl_{2} ($\mathbf{z} \mathrm{mol} \%$) Ligand* ($\mathbf{x x}$ mol\%) THF, $25^{\circ} \mathrm{C}, \mathrm{t}_{1}$ (red) t_{2} (cycl)

3a

Table S2. Screening of the catalysts loading

\#	\mathbf{x}	y	z	ligand*	t_{1}	t_{2}	yield	d/l:	Sel.
[mol\%]				[mol\%]	[h]	[h]	[\%]	meso ${ }^{\text {[a] }}$	$[\% e e]^{[1]}$
1	2.5	5	5	$\begin{gathered} (a R) \text {-QUINAP (5) } \\ {[2.5]} \end{gathered}$	1	4	73	1.3:1	(+)76
2	1	2	2	$\begin{gathered} (a R) \text {-QUINAP (5) } \\ {[1]} \end{gathered}$	1	21	70	1.3:1	(+)81

[a] determined out of the Integrals in the proton NMR spectra. [b] determined by chiral HPLC.

Synthesis of cobalt(II)-precursor complex 7

To a solution of ($R, a R$)-N-PINAP (6) $(0.10 \mathrm{~g}, 0.18 \mathrm{mmol})$ in 8 mL THF a solution of CoBr_{2} ($3.55 \mathrm{~mL}, 0.18 \mathrm{~mL}, 0.05 \mathrm{M}$ in THF) in THF was added and stirred at room temperature for 1 h . The solvent was removed in vacuo and the residue washed twice with n-hexane and dried in vacuo. The resulting green solid was recrystallized under argon atmosphere from a dichloromethane/THF mixture, yielding green crystals.

EA: calc.
C 58.64
H 3.88
Br 20.53
Co 7.57
P 3.98
found:
C 58.82
H 3.58
Br 18.81
Co 6.46
P 3.88
Crystal Structure data: CCDC 1418399 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Oxidation of (R,aR)-N-PINAP (6) to SI-I

A suspension of ($R, a R$)-N-PINAP ($\mathbf{6}$) $(0.10 \mathrm{~g}, 0.18 \mathrm{mmol})$ in hydrogenperoxide (3.00 mL , $29.0 \mathrm{mmol}, 30 \%$ in $\mathrm{H}_{2} \mathrm{O}$) was stirred at room temperature for 24 h . The reaction was stopped by adding water to the solution and was extracted thrice with dichloromethane. The combined organic phases were washed with brine, dried with sodium sulfate and the solvent was evaporated. The resulting product SI-I was isolated as colorless oil ($92 \mathrm{mg}, 89 \%$) without further purification.

SI-I
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.38\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}\right), 5.71(\mathrm{p}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26-6.34(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dt}$, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.42 (m, 4H), 7.42-7.49 (m, 2H), 7.50-7.58 (m, 3H), 7.59-7.64 (m, 2H), 7.88-7.92 (m, 1 H), 7.94 (dt, $J=8.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11 (dd, $J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, $J=10.9,8.7 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=22.1,50.2,117.0,119.9,120.4,126.6,126.8$, $126.9,127.0,127.1,127.2,127.4,127.6,128.0,128.1,128.2,128.3,128.4,128.5,128.6$,
128.7, 129.1, 129.3, 129.7, 129.8, 130.5, 130.7, 130.9, 131.0, 131.1, 131.3, 131.4, 131.5, 131.6, 132.4, 132.6, 132.7, 144.2, $152.2 \mathrm{ppm} .{ }^{31} \mathbf{P}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}\right): \delta=31.65 \mathrm{ppm}$.

HRMS (ESI-TOF) $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{OP}$: calc.: $576.2199[\mathrm{M}+\mathrm{H}]^{+}, 598.2019[\mathrm{M}+\mathrm{Na}]^{+}$found: $576.2204[\mathrm{M}+\mathrm{H}]^{+}, 598.2025[\mathrm{M}+\mathrm{Na}]^{+}$

Catalytic evaluation of ligand SI-I

CoBr_{2} ($0.0 .6 \mathrm{~mL}, 0.05 \mathrm{M}$ in THF, $2.5 \mathrm{~mol} \%$ in regard to the triyne), ligand SI-I (1.8 mg , $2.5 \mathrm{~mol} \%$ in regard to the triyne $), \mathrm{Zn}(0.41 \mathrm{mg}, 5 \mathrm{~mol} \%$ in regard to the triyne) were dissolved in THF (1 mL), $\mathrm{ZnI}_{2}(0.03 \mathrm{~mL}, 0.25 \mathrm{M}$ in THF, $5 \mathrm{~mol} \%$ in regard to the triyne) was added and the solution stirred at $25^{\circ} \mathrm{C}$ for 1 h . After the triyne $\mathbf{2 a}(0.1 \mathrm{~mL}, 1.25 \mathrm{M}$ in THF, 0.125 mmol) was added the mixture was again stirred at $25^{\circ} \mathrm{C}$ for 4 d . At the end of the reaction, the solvent was removed under reduced pressure and the residue purified by column chromatography (c-hexane/ethyl acetate $4: 1, \mathrm{v} / \mathrm{v}$) to yield the benzene derivative $\mathbf{3 a}(48 \mathrm{mg}$, 93%) of a racemic mixture. The $e e$ value was determined by chiral HPLC-analysis. (Cellulose 2, n-heptane/isopropanol $95: 5, \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL} / \mathrm{min}$).

Substrate screening for catalytic reactions

Co-precursor 7 (2.5-10 $\mathrm{mol} \%$ in regard to the triyne) or CoBr_{2} (2.5-10 $\mathrm{mol} \%$ in regard to the triyne) and $(a R)-/(a S)$-QUINAP (5) (2.5-10 mol\% in regard to the triyne) and $\mathrm{Zn}(5-20 \mathrm{~mol} \%$ in regard to the triyne) were dissolved in THF/toluene (1 mL) and ZnI_{2} ($5-20 \mathrm{~mol} \%$ in regard to the triyne) was added and the solution stirred at $25-95^{\circ} \mathrm{C}$ for a specific time. After cooling to room temperature the triyne $\mathbf{2 a}(0.1-0.5 \mathrm{mmol})$ was added and the mixture again was stirred at the described temperature for a specific time. At the end of the reaction, the solvent was removed under reduced pressure and the residue purified by column chromatography to yield the benzene derivative. The $e e$ values were determined by chiral HPLC-analysis.

For every compound the specific reaction conditions are written in parentheses: (amount of substrate, catalyst loading, solvent, reaction temperature, time, eluent for column chromatography, yield, $d / l:$:meso ratio, aggregation state)

Synthesis of cyclisation substrates

Compounds 2a, 2b:

Synthesis according to the published procedure by Shibata et al. The analytical data were in accordance with the reported data. ${ }^{[1]}$

All other triynes have been synthesized by literature-known procedures we have published in preceding work and the analytical data were in accordance with the reported data. ${ }^{[2]}$

Characterization of cyclization products

Compound 3a:

The compound was identified by NMR and MS and comparison with reported data. ${ }^{[1]}$
Optical rotation: $[\alpha]_{D}^{22}=224.83$ (c $1.0052, \mathrm{CHCl}_{3}, 85 \% e e$) obtained by the reaction described in Table 2, Entry 2.

Compound 3b:

9-phenanthrenyl:
($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% \mathrm{7}$, THF, $25^{\circ} \mathrm{C}, 23 \mathrm{~h}, c$-hex/EE (4:1, v/v), $43 \mathrm{mg}(75 \%),(+) 30 \% e e$,
1.8:1 (d/l:meso, HPLC area), colorless solid)

NMR data were in accordance with published data. ${ }^{[1]}$
Conditions of the HPLC-analysis: Reprosil, n-heptane/EtOH 90:10 (v/v), $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 3c:

4-Me-1-naphthyl
($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% 7$, THF, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, c$-hex/EE ($10: 1, \mathrm{v} / \mathrm{v}$), $51 \mathrm{mg}(92 \%),(+) 19 \% ~ e e$,
1.4:1 (d/l:meso, HPLC area), colorless solid)

NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/Isopropanol 98:2 (v/v), $0.8 \mathrm{~mL} / \mathrm{min}$.

Compound 3d:

($0.25 \mathrm{mmol}, 5 \mathrm{~mol} \% \mathrm{7}$, THF, $65^{\circ} \mathrm{C}$, $18 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), 77 mg (90%), (+) 15% ee, 1.4:1 (d/l:meso, HPLC area), colorless solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose $1, n$-heptane/EtOH 99:1 (v/v), $0.4 \mathrm{~mL} / \mathrm{min}$.

Compound 3e:

($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% \mathrm{7}$, THF, $25^{\circ} \mathrm{C}, 17 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), $23 \mathrm{mg}(42 \%),(+) 24 \% e e$, 2.7:1 (d/l:meso), colorless solid)
($0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%(a S)-\mathbf{5}+\mathrm{CoBr}_{2}, \mathrm{THF}, 65^{\circ} \mathrm{C}, 17 \mathrm{~h}, c$-hex/EE (4:1, v/v), $94 \mathrm{mg}(87 \%)$, rac, 1:1.3 (d/l:meso), colorless solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Reprosil, n-heptane/EtOH 95:5 (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

Compound 3f:

4-quinolinyl
($0.125 \mathrm{mmol}, 10 \mathrm{~mol} \% \mathrm{7}$, THF, $25-65^{\circ} \mathrm{C}, 7 \mathrm{~d}, n$-hex/THF (1:2, v/v $+0.5 \% \mathrm{NEt}_{3}$), 42 mg
(81\%), (+)46\% ee, 1.2:1 (d/l:meso), yellow solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Eurocel, n-heptane/EtOH 90:10 (v/v), $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 3g:

4-isoquinolinyl
($0.125 \mathrm{mmol}, 10 \mathrm{~mol} \% 7$, THF, $25-65^{\circ} \mathrm{C}, 6 \mathrm{~d}, n$-hex/THF ($1: 2, \mathrm{v} / \mathrm{v}+0.5 \% \mathrm{NEt}_{3}$), 45 mg (86\%), (-)66\% ee, 1.2:1 (d/l:meso), yellow solid)

NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 1, n-heptane/EtOH 90:10 (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

Compound 3h:

($0.25 \mathrm{mmol}, 2.5 \mathrm{~mol} \% 7, \mathrm{THF}, 25^{\circ} \mathrm{C}, 17 \mathrm{~h}, c$-hex/EE (4:1, v/v), $74 \mathrm{mg}(>95 \%),(+) 78 \% e e$, colorless solid)
($0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%(a R)-5+\mathrm{CoBr}_{2}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 17 \mathrm{~h}, c$-hex/EE (4:1, v/v), $75 \mathrm{mg}(>95 \%)$, $(+) 7 \% e e$, colorless solid)

NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/isopropanol 95:5 (v/v); $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 3i

($0.25 \mathrm{mmol}, 2.5 \mathrm{~mol} \% \mathrm{7}$, THF, $25^{\circ} \mathrm{C}, 19 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), 67 mg (74%), (-)55\% ee, colorless solid)
($0.25 \mathrm{mmol}, 2.5 \mathrm{~mol}-\%(a R)-5+\mathrm{CoBr}_{2}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 17 \mathrm{~h}, c$-hex/EE (4:1, v/v), $86 \mathrm{mg}(94 \%)$, $(-) 18 \% ~ e e, ~ c o l o r l e s s ~ s o l i d) ~$
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Eurocel, n-heptane/isopropanol $95: 5$ (v/v), $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 3k:

($0.25 \mathrm{mmol}, 2.5 \mathrm{~mol} \% \mathrm{7}$, THF, $25^{\circ} \mathrm{C}$, $19 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), $69 \mathrm{mg}(70 \%),(+) 12 \% e e$, colorless solid)

NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/isopropanol $95: 5$ (v/v), $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 31:

($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$ 7, THF, $25^{\circ} \mathrm{C}, 15 \mathrm{~h}, \mathrm{c}$-hex/EE (6:1, v/v), F1: 15 mg (27\%); F2: $19 \mathrm{mg}(34 \%), \mathrm{F} 1:(+) 39 \% e e ;$ F2: (+)32\% ee, colorless solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/EtOH 95:5 (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

Compound 9a:

($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% 7$, THF, $25-65^{\circ} \mathrm{C}$, $43 \mathrm{~h}, c$-hex/EE (4:1, v/v), $47 \mathrm{mg}(53 \%),(-) 78 \% e e$, 2.2:1 (d/l:meso, HPLC area), colorless solid)
($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% 7$, toluene, $25-90^{\circ} \mathrm{C}, 41 \mathrm{~h}$, pentane/EE ($6: 1, \mathrm{v} / \mathrm{v}$), 84 mg ($>95 \%$), (-)67\% ee, 1.9:1 (d/l:meso, HPLC area), colorless solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Eurocel, n-heptane/EtOH 99:1 (v/v), $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 9b:

($0.125 \mathrm{mmol}, 2.5 \mathrm{~mol} \% \mathrm{7}$, THF, $25-65^{\circ} \mathrm{C}$, $41 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), $30 \mathrm{mg}(32 \%),(-) 13 \% e e$, no meso-form detected), colorless solid)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/EtOH $95: 5(\mathrm{v} / \mathrm{v}), 0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 9c:

($0.25 \mathrm{mmol}, 2.5 \mathrm{~mol} \%(a R)-5+\mathrm{CoBr}_{2}, \mathrm{THF}, 25-65^{\circ} \mathrm{C}, 44 \mathrm{~h}, c$-hex $/ \mathrm{EE}(10: 1, \mathrm{v} / \mathrm{v}), 141 \mathrm{mg}$ (91\%), (-) 17% ee, yellow oil)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/isopropanol $95: 5$ (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

Compound 9d:

($0.15 \mathrm{mmol}, 10 \mathrm{~mol} \% \mathrm{7}$, toluene, $25-95^{\circ} \mathrm{C}, 17 \mathrm{~h}, \mathrm{c}$-hex/EE (4:1, v/v), $60 \mathrm{mg}(63 \%)$, (+)60\% ee, colorless solid)

NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Reprosil, n-heptane/isopropanol 95:5 (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

Compound 9e:

($0.15 \mathrm{mmol}, 10 \mathrm{~mol} \% \mathrm{7}$, toluene, $25-95^{\circ} \mathrm{C}, 17 \mathrm{~h}, \mathrm{c}$-hex/EE ($4: 1, \mathrm{v} / \mathrm{v}$), $90 \mathrm{mg}(87 \%)$,
(-) 11% ee, colorless sirup)
NMR data were in accordance with published data. ${ }^{[2]}$
Conditions of the HPLC-analysis: Cellulose 2, n-heptane/isopropanol 95:5 (v/v), $1 \mathrm{~mL} / \mathrm{min}$.

NMR spectra of compound SI-I:

${ }^{1} \mathrm{H}$-NMR:

${ }^{31} \mathrm{P}$-NMR:
(

HPLC analysis:

Table 1, entry 1:

```
Acq. Operator : Seq. Line : 5
Acq. Instrument : LC 3
Injection Date : 5/6/2014 4:44:56 PM
    Location : Vial 12
        Inj : 1
    Inj Volume : 1.0 \mul
Different Inj Volume from Sequence ! Actual Inj Volume : 0.2 \mul
Acq. Method : D:\HPCHEM\1\METHODS\FISCHER2.M
Last changed : 5/6/2014 3:51:35 PM
(modified after loading)
Analysis Method : C:\CHEM32\2\METHODS\FISCHER.M
Last changed : 9/2/2015 2:38:40 PM
(modified after loading)
Additional Info : Peak(s) manually integrated
```


\qquad

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Signal 2: DAD1, Sig=229.00, 8.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

Table 1, entry 2:

```
Acq. Operator : Seq. Line : }
Acq. Instrument : LC 2 Location : Vial 12
Injection Date : 5/15/2014 1:30:40 PM
    Inj : 1
    Inj Volume : 0.2 \mul
Acq. Method : C:\CHEM32\2\METHODS\FISCHER.M
Last changed : 5/15/2014 11:46:45 AM
Analysis Method : C:\CHEM32\2\METHODS\FISCHER.M
Last changed : 9/1/2015 12:09:29 PM
(modified after loading)
Additional Info : Peak(s) manually integrated
```

DAD1 C, Sig=210,8 Ref=360,100 (D:VARCHIVLC 21140511405001509.D)

Table 1, entry 3:

Acq. Operator
Acq. Instrument : LC 2
Injection Date : 6/2/2014 11:07:21 AM
Seq. Line : 1
Location : Vial 3
Inj : 1
Inj Volume : $0.2 \mu \mathrm{l}$
Acq. Method : C:\CHEM32 $\backslash 2 \backslash$ METHODS $\backslash F I S C H E R . M$
Last changed : 6/2/2014 11:06:28 AM
Analysis Method : C: \CHEM32 \2 \METHODS $\backslash F I S C H E R . M$
Last changed : 6/3/2014 2:06:26 PM (modified after loading)
Method Info : Cellulose 2, Heptan/EtOH 99:1, Fluß: 1,0 ml/min

Additional Info : Peak(s) manually integrated


```
Area Percent Report
```



```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier \& Dilution Factor with ISTDs
```

Signal 1: DAD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s] }} \end{gathered}$	Height [mAU]	Area \%	
1	12.197	MM	0.5215	1326.81787	42.40629	35.3091	35.0183
2	14.423	MM	0.6341	2430.90137	63.89017	64.6909	64.9817

Totals : $\quad 3757.71924$ 106.29646
Signal 2: DAD1, Sig=221.00, 8.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area $\%$	
1	12.197	MM	0.5217	1841.22791	58.82172	35.3776	35.0345
2	14.425	MM	0.6314	3363.28052	88.77180	64.6224	64.9655
Total	s :			5204.50842	147.59353		

Table 1, entry 4:

Area Percent Report
==1

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210, 8 Ref $=360,100$

$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
113.211 BB	0.5181	4754.74268	141.47903	87.9531
215.546 MM	0.6724	651.25568	16.14193	12.0469
```Totals : Signal 2: DAD1, Signal has been```	$y=221.0$   dified	$\begin{aligned} & 5405.99835 \\ & 0,8.00 \text { Ref }= \\ & \text { after loadi } \end{aligned}$	$\begin{aligned} & 157.62096 \\ & \text { off, EXT } \\ & \text { hg from raw } \end{aligned}$	ata $f i$
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\text { min }] \end{aligned}$	width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
113.210 MM	0.5593	6598.39209	196.61552	87.9393
215.558 MM	0.6709	904.95636	22.48225	12.0607
Totals :		7503.34845	219.09777	

## Table 1, entry 5:




Area Percent Report


Sorted By	$:$	Signal	
Multiplier:		$:$	1.0000
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$


## Table 1, entry 6:

Acq. Operator	:	Seq. Line : 5
Acq. Instrument	: LC 2	Location : Vial 5
Injection Date	: 6/3/2014 1:08:09 PM	Inj : 1
		Inj Volume : $0.2 \mu \mathrm{l}$
Acq. Method	: C:\CHEM32\2\METHODS $\backslash$ FISCHER.M	
Last changed	$\begin{aligned} : & 6 / 3 / 2014 \text { 9:33:19 AM } \\ & \text { (modified after loading) } \end{aligned}$	
Analysis Method	: C: \CHEM32 \2\METHODS $\backslash$ FISCHER.M	
Last changed	: 9/1/2015 12:09:29 PM (modified after loading)	
Additional Info	: Peak(s) manually integrated	


$\qquad$

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$


Table 1, entry 7:

$\qquad$
$========================================================================$

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs


## Table 1, entry 8:



Area Percent Report
$=======================================================================$

Sorted By	$:$	Signal	
Multiplier:		$:$	1.0000
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs


Table 2, entry 1:


Area Percent Report


Signal 1: DAD1 C, Sig=210, 8 Ref=360, 100


Signal has been modified after loading from rawdata file!

Peak \#	RetTime   [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { ] }} \end{gathered}$	Height   [mAU]	Area $\%$
1	15.525		0.6396	1.97761 e 4	515.30829	92.0155
2	17.993		0.7633	1716.04749	37.47045	7.9845
Totals	S :			$2.14921 e 4$	552.77874	

Table 2, entry 2:

$\qquad$

## Area Percent Report

Sorted By	: Signal	
Multiplier:	$:$	1.0000
Dilution:	$:$	1.0000
Use Multiplier \&	Dilution	Factor



## Table 3, entry 1:


andional info : Peak(s) manualiy integrated



Signal 1: DAD1 C, Sig=210,8 Ref=360,100

$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
18.120 BB	0.4282	2979.22900	102.77245	64.7460
213.341 BB	0.5885	1622.18018	40.22208	35.2540
Totals : 4601.40918 142.99452   Signal 2: DAD1, Sig=221.00, 8.00 Ref=off, EXT Signal has been modified after loading from rawdata file				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \text { [min] } \end{aligned}$	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
18.120 MM	0.4811	2310.97998	80.05103	65.1642
213.340 MM	0.6852	1235.41675	30.05008	34.8358
Totals :		3546.39673110 .10111		

## Table 3, entry 2:


$\qquad$

## Area Percent Report

| Sorted By | S | Signal |
| :--- | :---: | :---: | :---: |
| Multiplier: | $:$ | 1.0000 |
| Dilution: | : | 1.0000 |
| Use Multiplier \& Dilution | Factor with | ISTDs |

Signal 1: DAD1 C, Sig=210, 8 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area $\%$
1	13.385		0.6407	2841.62915	67.56503	59.6591
2	16.093		0.7700	1921.48242	37.86501	40.3409

Totals : $\quad$ Sigh 471157 105.43003
Signal 2: DAD1, Sig=221.00, 8.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area   $\%$
1	13.384	MM	0.7037	4082.24390	96.68655	59.6615
2	16.100		0.8484	2760.09644	54.22163	40.3385
Total	S :			6842.34033	150.90818	

## Table 3, entry 4:



## Signal 1: DAD1 C, Sig=210,8 Ref=360,100

```
Peak RetTime Type Width Area Height Area
```



```
 1 28.628 VB 0.9427 1.66227e4 247.13280 61.3735 61.76
 2 35.132 MM 1.3742 1.04618e4 126.87939 38.6265 38.24
Totals : 2.70846e4 374.01218
Signal 2: DAD1, Sig=237.00, 8.00 Ref=off, EXT
 Signal has been modified after loading from rawdata file!
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[m A U * s]}
\end{gathered}
\] & Height [mAU] & Area \% & \\
\hline 1 & 28.620 & & 1.0881 & 5121.49854 & 78.44955 & 61.5616 & 61.40 \\
\hline 2 & 35.143 & MM & 1.3271 & 3197.80444 & 40.16091 & 38.4384 & 38.60 \\
\hline
\end{tabular}
Totals : 8319.30298 118.61047
```


## Table 3, entry 6:



Additional Info : Peak(s) manually integrated
$\qquad$
Area Percent Report

Alea Percent Reporl
Rorted By
Multiplier:
Silution:
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100


## Table 3, entry 7:



Area Percent Report
$======================================================================$

Sorted By	$:$	Signal	
Multiplier:		$:$	1.0000
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU ]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.802 BB	0.6313	922.25848	20.40525	16.7797
2	17.231 BB	0.7421	4574.00781	92.30441	83.2203

Totals : $5496.26630 \quad 112.70966$
Signal 2: DAD1, Sig=221.00, 8.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.809		0.7546	1038.75818	22.94155	16.7418
2	17.230	MM	0.8327	5165.83838	103.39096	83.2582

Totals :

$$
6204.59656 \quad 126.33251
$$

## Table 3, entry 8:




Signal 1: DAD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.910		0.4318	4113.48535	144.63231	89.1668
2	16.786	BB	0.4208	499.76450	15.63947	10.8332


Signal has been modified after loading from rawdata file!

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~S}^{*} \mathrm{~s}\right.} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.911		0.4729	5341.25195	188.23424	89.1646
2	16.785	MM	0.5308	649.07733	20.38070	10.8354

Totals :
$5990.32928 \quad 208.61494$

## Table 3, entry 9:




## Table 3, entry 10:





Area Percent Report
$===========================================================================1$

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:		:	1.0000
Use Multiplier \& Dilution Factor with	ISTDs		

Signal 1: DAD1 C, Sig=210, 8 Ref $=360,100$

| Peak RetTime Type <br> \# Width <br> [min] | Area <br> [min] | Height <br> [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] |  |  |  |

## Table 3, entry 11:

Acq. Operator	:	Seq. Line	3
Acq. Instrument	: LC 2	Location	Vial 3
Injection Date	: 1/27/2015 11:26:26 AM	Inj	1
		Inj Volume	$0.2 \mu \mathrm{l}$
Acq. Method	: C: \CHEM32 \2\METHODS $\backslash$ FISCHER.M		
Last changed	: 1/27/2015 9:20:55 AM		
Analysis Method	: C:\CHEM32 \2\METHODS DEF_LC.M $^{\text {d }}$		
Last changed	: 8/26/2015 1:42:29 PM		
	(modified after loading)		
Additional Info	: Peak(s) manually integrated		




## Table 3, entry 13, fraction 2:




Signal 1: DAD1 C, Sig=210, 8 Ref=360,100

Peak RetTime Type \# [min]	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height   [mAU]	Area $\%$
110.130 VB	0.3757	3817.41235	154.79221	69.5629
212.508 BB	0.4711	1670.29871	54.26474	30.4371
Totals :   Signal 2: DAD1, Signal has been	$y=221.0$   dified	5487.71106   , 8.00 Ref=   after loadi	$\begin{aligned} & 209.05695 \\ & \text { ff, EXT } \\ & \text { ig from raw } \end{aligned}$	ta fil
$\begin{gathered} \text { Peak RetTime Type } \\ \# \quad[m i n] \end{gathered}$	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$	Area \%
110.130 MM	0.4095	5483.85547	223.20137	69.5309
212.507 MM	0.5099	2403.07959	78.54385	30.4691
Totals :		7886.93506	301.74522	

## Table 4, entry 1:



## Area Percent Report



Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDS


## Table 4, entry 2:

Acq. Operator	:	Seq. Line :	2
Acq. Instrument	: LC 2	Location :	Vial 2
Injection Date	: 3/18/2015 11:51:02 AM	Inj :	1
		Inj Volume :	$0.2 \mu \mathrm{l}$
Acq. Method	: C:\CHEM32\2\METHODS $\backslash$ FISCHER.M		
Last changed	: 3/18/2015 10:27:46 AM		
Analysis Method	: C:\CHEM32 \2\METHODS $\backslash$ FISCHER.M		
Last changed	: 9/2/2015 11:47:09 AM (modified after loading)		



Area Percent Report				
Sorted By : Signal    Multiplier:  $:$ 1.0000   Dilution:  : 1.0000   Use Multiplier \& Dilution Factor with   ISTDs				
Signal 1: DAD1 C, Sig=210,8 Ref= 360,100				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
$\begin{array}{ll} 1 & 18.917 \mathrm{BB} \\ 2 & 21.094 \mathrm{BB} \end{array}$	0.4976	401.98444	9.65834	16.5819
	0.6839	2022.25647	41.54563	83.4181
Totals : $2424.24091 \quad 51.20397$				
Signal 2: DAD1, Sig=221.00, 8.00 Ref=off, EXT Signal has been modified after loading from rawdata fil				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~S}^{2} \mathrm{~S}\right]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
$1 \quad 18.930 \mathrm{MM}$	0.6909	514.86804	12.42091	16.5840
221.092 MM	0.8152	2589.74683	52.94692	83.4160
Totals :		3104.61487	65.36782	

## Table 4, entry 5:




Signal 1: DAD1 C, Sig=210,8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime   [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area \%	
1	16.144	VB	0.6774	5278.08447	113.31342	80.0891	80.21
2	18.110	BB	0.6871	1312.17957	22.67734	19.9109	19.79
Totals				6590.26404	135.99076		
Signal 2: DAD1, Sig=237.00, 8.00 Ref=off, EXT							
Signal has been modified after loading from rawdata file!							
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]		Width	Area	Height	Area	
			[min]	[mAU*s]	[mAU]	\%	
1	16.148	MF	0.7729	4818.23145	103.90434	80.0447	80.41
2	18.110	FM	0.9599	1201.19116	20.85699	19.9553	19.59

## References:

[1] Shibata,T.; Tsuchikama, K.; Otsuka, M. Tetrahedron: Asymmetry 2006, 17, 614-619.
[2] Jungk, P.; Fischer, F.; Thiel, I.; Hapke, M. J. Org. Chem. 2015, 80, 9781-9793.
[3] Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem. 2004, 116, 6097-6099; Angew. Chem. Int. Ed. 2004, 43, 5971-5973.

