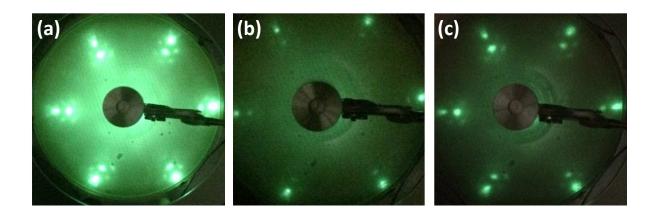

Supporting Information:

D₂O Interaction with Planar ZnO(0001) Bilayer Supported on Au(111): Structures, Energetics and Influence of Hydroxyls


Xingyi Deng^{1,2,*}, Dan Sorescu¹, Junseok Lee^{1,2}

¹National Energy Technology Laboratory (NETL), United States Department of Energy, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States, ²AECOM, P.O. Box 618, South Park,

Pennsylvania 15129, United States

Figure S1. Examples of fittings of the TPD traces to semi-quantify the relative amount of D_2O that saturates desorption peaks β and γ . For simplicity, the fitting has been performed using components of mixed Gaussian-Lorentzian functions. Only the peak positions were constrained for the fitting. The intensities and the full width at half maxima of the components were optimized.

Figure S2. LEED patterns of (a) the clean 1.1 MLE ZnO(0001) bilayer on Au(111) showing a coincidence structure of ZnO(0001)- (7×7) /Au(111)- (8×8) ; (b) after an exposure of 0.3 L D₂O on 1.1 MLE ZnO at T = 100 K; and (c) after heating to T = 600 K. All LEED patterns were obtained at T = 100 K with a beam energy of 42 eV.