Supporting Information for:

Synthesis and Characterization of Two Unsymmetrical Indenofluorene Analogues: Benzo[5,6]-s-indaceno[1,2-b]thiophene and Benzo[5,6]-s-indaceno[2,1-b]thiophene

Jonathan L. Marshall, Nathaniel J. O'Neal, Lev N. Zakharov and Michael M. Haley*
Department of Chemistry \& Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
haley@uoregon.edu

Table of Contents page
Cyclic Voltammetry S2
X-ray Crystallography S4
References S12
Copies of NMR Spectra S13

Cyclic Voltammetry

General remarks. All electrochemical experiments were conducted in a traditional 3electrode geometry using a potentiostat. Electrolyte solutions $(0.1 \mathrm{M})$ were prepared from HPLC grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anhydrous $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$, and the solutions were degassed via freeze-pump-thaw $(3 \times)$ prior to analysis. The working electrode was a glassy carbon electrode (3-mm diameter), with a Pt-coil counter electrode and Ag wire pseudo reference. The ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$couple was used as an internal standard following each experiment. Potential values were re-referenced to SCE using a value of 0.46 (V vs. SCE) for the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When necessary, potentials were re-referenced to NHE using SCE $=-0.24$ (V vs. NHE). LUMO and HOMO levels were approximated using SCE $=-4.68 \mathrm{eV}$ vs. vacuum. ${ }^{1}$ Cyclic voltammetry experiments were conducted in an N_{2}-filled drybox at sweep rates of 50 (reported), $75,100,125$ and $150 \mathrm{mV} \mathrm{s}^{-1}$. All scan rates show quasi-reversible kinetics with no alteration of peak splitting with scan rate. $\mathrm{E}_{1 / 2}$ values were calculated assuming $\mathrm{E}^{\mathrm{o}} \approx \mathrm{E}_{1 / 2}=\left(\mathrm{E}_{\text {anodic }}+\mathrm{E}_{\text {cathodic }}\right) / 2$ based on these observations for reversible couples. The $\mathrm{E}_{\mathrm{a}, \mathrm{c}}$ peak splitting of the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple was similar to that of the analyte $(\sim 100 \mathrm{mV})$. The anodic peak current increases linearly with the square root of the scan rate in the range 50 to $150 \mathrm{mV} \mathrm{s}^{-1}$, indicating a diffusion-controlled process. Analyte concentrations were ca. 1-5 mM.

Figure S1. Cyclic voltammogram of anti-BIT 7a showing first reduction only versus first and second reduction.

Figure S2. Cyclic voltammogram of syn-BIT 8a showing first reduction only versus first and second reduction.

X-ray Crystallography

General remarks. Diffraction intensities for 7a-b, 8a-c and $\mathbf{1 5}$ were collected at 223 K ($\mathbf{8 b}$ and $\mathbf{8 c}$) and 173 K on a diffractometer using $\mathrm{MoK} \alpha$ (7a) and $\mathrm{CuK} \alpha$ radiations (all others), $\lambda=$ $0.71073 \AA$ and $1.54178 \AA$, respectively. Space groups were determined based on systematic absences. Absorption corrections were applied by SADABS. ${ }^{2}$ Structures were solved by direct methods and Fourier techniques and refined on F^{2} using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. All H atoms in 8a and H atoms in the aromatic parts of $\mathbf{7 a}$ and $\mathbf{7 b}$ were found from the residual density map and refined with isotropic thermal parameters. H atoms in the terminal Me groups in $\mathbf{7 a}$ and $\mathbf{7 b}$ and all H atoms in $\mathbf{8 b}, 8 \mathrm{c}$ and 15 were refined in calculated positions in a rigid group model. H atoms in solvent $\mathrm{CH}_{3} \mathrm{CN}$ molecules in $\mathbf{8 b}$ were not found and not taken into consideration. One of the $\mathrm{H} . . . \mathrm{H}$ contacts between the Me groups in $\mathbf{8 b}$ and $\mathbf{8 c}$ is slightly short, $1.98 \AA$, showing that the real orientation of these Me groups seems to be slightly different versus the calculated positions of the H atoms. It was found that the molecules of $\mathbf{7 a}, \mathbf{8 a}$ and $\mathbf{1 5}$ are disordered in the crystal structures over two centro-symmetrical positions corresponding two opposite orientations; thus, the five-membered S-cycle and six-membered C-cycle share the same positions in the crystal structures in the ratio 1:1. The solvent hexane molecule in $\mathbf{8 b}$ highly disordered over an inversion center was treated by SQUEEZE. ${ }^{3}$ Corrections of the X-ray data by SQUEEZE (100 electron per cell) is the same as the required value of 100 electron per cell for two hexane molecules in the full unit cell. The diffraction data for $\mathbf{8 b}$ at the high angles were very weak even when using a strong Incoatec $I \mu S \mathrm{Cu}$ source; thus, only reflections up to $2 \theta_{\max }=120^{\circ}$, have been using in the final refinement of $\mathbf{8 b}$. All calculations were performed by the Bruker SHELXL-2013 package. ${ }^{4}$

Crystallographic Data for 7a: $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~S}, \mathrm{M}=494.66,0.16 \times 0.13 \times 0.02 \mathrm{~mm}, \mathrm{~T}=173 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / c, a=14.422(3) \AA, b=7.1233(15) \AA, c=13.738(3) \AA, \beta=$ $109.229(4)^{\circ}, V=1332.6(5) \AA^{3}, Z=2, D_{\mathrm{c}}=1.233 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo})=0.145 \mathrm{~mm}^{-1}, F(000)=524$, $2 \theta_{\max }=50.0^{\circ}, 16075$ reflections, 2360 independent reflections $\left[\mathrm{R}_{\text {int }}=0.0492\right], \mathrm{R} 1=0.0496$, $\mathrm{wR} 2=0.1058$ and $\mathrm{GOF}=1.024$ for 2360 reflections (209 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=$ $0.0842, \mathrm{wR} 2=0.1202$ and $\mathrm{GOF}=1.024$ for all reflections, $\mathrm{max} / \mathrm{min}$ residual electron density $+0.217 /-0.213 \mathrm{e}^{3}{ }^{3}$.

Crystallographic Data for 7b: $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~S}, \mathrm{M}=550.76,0.19 \times 0.09 \times 0.03 \mathrm{~mm}, \mathrm{~T}=173 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / n, a=17.8322(5) \AA, b=8.1594(2) \AA, c=21.3798(6) \AA, \beta=$
$98.114(2)^{\circ}, V=3079.62(14) \AA^{3}, Z=4, D_{\mathrm{c}}=1.188 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu})=1.116 \mathrm{~mm}^{-1}, F(000)=1176$, $2 \theta_{\max }=133.3^{\circ}, 23074$ reflections, 5437 independent reflections $\left[\mathrm{R}_{\mathrm{int}}=0.0372\right], \mathrm{R} 1=0.0484$, $\mathrm{wR} 2=0.1303$ and GOF $=1.035$ for 5437 reflections (438 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=$ $0.0626, \mathrm{wR} 2=0.1404$ and $\mathrm{GOF}=1.035$ for all reflections, $\mathrm{max} / \mathrm{min}$ residual electron density $+0.377 /-0.316 \mathrm{e}^{3}$.

Crystallographic Data for 8a: $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~S}, \mathrm{M}=494.66,0.13 \times 0.10 \times 0.02 \mathrm{~mm}, \mathrm{~T}=173 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / c, a=14.4257(4) \AA, b=7.1547(2) \AA, c=13.5478(5) \AA, \beta=$ $108.148(2)^{\circ}, V=1328.73(7) \AA^{3}, Z=2, D_{\mathrm{c}}=1.236 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu})=1.238 \mathrm{~mm}^{-1}, F(000)=524$, $2 \theta_{\max }=133.1^{\circ}, 7749$ reflections, 2336 independent reflections $\left[\mathrm{R}_{\text {int }}=0.0264\right], \mathrm{R} 1=0.0427$, $\mathrm{wR} 2=0.1132$ and $\mathrm{GOF}=1.033$ for 2336 reflections (245 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=$ $0.0507, \mathrm{wR} 2=0.1202$ and $\mathrm{GOF}=1.033$ for all reflections, $\mathrm{max} / \mathrm{min}$ residual electron density $+0.241 /-0.160 \mathrm{e}^{3}$.

Crystallographic Data for 8b: $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{NS}, \mathrm{C}_{45} \mathrm{H}_{43} \mathrm{~S}\left(\mathrm{CH}_{3} \mathrm{CN}\right), \mathrm{M}=656.91,0.15 \times 0.11 \times 0.01$ $\mathrm{mm}, \mathrm{T}=223 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / c, a=7.9020(8) \AA, b=26.050(2) \AA, c=36.307(3)$ $\AA, \beta=92.155(7)^{\circ}, V=7468.2(12) \AA^{3}, Z=8, Z^{\prime}=2, D_{\mathrm{c}}=1.168 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu})=1.007 \mathrm{~mm}^{-1}$, $F(000)=2808,2 \theta_{\max }=120.0^{\circ}, 44858$ reflections, 11013 independent reflections $\left[\mathrm{R}_{\text {int }}=0.0831\right]$, $\mathrm{R} 1=0.0909, \mathrm{wR} 2=0.2383$ and $\mathrm{GOF}=1.030$ for 11013 reflections (883 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.1436, \mathrm{wR} 2=0.2823$ and $\mathrm{GOF}=1.030$ for all reflections, max $/ \mathrm{min}$ residual electron density $+0.369 /-0.378 \mathrm{e}^{3}$.

Crystallographic Data for 8c: $\mathrm{C}_{78} \mathrm{H}_{72} \mathrm{~S}_{2}, \mathrm{C}_{75} \mathrm{H}_{65} \mathrm{~S}_{2} 0.5\left(\mathrm{C}_{6} \mathrm{H}_{14}\right), \mathrm{M}=1073.47,0.13 \times 0.10 \times$ $0.01 \mathrm{~mm}, \mathrm{~T}=223 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / c, a=12.4687(11) \AA, b=8.0770(8) \AA, c=$ $30.391(7) \AA, \beta=98.391(7)^{\circ}, V=3039.9(5) \AA^{3}, Z=2, D_{\mathrm{c}}=1.173 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu})=1.118 \mathrm{~mm}^{-1}$, $F(000)=1144,2 \theta_{\max }=133.7^{\circ}, 20006$ reflections, 5361 independent reflections $\left[\mathrm{R}_{\text {int }}=0.0419\right]$, $\mathrm{R} 1=0.0586, \mathrm{wR} 2=0.1677$ and $\mathrm{GOF}=1.035$ for 5361 reflections (334 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.0796, \mathrm{wR} 2=0.1791$ and $\mathrm{GOF}=1.035$ for all reflections, $\mathrm{max} / \mathrm{min}$ residual electron density $+0.339 /-0.276 \mathrm{e}^{3}$.

Crystallographic Data for 15: $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}=288.30,0.19 \times 0.02 \times 0.01 \mathrm{~mm}, \mathrm{~T}=173 \mathrm{~K}$, Monoclinic, space group $P 2_{1} / c, a=10.6449(9) \AA, b=3.7919(3) \AA, c=15.6497(14) \AA, \beta=$ $101.161(6)^{\circ}, V=619.74(9) \AA^{3}, Z=2, D_{\mathrm{c}}=1.545 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Cu})=2.324 \mathrm{~mm}^{-1}, F(000)=296$, $2 \theta_{\max }=133.2^{\circ}, 6103$ reflections, 1088 independent reflections $\left[\mathrm{R}_{\text {int }}=0.0415\right], \mathrm{R} 1=0.0504$, wR 2 $=0.1175$ and GOF $=1.037$ for 1088 reflections (109 parameters) with $\mathrm{I}>2 \sigma(\mathrm{I}), \mathrm{R} 1=0.0633$,
$\mathrm{wR} 2=0.1242$ and GOF $=1.037$ for all reflections, max/min residual electron density $+0.191 /$ $-0.192 \mathrm{e}^{3}{ }^{3}$.

15

Figure S3. ORTEPs of compounds 7b, 8b and $\mathbf{1 5}$ with bond numbering scheme; ellipsoids at 50%.

Table S1. Select bond lengths (\AA) for compounds $\mathbf{7 b}, \mathbf{8 b}$, and $\mathbf{8 c}$

$\text { bond }^{a}$	anti/syn-BIT			IF, anti/syn-IDT ${ }^{\text {b }}$		
	7b	$\mathbf{8 \mathbf { b } ^ { a }}$	8c	1b (mes)	$2 \mathbf{a}$	3a
C1-C2	1.466 (3)	1.481(8)/1.450(7)	1.4648	1.471(3)	1.460(2)	1.447(3)
C2-C3	1.379 (3)	1.392(7)/1.368(7)	1.3888	1.380(2)	1.388(2)	$1.398(3)$
C3-C4	1.429(3)	1.438(7)/1.425(7)	1.4301	1.433(3)	1.431(2)	1.418(3)
C4-C5	1.360(3)	1.357(7)/1.361(6)	1.3616	$1.356(2)$	1.360(2)	$1.363(3)$
C5-C3	1.470(3)	1.457(8)/1.476(7)	1.4649	$1.467(3)$	1.469(2)	1.456 (3)
C3-C5	1.459(3)	1.446(8)/1.460(7)	1.4527	1.467 (3)	1.469(2)	$1.456(3)$
C1--C2`	$1.466(3)$	1.456(7)/1.451(7)	1.4341	1.471(3)	1.460(2)	1.447(3)
C2-C3	1.387(3)	1.394(7)/1.383(7)	1.3913	1.380(2)	1.388(2)	$1.398(3)$
C3--C4	1.434(3)	1.442(7)/1.429(7)	1.4190	$1.433(3)$	1.431(2)	1.418(3)
C4-C5	$1.363(3)$	1.372(7)/1.367(7)	1.3679	$1.356(2)$	1.360(2)	$1.363(3)$

[^0]

Figure S4. ORTEP and molecular packing of 7a (generated from CIF mh143); ellipsoids at 30\%.

Figure S5. ORTEP and packing of 7b (generated from CIF mh141); ellipsoids at 30%.

Figure S6. ORTEP and molecular packing of $\mathbf{8 a}$ (generated from CIF mh171); ellipsoids at 30%.

Figure S7. ORTEP and molecular packing of $\mathbf{8 b}$ (generated from CIF mh169); ellipsoids at 30%.

Figure S8. ORTEP and molecular packing of $\mathbf{8 c}$ (generated from CIF mh170); ellipsoids at 30%.

Figure S9. ORTEP and molecular packing of $\mathbf{1 5}$ (generated from CIF mh145); ellipsoids at 30\%.

References

1. Reiss, H.; Heller, A. J. Phys. Chem. 1985, 89, 4207-4213.
2. Sheldrick, G. M. Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, 1998.
3. Van der Sluis, P.; Spek, A. L. Acta Cryst., Sect. A 1990, A46, 194-201.
4. Sheldrick, G. M. Acta Cryst., Sect. A 2008, A64, 112-122.

Copies of NMR Spectra

${ }^{\prime} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\overline{6} 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.

10

[^1]

9

$$
D(t)
$$

$$
1.41
$$

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

'H NMR (500 MHz , Chloroform- d) $67.88(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27$
$(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=$ $(\mathrm{m}, 2 \mathrm{H}), 4.42$
$7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

$\begin{aligned} & \mathrm{B}(\mathrm{~s}) \\ & 7.80 \end{aligned}$	
$\begin{aligned} & A(s) \\ & 7.88 \end{aligned}$	$\begin{gathered} \mathrm{D}(\mathrm{~m}) \\ 7.29 \end{gathered}$
	$\begin{gathered} \hline \mathrm{C}(\mathrm{~m}) \\ 7.40 \end{gathered}$

$F(q)$
4.11
$E(q)$
4.42

H NMR $(600 \mathrm{MHz}$, Chloroform-d $) ~ 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31$
$(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$(\mathrm{m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$
$4.11(\mathrm{q}, J-7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J-7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.07,167.86,141.76,140.84,140.14,134.41,133.51,133.10$, $132.38,131.61,128.49,128.32,127.83,127.44,127.02,126.47,61.74,61.50,13.97,13.78$.

'H NMR $(600 \mathrm{MHz}$, Chloroform- $d) 67.86(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}$
$=2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=4.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q} . J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J-7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

14
(

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.79,186.03,158.62,146.29,143.56,142.24,142.00,139.94$ $138.64,135.38,133.79,130.07,129.61,124.64,121.78,120.57,115.90,114.93$.

15

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.89,148.38,144.01,142.03,139.21,139.17,137.78$,
$137.63,137.09,137.04,136.10,135.99,135.88,135.14,130.68,129.92,128.40,128.31$,
$127.93,127.78,127.32,122.51,121.22,120.57,120.27,120.09,21.32,21.31,20.71$,
20.56 .

[^0]: ${ }^{a}$ Compound $\mathbf{8 b}$ contained two crystallographically independent molecules per unit cell.

[^1]:

