Raman analysis of dilute aqueous samples by

localised evaporation of sub- $\mu \mathrm{L}$ droplets on the tips

of superhydrophobic copper wires

Melody Cheung, ${ }^{a}$ Wendy. W. Y. Lee, ${ }^{a}$ John. N. McCracken, ${ }^{a}$ Iain. A. Larmour ${ }^{a}$, Steven Brennan ${ }^{a}$ and Steven E.
J. Bell ${ }^{a}$

Contents

Figure S1: Raman spectra showing dried down $0.6 \mu \mathrm{~L}$ drops of glucose at $5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ on a MPA treated tip of SHP support and (b) untreated tip of SHP support (with an extra peak at $277 \mathrm{~cm}^{-1}$). Spectra are on the same vertical axis, apart from being offset for clarity.

Figure S2: SEM image of a bare copper wire at $300 \times$.

Figure S3: SEM image (a) of $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sucrose solution dried down on a $230 \mu \mathrm{~m}$ SHP support at 700 and $1550 \times$. The sucrose droplets are similar to the glucose droplets, but tend to burn more easily under the electron beam. Image (b) shows a close up of the damage which eventually gives a rectangular mark on the surface.

Figure S4: Raman spectra showing (a) bulk crystalline sucrose and dried down $0.6 \mu \mathrm{~L}$ drops of different concentrations of sucrose: (b) $1 \mathrm{~mol} \mathrm{dm}^{-3}$, (c) $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, (d) $1 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, (e) $2.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$, (f) $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{~g}) 5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and (h) water. Spectra are on the same vertical axis, apart from being offset for clarity.

Figure S5: Graph showing the PLS regression plot of predicted vs. actual Glucose concentration using $1^{\text {st }}$ derivatives. The data set had one outlier removed to give the best regression plot with two factors. $\mathrm{R}^{2}=$ 0.9489 and RMS error $=7.1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ and $\% \mathrm{RMS}=12.9$.

Table S1: Raman bands with corresponding peak assignments for glucose: sucrose mixtures.

Figure S1: Raman spectra showing dried down $0.6 \mu \mathrm{~L}$ drops of glucose at $5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ on a MPA treated tip of SHP support and (b) untreated tip of SHP support (with an extra peak at $277 \mathrm{~cm}^{-1}$). Spectra are on the same vertical axis, apart from being offset for clarity.

Figure S2: SEM image of a bare copper wire at $300 \times$.

Figure S3: SEM image of (a) $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sucrose solution dried down on a $230 \mu \mathrm{~m}$ SHP support at 700 and (b) $1550 \times$. The sucrose droplets are similar to the glucose droplets, but tend to burn more easily under the electron beam. Image (b) shows a close up of the damage which eventually gives a rectangular mark on the surface.

Figure S4: Raman spectra showing (a) bulk crystalline sucrose and dried down $0.6 \mu \mathrm{~L}$ drops of different concentrations of sucrose: (b) $1 \mathrm{~mol} \mathrm{dm}^{-3}$, (c) $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, (d) $1 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, (e) $2.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$, (f) $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{~g}) 5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and (h) water. Spectra are on the same vertical axis, apart from being offset for clarity.

Bands (cm ${ }^{-1}$)	Sugar	Peak Assignments
420	Glucose	Deformation C-C-O and C-C-C
520	Sucrose	Deformation C-C-O and C-C-C
$835-838$	Sucrose	Associated with fructose, CH out of plane deformation
$916-920$	Glucose	Deformation C-H, C-O-H
1060	Both Sugars	Stretching C-O
1126	Glucose	Deformation C-O-H
1365	Both sugars	Asymmetric deformation in the plane of CH_{2}
1456	Both sugars	Symmetric deformation in the plane of CH_{2}

Table S1: Raman bands with corresponding peak assignments for glucose and sucrose. (1)

Figure S5: Graph showing the PLS regression plot of predicted vs. actual Glucose concentration using $1^{\text {st }}$ derivatives. The data set had one outlier removed to give the best regression plot with two factors. $\mathrm{R}^{2}=$ 0.9489 and RMS error $=7.1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ and $\% \mathrm{RMS}=12.9$.

References

1. Pierna, J. A. F.; Abbas, O.; Dardenne, P.; Baeten, V. Biotechnology, Agronomy, Society and Environment, 2011, 15, 75-84.
