Supporting Information

Colloidal Solution Combustion Synthesis: Toward Mass Production of a Crystalline Uniform Mesoporous CeO₂ Catalyst with Tunable Porosity

Albert A. Voskanyan, Kwong-Yu Chan*, Chi-Ying Vanessa Li

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.

*Email: hrsccky@hku.hk

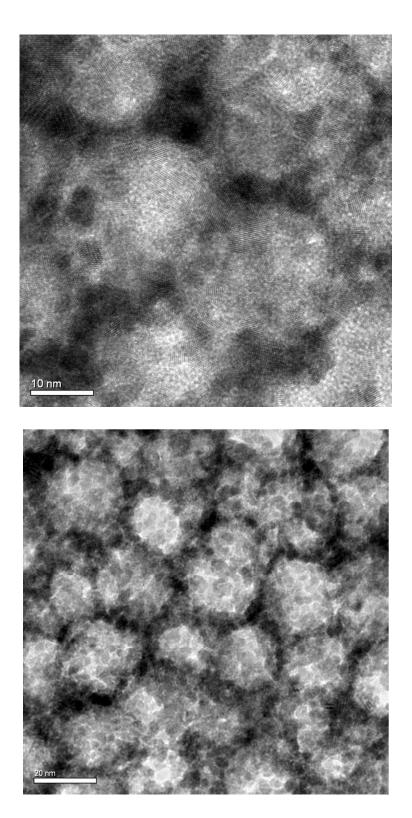


Figure S1. TEM images of ceria-3 sample at different magnifications.

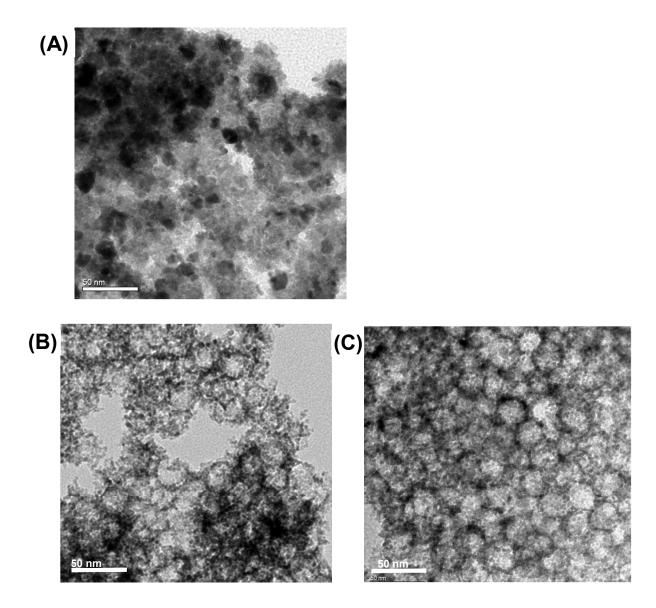


Figure S2. TEM images of (A) ceria-0, (B) ceria-1, (c) ceria-2 samples.

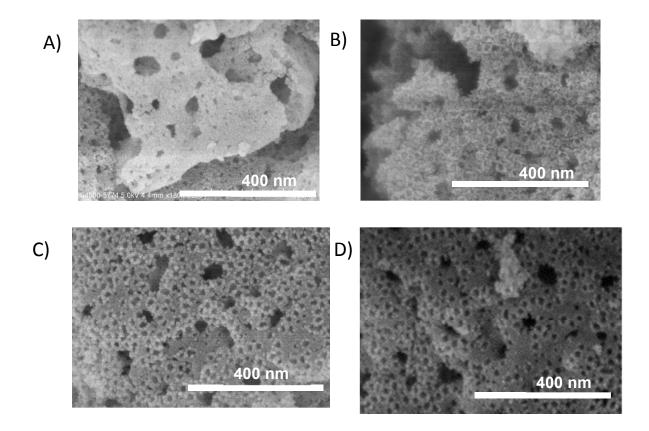
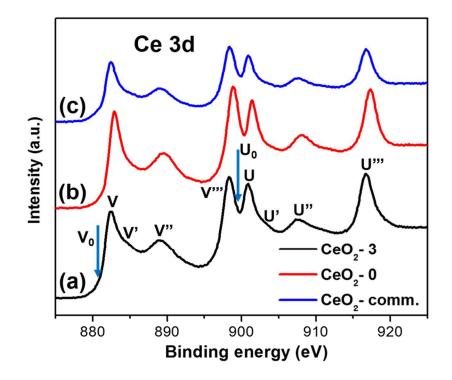


Figure S3. SEM images of different CeO₂ samples (A) ceria-0, (B) ceria-1, (C) ceria-2, and (D) ceria-3.

Porosity calculation

 $m(CeO_2) = \rho_{CeO2} (V_{CeO2} - V_p)$ $V_p = 0.6 \text{ ml} \quad \rho(CeO_2) [ref.1] = 7.28 \text{ g ml}^{-1}$


After solving equation for 1 g of $CeO_2 V_{CeO2} = 0.74 \text{ ml}$

 $Porosity = \frac{Vp}{V_{CeO2}} \times 100\% = 81\%$

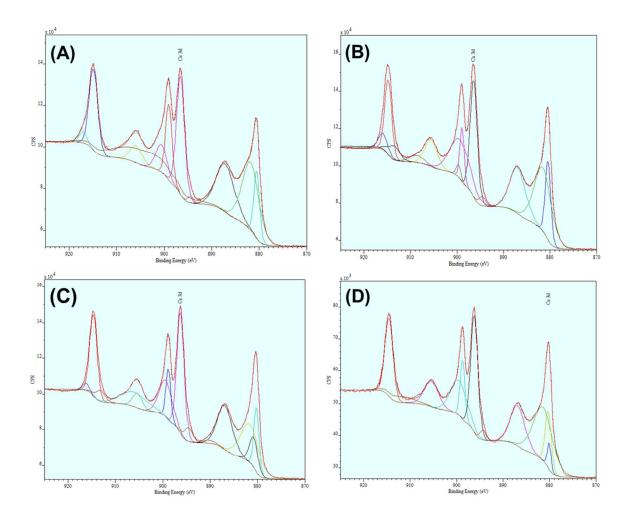

In CeO₂ Ce⁴⁺ is surrounded by eight O²⁻ ions. Formation of the oxygen vacancies and the accompanying Ce³⁺ reduces the coordination number of cerium from eight to seven causing the change in the Ce-O bond length and overall lattice constant. Also Ce³⁺ has a higher ionic radius (1.034 Å) compared to the Ce⁴⁺ (0.92 Å).

Figure S4 compares the Ce 3d core-level of three samples. Distinct photopeaks of CeO₂ are identified in the XPS spectra and labeled in accordance with the literature. The V and U labels refer to the $3d_{5/2}$ (Ce³⁺) and $3d_{3/2}$ (Ce⁴⁺) spin-orbit split components, respectively. The main peaks of V^{**} and U^{**} represented the $3d^{10}$ 4f⁰ initial electronic state corresponding to the Ce⁴⁺ cation whereas the peak of V^{*} represented the $3d^{10}$ 4f¹ initial electronic state of corresponding to the Ce³⁺ cation. The relative concentration of Ce³⁺ was calculated as[ref.2,3]:

where A_i is the integrated area of peak *i*.

Figure S4. XPS of Ce 3d core level of different CeO₂ samples.

Figure S5. De-convoluted Ce 3d core level peaks of different CeO₂ samples (A) ceria-3, (B) ceria-2, (C) ceria-0, (D) ceria-comm.

To better understand the surface structure the O 1s peak is also analyzed for all samples (Figure S10). The O 1s peaks could be fitted into two peaks referred to as the lattice oxygen O^{2-} and the chemisorbed OH⁻ groups. The results in Table S2 also show that the concentration of adsorbed OH⁻ is the highest on the CeO₂-3 surface compared to other ceria samples. Emphatically, there is an additional third peak in O 1s region ascribed to the adsorbed H₂O molecules. The presence of the third peak can be due to the small particle size and high specific surface area leading to surface hydration.

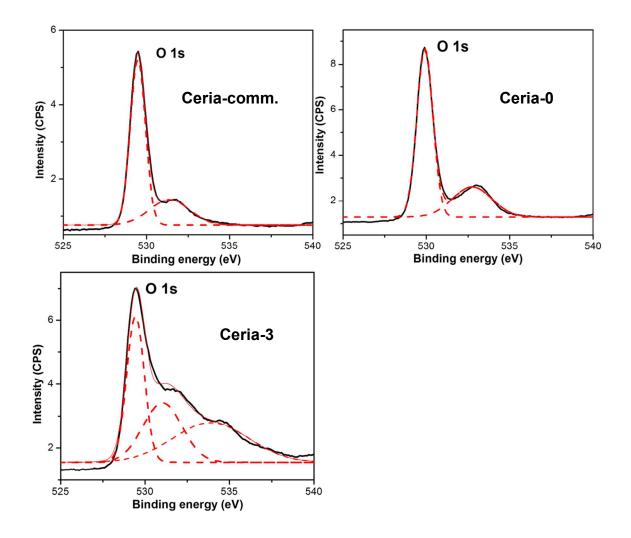


Figure S6. XPS of O 1s level of different CeO₂ samples.

Table S1. XPS results for the different CeO₂ samples

Sample	ceria-0	ceria-2	ceria-3	Commercial ceria
Volume of SiO ₂ added (ml)	0	0.5	1	-
Concentration of Ce ³⁺ ions (%)	6.1	25.8	34.9	1.3
OH ⁻ /Total oxygen species (%)	20.53	38.26	39.75(+12.8)	16.96

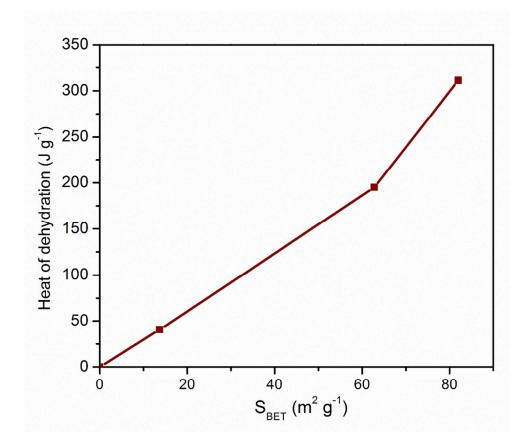
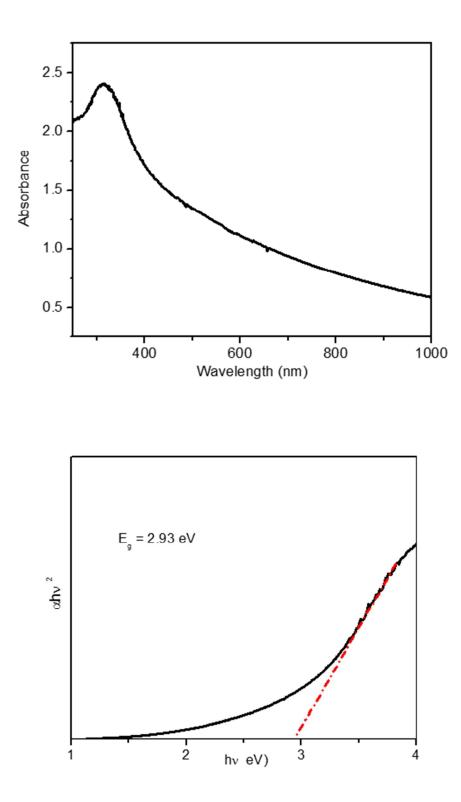



Figure S7. Heat of dehydration versus specific surface area of CeO₂.

Figure S8. UV/vis absorption spectra and the plot of $(\alpha h\nu)^2$ versus photon energy for ceria-3.

References

- Wang Z.; Quan Z.; Lin J. Remarkable changes in the optical properties of CeO₂ nanocrystals induced by lanthanide ions doping. Inorg. Chem. 2007, 46, 5237-5242.
- (2) Desphande S.; Patil S.; Kuchibatla S. V. N. T.; Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113-3.
- (3) Paparazzo E. On the curve-fitting of XPS Ce (3d) spectra of cerium oxides. Mater. Res. Bull. 2011, 46, 323-326.