Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

María B. Comba, Alejandra G. Suárez, Ariel M. Sarotti, María I. Mangione* and Rolando A. Spanevello* and Enrique D. V. Giordano

Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario – CONICET. Suipacha 531, S2002RLK Rosario, Argentina.

Corresponding authors:

*spanevello@iquir-conicet.gov.ar and mangione@iquir-conicet.gov.ar

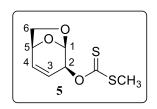
Table of contents

Experimental Section	S2
Synthesis of Allylic alcohol 4	S2
Synthesis of Allylic xanthate 5	S3
Synthesis of Diol 2	S3
Synthesis of Thiocarbonate 6	S3
Synthesis of Disulfide 7	S4
Synthesis of Acetylated disulfide 8	S4
Synthesis of Triacetate 11	S4
Thiomannopyranoside 1	S5
Selected spectra	S6
Figure S-1: ¹ H-NMR (300 MHz) of compound 4	S6
Figure S-2: ¹³ C-NMR (75 MHz) of compound 4	S6
Figure S-3: ¹ H-NMR (300 MHz) of compound 5	S7
Figure S-4: ¹³ C-NMR (75 MHz) of compound 5	S7
Figure S-5: ¹ H-NMR (300 MHz) of compound 2	S8
Figure S-6: ¹³ C-NMR (75 MHz) of compound 2	S8
Figure S-7: ¹ H-NMR (300 MHz) of compound 6	S9
Figure S-8: ¹³ C-NMR (75 MHz) of compound 6	S9
Figure S-9: ¹ H-NMR (300 MHz) of compound 7	S10
Figure S-10: ¹³ C-NMR (75 MHz) of compound 7	S10

Figure S-11: ¹ H-NMR (300 MHz) of compound 8	. S 11
Figure S-12: ¹³ C-NMR (75 MHz) of compound 8	. S 11
Figure S-13: ¹ H-NMR (300 MHz) of compound 11	. S12
Figure S-14: ¹³ C-NMR (75 MHz) of compound 11	. S12
Figure S-15: ¹ H-NMR (300 MHz) of compound 1	. S13
Figure S-16: ¹³ C-NMR (75 MHz) of compound 1	. S13

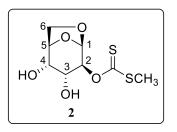
Experimental Section

All reagents and solvents were used directly as purchased or purified according to standard procedures. Analytical thin layer chromatography was carried out using commercial silica gel plates (Merck, Silica Gel 60 F254) and visualization was effected with short wavelength UV light (254 nm) and p-anysaldehyde solution with subsequent heating. Flash column chromatography was performed with silica gel 60 H (Merck) using EtOAc:hexanes mixtures. NMR spectra were recorded at 300 MHz for ¹H, and 75 MHz for ¹³C on a Bruker Avance-300 DPX spectrometer with CDCl₃ as solvent and (CH₃)₄Si (¹H) as internal standard. Chemical shifts are reported in delta (δ) units in parts per million (ppm) and splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet. Coupling constants are recorded in Hertz (Hz). The structure of the products were determined by a combination of spectroscopic methods such as IR, 1D and 2D NMR (including NOE, COSY, HSQC and HMBC experiments) and HRMS. Infrared spectra were recorded on a Shimadzu IR Prestige-21 spectrometer using sodium chloride plate pellets. Absorbance frequencies are recorded in reciprocal centimeters (cm⁻¹). High resolution mass spectra (HRMS) were obtained on a Bruker microTOF-Q II LC-MS spectrometer. Optical rotations were determined using a JASCO DIP-1000 digital polarimeter in 100 mm cells and the sodium D line (589 nm) at room temperature in the solvent and concentration indicated. The melting points were taken on a Leitz Wetzlar Microscope Heating Stage Model 350 apparatus and are uncorrected. Levoglucosenone **3** was obtained according to the procedure previously described.¹⁶


Synthesis of Allylic alcohol 4

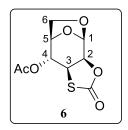
Compound **3** (5.94 g, 47.13 mmoles) was dissolved in MeOH (32 mL) and cooled at 0 °C. CeCl₃.7H₂O (17.56 g, 47.13 mmoles) and NaBH₄ (1.42 g, 37.7 mmoles) were added and stirred for 2.5 h. The solution was neutralized with HCl 0.1 N to reach pH = 7. The mixture was diluted with water (5 mL) and extracted several times with 50 mL portions of EtOAc. The combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was

purified by flash chromatography to afford **4** (5.59 g, 43.60 mmoles, 92%) as a white crystalline solid; Rf (60% hexane- EtOAc) 0.17; .mp = 67-68 °C (ethyl ether) [Lit 67-69 °C]²⁹; $[\alpha]_D^{25}$ -32.2 (*c* 0.995, CHCl₃) [Lit - 34 (*c* 1.00, CHCl₃)]²⁹; v_{max} (KBr) 3445 (OH), 3420, 1628 (C=C), 1122, 1066, 1045 cm⁻¹; δ_H (300 MHz CDCl₃) 6.12 (1H, dd, *J* 9.8, 4.3 Hz, H-4), 5.70 (1H, ddd, *J* 9.8, 2.4, 2.2 Hz, H-3), 5.51 (1H, dd, *J* 2.7, 2.2 Hz, H-1), 4.66 (1H, dd, *J* 4.3, 4.2 Hz, H-5), 4.33 (1H, s, H-2), 3.84 (1H, d, *J* 6.6 Hz, H-6*endo*), 3.75 (1H, dd, *J* 6.6, 4.2 Hz, H-6*exo*), 2.15 (1H, s, OH); δ_C (75 MHz CDCl₃) 130.6 (C-4), 129.0 (C-3), 101.1 (C-1), 71.1 (C-2), 70.5 (C-6), 68.6 (C-5).

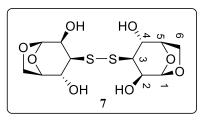

Synthesis of Allylic xanthate 5

To a solution of compound **4** (1.26 g, 9.84 mmoles) in 10 mL of anhydrous THF was added a suspension of NaH (60% dispersion in mineral oil) (0.86 g, 19.70 mmoles) in 40 mL of anhydrous THF. The mixture was cooled at 0 °C. CS₂ (1.5 mL, 24.60 mmoles) and CH₃I (2.15 mL, 34.50 mmoles) were added. The mixture was stirred during 3 h and then a solution of NH₄Cl (sat) (2 mL) was added. The solution was extracted with EtOAc (100 mL) and then washed with 5 mL of brine.

The combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography to afford **5** (2.01 g, 9.22 mmoles, 94%) as a white crystalline solid; Rf (60% hexane- EtOAc) 0.56; mp = 61-62 °C (diisopropylether). $[\alpha]_D^{22}$ +18.2 (*c* 1.145, CHCl₃); v_{max} (KBr) 3000, 2968, 2908, 1653 (C=C), 1288, 1208 (C=S), 1120, 882 cm⁻¹; δ_H (300 MHz CDCl₃) 6.36 (1H, s, H-2), 6.27 (1H, dd, *J* 9.8, 4.1 Hz, H-4), 5.79 (1H, s, H-1), 5.76 (1H, d, *J* 9.8 Hz, H-3), 4.73 (1H, dd, *J* 4.3, 4.1Hz, H-5), 4.02 (1H, d, *J* 6.4 Hz, H-6*endo*), 3.82 (1H, dd, *J* 6.4, 4.3 Hz, H-6*exo*), 2.59 (3H, s, SCH₃); δ_C (75 MHz CDCl₃) 215.8 (C=S), 133.2 (C-4), 123.8 (C-3), 98.3 (C-1), 79.3 (C-2), 71.3 (C-5), 71.1 (C-6), 19.1 (SCH₃); HRMS (EI, MH⁺) MH⁺ found 219.01384, C₈H₁₁O₃S₂⁺ calcd 219.01441.

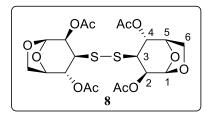

Synthesis of Diol 2

Compound **5** (795 mg, 3.64 mmoles) was dissolved in acetone:H₂O 95:5 mixture (25.7 mL), NMO was added and then a solution of OsO_4 in 'BuOH was added (9.20 mg, 0.04 mmoles). The mixture was stirred during 72 h and then cooled at 0 °C. Na₂SO₃ was added and after 10 min the solution was filtered. The residue was purified by flash chromatography to afford **2** (861 mg, 3.42 mmoles, 94%) a white crystalline solid; Rf (60% Hexane-EtOAc) 0.08; mp = 119-120 °C (diisopropylether); $[\alpha]_D^{21}$ -155.6 (*c* 1.095, CHCl₃); v_{max} (KBr) 3534


(OH), 3442 (OH), 2973, 2959, 2928, 2896, 1477, 1409, 1332, 1311, 1283, 1208 (C=S), 1088, 915cm⁻¹; $\delta_{\rm H}$ (300 MHz CDCl₃) 5.63 (1H, dd, *J* 8.3, 1.7 Hz, H-2), 5.60 (1H, d, *J* 1.7 Hz, H-1), 4.72 (1H, ddd, *J* 5.1, 1.9, 1.6 Hz, H-5), 4.09 (1H, s, H-3), 4.00 (1H, s, H-4), 3.86 (1H, dd, *J* 8.1, 5.1 Hz, H-6*exo*), 3.81 (1H, dd, *J* 8.1, 1.6 Hz, H-6*endo*), 3.06 (1H, s, OH), 3.02 (1H, s, OH), 2.60 (3H, s, SCH₃); $\delta_{\rm C}$ (75 MHz CDCl₃) 217.0 (C=S), 98.3 (C-1), 83.2 (C-2), 76.2 (C-5), 70.5 (C-3), 67.9 (C-4), 65.5 (C-6), 19.3 (SCH₃); HRMS (EI MNa⁺) found 275.00115. C₈H₁₂O₅S₂Na⁺ calcd 275.00184.

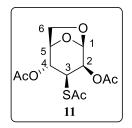
Synthesis of Thiocarbonate 6

Xanthate 2 (190 mg, 0.75 mmoles) was dissolved in AcOH (12 mL) and cooled at 0 °C in an ice-bath. A solution of $H_2SO_4/AcOH 50 \%$ (7.8 mL) was added and the mixture was stirred for 6 h at room temperature. The mixture was cooled to 0° C in an ice bath and diluted with EtOAc (150 mL). Solid NaHCO₃ (10 g) was added and after 10 minutes of stirring, the base was dissolved with water and the phases were separated. The organic layer was washed with 5% aqueous NaHCO₃ (2 x 50 mL), brine (50 mL) and dried (Na₂SO₄ anh.). After filtration, the solvents were concentrated under reduced


pressure. The residue was purified by flash chromatography to afford compound **6** (124.3 mg, 0.50 mmoles, 67%) as white crystalline solid; Rf (60%, hexane:EtOAc) 0.21; $[\alpha]_D^{23}$ -112.4 (*c* 1.1, CHCl₃); v_{max} (KBr) 2981, 2843, 1748 (C=O), 1357, 1223, 1206, 1160, 1023, 841 cm⁻¹; δ_H (300 MHz CDCl₃) 5.56 (1H, d, *J* 2.3 Hz, H-1), 5.00 (1H, s, H-4), 4.69 (1H, dd, *J* 8.6, 2.3 Hz, H-2), 4.66 (1H, dd, *J* 5.8 Hz, H-5), 4.32 (1H, dd, *J* 8.6 Hz, H-3), 4.30 (1H, dd, *J* 8.4 Hz, H-6*endo*), 3.88 (1H, dd, *J* 8.4 Hz, 5.8 Hz, H-6*exo*), 2.15 (3H, s, COC<u>H₃</u>); δ_C (75 MHz, CDCl₃) 170.3 (C=O), 169.8 (<u>COCH₃</u>), 98.0 (C-1), 74.4 (C-5), 74.2 (C-2), 69.8 (C-4), 66.1 (C-6), 45.3 (C-3), 20.8 (CO<u>C</u>H₃); HRMS (EI, MNa⁺): MNa⁺, found 269.00921 C₉H₁₀O₆SNa⁺ calcd 269.00903.

Compound **6** (88 mg, 0.36 mmoles) was dissolved in anhydrous CH_3OH (12 mL) and anhydrous K_2CO_3 (86 mg, 0.62 mmoles) was added. The mixture was stirred for 3 h at room temperature under argon atmosphere. After completion (according to TLC analysis) the reaction mixture was filtered over a Celite pad and washed with aliquots of CH_3OH . The combine filtrates were concentrated under reduced pressure obtaining

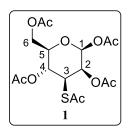
colorless oil. This compound was used without further purification in the next reaction step. For structural characterization an aliquot of crude product **7** was suspended in methyl *tert*-butyl ether and stirred overnight to obtain compound **7** as an off-white solid.; v_{max} (KBr) 3342 (OH), 2926, 1635, 1558, 1386, 1078 cm⁻¹; $\delta_{\rm H}$ (300 MHz, H₂O) 5.32 (1H, s, H-1), 4.55 (1H, d, *J* 5.1 Hz, H- 5), 4.43 (1H, d, *J* 8.1 Hz, H-6*endo*), 4.30 (1H, s, H-4), 4.11 (1H, d, *J* 6.7 Hz, H-2), 3.66 (1H, dd, *J* 5.1, 7.7 Hz, H-6*exo*), 3.36 (1H, d, *J* 6.7 Hz, H-3), 3.27 (1H, s, OH), 1.83 (1H, s, OH); $\delta_{\rm C}$ (75 MHz, H₂O) 101.2 (C-1), 76.8 (C-5), 71.3 (C-4), 67.1 (C-2), 65.6 (C-6), 56.8 (C-3), HRMS (EI, MK⁺): MK⁺, found 393.00692. C₁₂H₁₈KO₈S₂⁺ calcd 393.00747.


Synthesis of Acetilated disulfide 8

Crude product **7** (88 mg) was dissolved in anhydrous $CH_2Cl_2(1.8 \text{ mL})$ and the distilled pyridine (0.8 mL) was added at room temperature. Ac₂O (0.4 mL, 3.57 mmoles) and DMAP (11 mg, 0.09 mmoles) were added and the solution was stirred overnight under argon atmosphere. The mixture was treated with HCl 50% (1 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were dried (Na₂SO₄ anh.) and concentrated under reduce pressure. The resulting residue was purified by flash

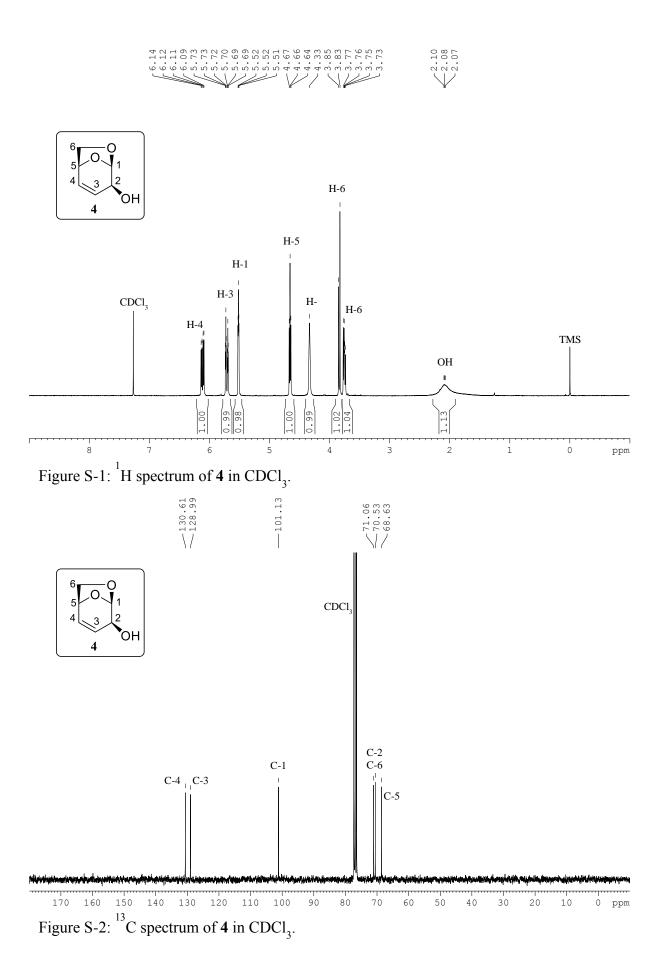
chromatography to afford compound **8** (71 mg, 0.20 mmoles, 55% two steps) as a white crystalline solid.; **8**: R_f (60% hexane/ EtOAc) 0.32; $[\alpha]_D^{28}$ +134.8 (*c* 1.1, CDCl₃); mp 199 – 200° C (CH₂Cl₂/hexane); v_{max} (KBr) 1734 (C=O), 1375, 1361, 1247, 1236, 1153 cm⁻¹; δ_H (300 MHz, CDCl₃) 5.41 (1H, bs, H-1), 5.24 (1H, s, H-4), 4.88 (1H, dd, *J* 1.3, 7.0 Hz, H-2), 4.63 (1H, d, *J* 5.1 Hz, H-5), 4.49 (1H, d, *J* 8.0 Hz, H-6*endo*), 3.77 (1H, dd, *J* 5.1, 8.0 Hz, H-6*exo*), 3.59 (1H, d, *J* 7.0, 8.0 Hz, H-3), 2.17 (3H, s, COC<u>H₃</u>), 2.08 (3H, s, COC<u>H₃</u>); δ_C (75 MHz, CDCl₃) 170.2 (<u>C</u>OCH3), 170.1 (<u>C</u>OCH3), 99.6 (C-1), 75.1 (C-5), 72.4 (C-4), 70.4 (C-2), 65.9 (C-6), 48.6 (C-3), 21.1 (CO<u>C</u>H₃), 20.5 (CO<u>C</u>H₃); HRMS (EI, MNa⁺): MNa⁺, found 545.07622. C₂₀H₂₆NaO₁₂S₂⁺ calcd 545.07579.

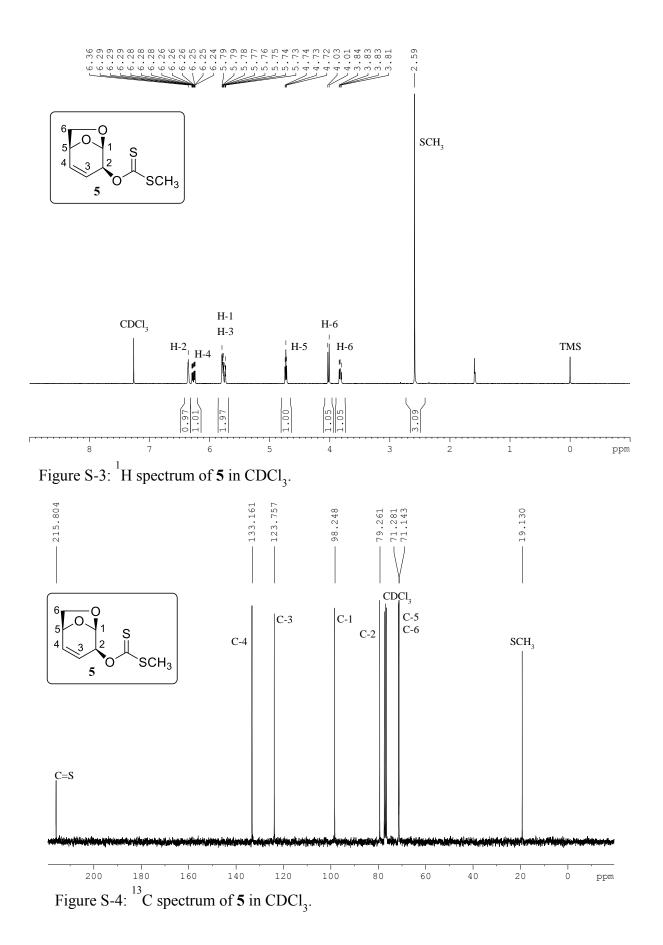
Synthesis of Triacetate 11

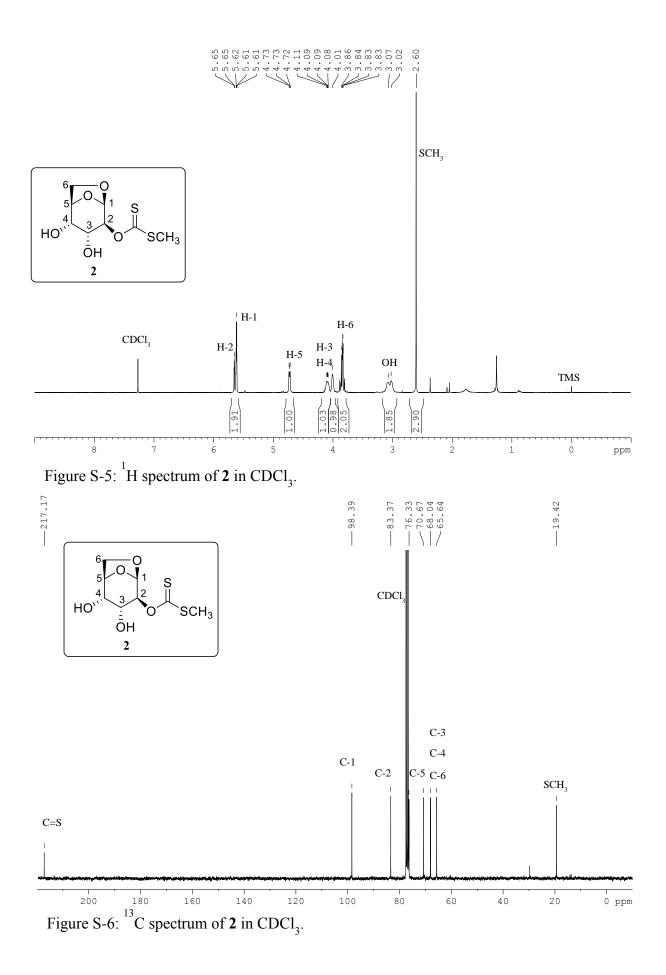


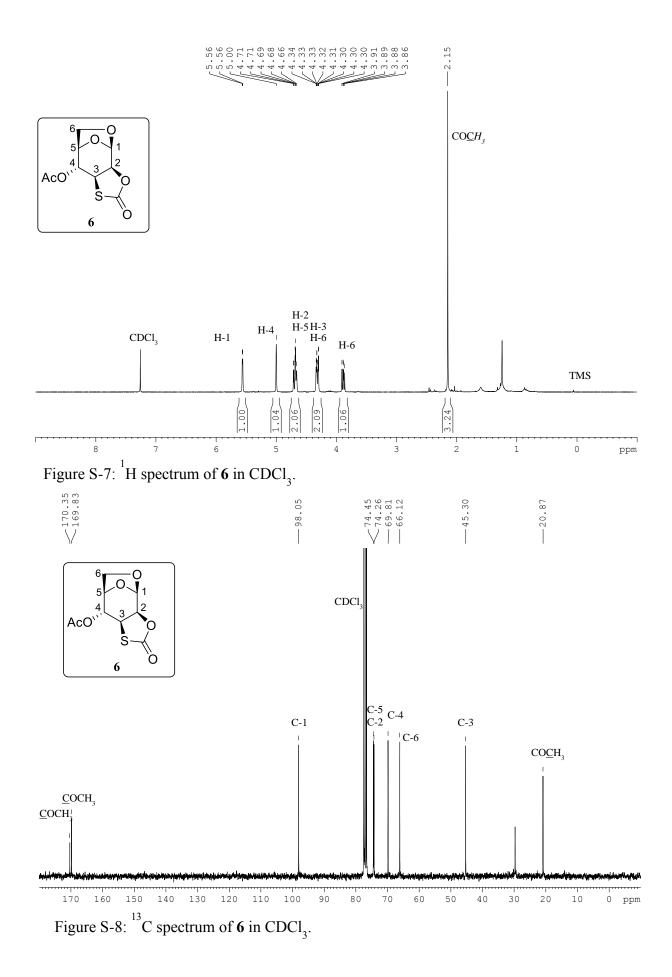
Compound **8** (25 mg, 0.05 mmoles) was dissolved in anhydrous THF (6 mL) and cooled to 0° C. LiAlH₄ (18 mg, 0.50 mmoles) was added and the resulting suspension was stirred at room temperature for 16 h. The mixture was cooled to 0° C, diluted with EtOAc (2.5 mL) and the excess of reducing agent was destroyed by addition of methanol (2.5 mL). Finally, the mixture was neutralized with AcOH and solvents were concentrated under reduced pressure. The resulting residue was dissolved in anhydrous pyridine (0.7 mL) and Ac₂O (0.7 mL) and catalytic amount of DMAP was added. The

mixture was stirred for 16 h at room temperature. The reaction was concentrated and the residue was dissolved in CH_2Cl_2 (20 mL) and washed with water (2 x 10 mL). The organic layer was dried (Na₂SO₄ anh.)

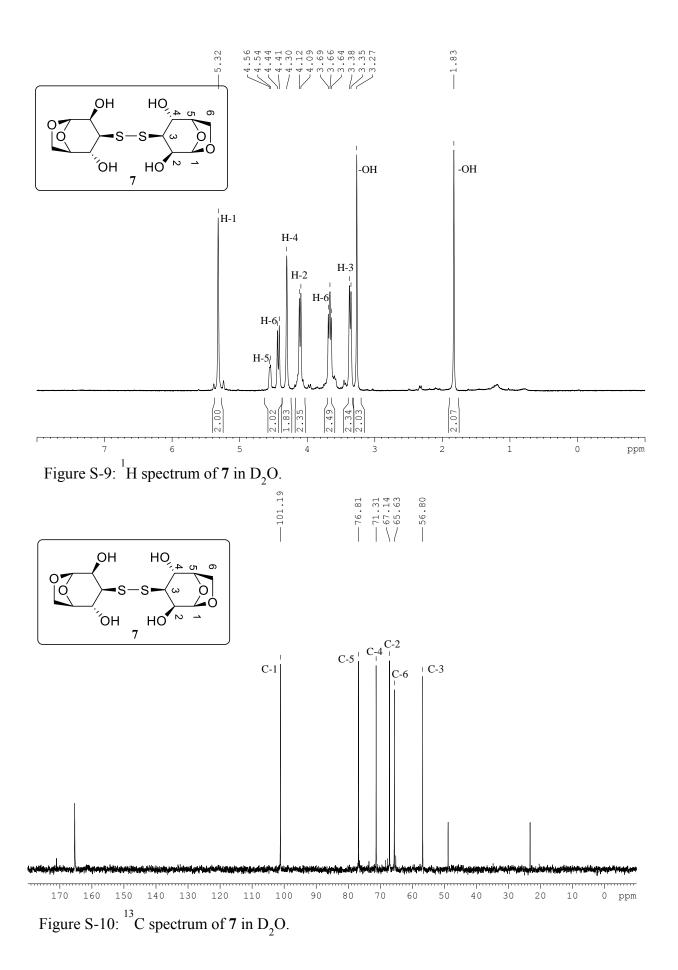

and the solvent was concentrated under reduced pressure. The residue was purified by flash chromatography to give compound **11** (17.6 mg, 0.06 mmoles, 57% two steps) as a colorless oil; R_f (60% hexane/EtOAc) 0.39; $[\alpha]_D^{26}$ -85.8 (*c* 0.6, CDCl₃); v_{max} (liquid film) 1735 (C=O), 1691, 1373, 1217, 1062 cm⁻¹; δ_H (300 MHz, CDCl₃) 5.45 (1H, s, H-1), 5.15 (1H, dd, *J* 1.6, 7.1 Hz, H-2), 4.86 (1H, bs, H-4), 4.57 (1H, d, *J* 5.4 Hz, H-5), 4.29 (1H, d, *J* 7.1 Hz, H-3), 4.27 (1H, d, *J* 8.4 Hz, H-6*endo*), 3.78 (1H, dd, *J* 5.4, 8.4 Hz, H-6*exo*), 2.35 (3H, s, COC<u>H₃</u>), 2.17 (3H, s, COC<u>H₃</u>), 2.10 (3H, s, COC<u>H₃</u>); δ_C (75 MHz, CDCl₃) 192.9 (COCH₃), 168.8 (COCH₃), 168.2 (COCH₃), 98.8 (C-1), 73.7 (C-5), 73.1 (C-4), 67.5 (C-2), 64.9 (C-6), 41.1 (C-3), 29.2 (COCH₃), 20.1 (COCH₃), 19.6 (COCH₃); HRMS (EI, MNa⁺): MNa⁺, found 327.04975. C₁₂H₁₆NaO₇S⁺ calcd 327.05089.

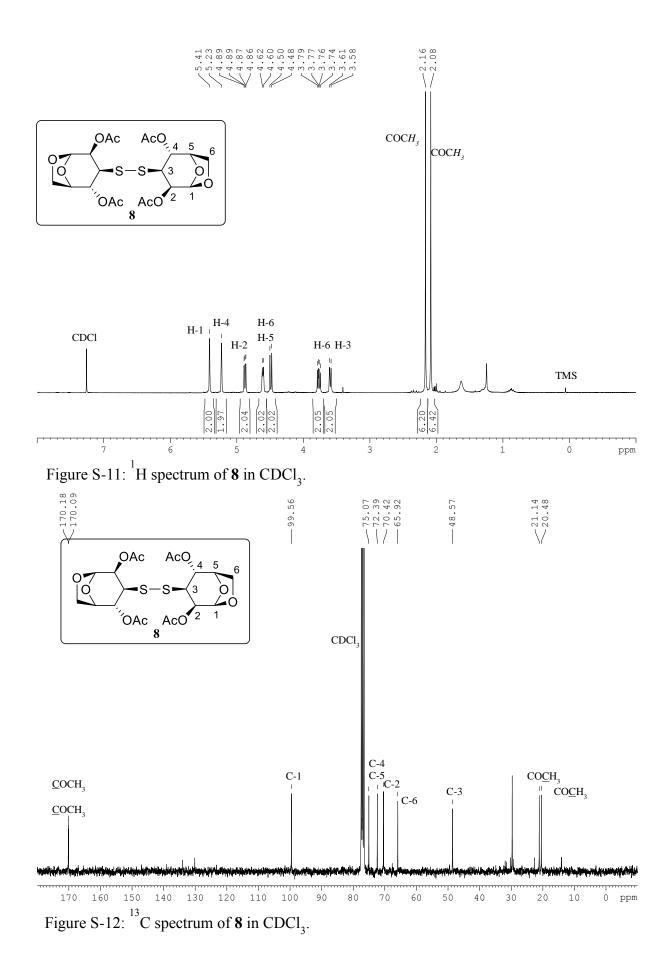

Synthesis of Thiomannopyranoside 1

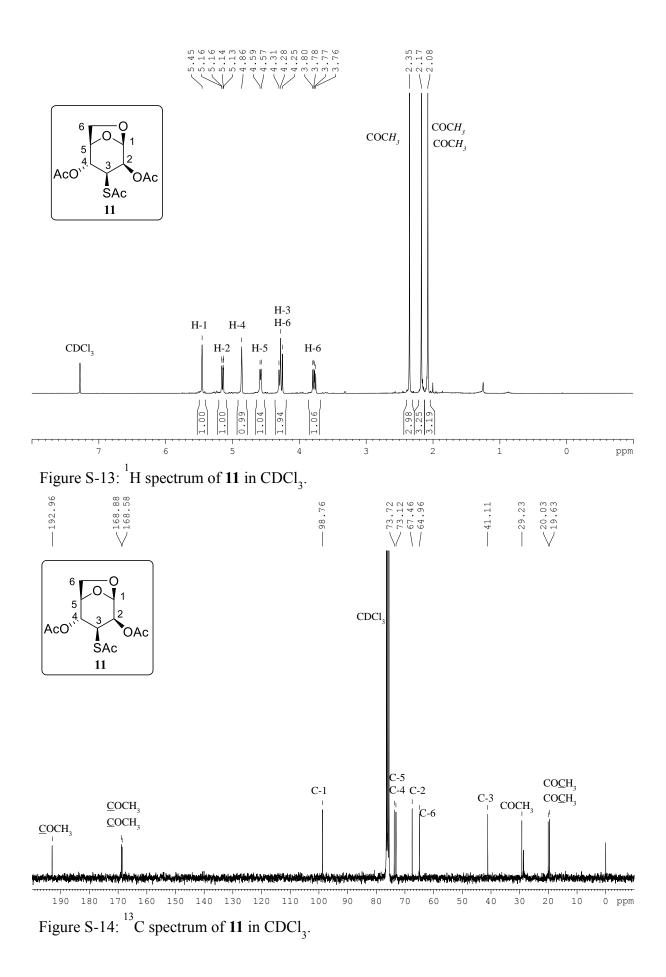


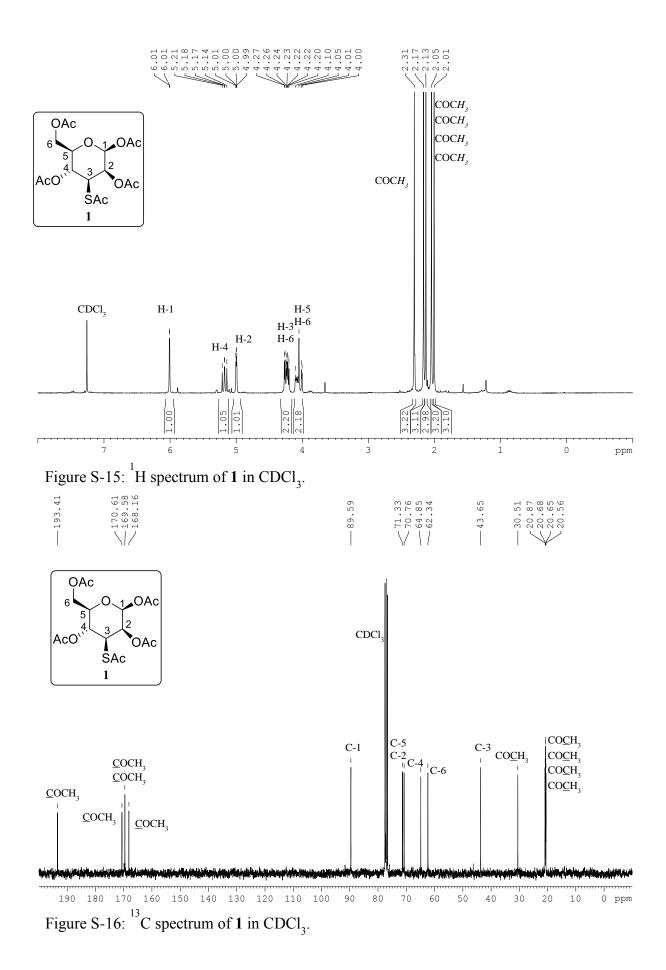

Compound **11** (55 mg, 0.18 mmoles) was dissolved in Ac₂O (1.8 mL) under argon atmosphere. The solution was cooled at 0 °C and 2 drops of TMSOTf were added. The mixture was stirred for 1 h at room temperature. Then, the reaction mixture was treated with a saturated solution of NaHCO₃ (1 mL) and extracted with EtOAc (3 x 10 mL). The combine organic layers were dried (Na₂SO₄ anh.) and the solvent was concentrated under reduce pressure. The residue was purified by flash chromatography to give **1** (57.6 mg, 0.16 mmoles, 88%) as a colorless oil; R_f (60% hexane/EtOAc) 0.6;

 $[a]_{D}^{22}+28.4$ (*c* 1.1, CDCl₃); v_{max} (liquid film) 1749 (C=O), 1371, 1217 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 6.01 (1H, d, *J* 1.7 Hz, H-1), 5.17 (1H, dd, *J* 9.7, 11.4 Hz, H-4), 5.00 (1H, dd, *J* 1.7, 3.0 Hz, H-2), 4.26 (1H, dd, *J* 3.0, 11.4 Hz, H-3), 4.22 (1H, m, H-6), 4.08 (1H, m, H-5), 4.05 (1H, m, H-6), 2.31 (3H, s, COC<u>H₃</u>), 2.17 (3H, s, COC<u>H₃</u>), 2.13 (3H, s, COC<u>H₃</u>), 2.05 (3H, s, COC<u>H₃</u>); 2.01 (3H, s, COC<u>H₃</u>); δ_{C} (75 MHz, CDCl₃) 193.4 (COCH₃), 170.6 (COCH₃), 169.6 (2 COCH₃), 168.2 (COCH₃), 89.6 (C-1), 71.3 (C-5), 70.8 (C-2), 65.6 (C-4), 62.3 (C-6), 43.7 (C-3), 30.5 (COC<u>H₃</u>), 20.9 (COC<u>H₃</u>), 20.7 (COC<u>H₃</u>), 20.6 (COC<u>H₃</u>), 20.5 (COC<u>H₃</u>); HRMS (EI, MNa⁺): MNa⁺, found 429.08385. C₁₆H₂₂NaO₁₀S⁺ calcd 429.08259.








S 9

S 12

