Supporting Information for:

Colloidal Synthesis of Monodisperse Semiconductor Nanocrystals through Saturated Ionic Layer Adsorption.

Natalia Razgoniaeva, ^{1,2} Luis Carrilo,⁴ Pavel Moroz,^{1,2} Douglas Burchfield,^{1,3} Prakash Adhikari² Priyanka Yadav, ² Dmitriy Khon,⁴ Mikhail Zamkov^{1,2,*}.

The Center for Photochemical Sciences¹, Department of Physics² and Department of Chemistry³, Bowling Green State University, Bowling Green, Ohio 43403. Department of Chemistry and Biochemistry⁴, St. Mary's University, San Antonio, Texas, 78228.

Corresponding author: zamkovm@bgsu.edu; Tel: 419-372-0264; Fax: 419-372-9938

Figure SF1. A schematic illustration of the key differences between SILAR and c-ALD techniques for the nanocrystal shell growth. (a). The SILAR synthesis is performed in a single-phase reaction mixture, which results in the accumulation of unreacted precursors causing the secondary nucleation (at high precursor concentrations) or sub-monolayer growth (at low precursor concentrations). (b). The c-ALD employs a two-phase growth mixture, which is designed to separate precursors from nanoparticles. As a result, unreacted precursors can be removed after the half-monolayer (cationic or anionic) is grown.

Figure SF2. The relationship between the minimal concertation of the Na₂S precursor in the formamide layer (needed for a saturated half-monolayer growth) and the concentration of CdS seeds

in the toluene phase. The minimal concertation of OLAM (for stabilizing nanocrystals in the non-polar phase) is indicated for each measurement.

Figure SF3. FTIR spectra of the OLAM-capped $(CdS)S^{2-}$ NCs (black curve) and pure OLAM (red curve). The absence of the NH₂ stretch modes tells us that OLAM attaches to the surface of nanoparticles by forming a complex with the sulfur ion.

Figure SF4. Evolution of the CdS_{318nm} cluster absorption profile upon reacting with increasing amount of $Cd(OAc)_2$ ions in solution. The position of the exciton peak does not red-shift indicating that the surface of the CdS_{318} cluster is likely to be saturated with Cd.

Figure SF5. Additional TEM images of CdS NCs grown by SILA technique. (a). CdS_{390nm}+4(CdS₁) NCs grown to a full layer saturation (b). CdS_{390nm}+10(CdS₁) NCs grown *without* full layer saturation.

Figure SF6. ¹H NMR spectra of (a). OA-capped CdS and (b). OLAM-capped (CdS)S²⁻NCs after the deposition of a sulfur layer.