Supporting Information

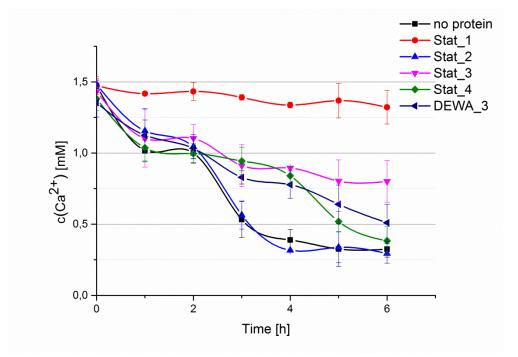
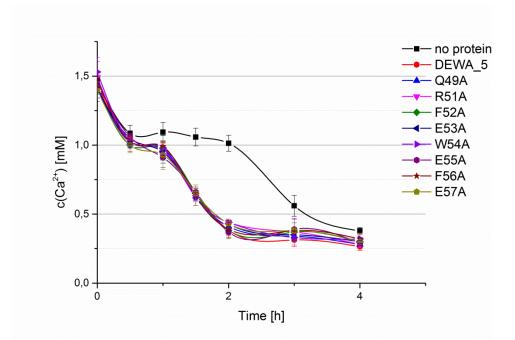
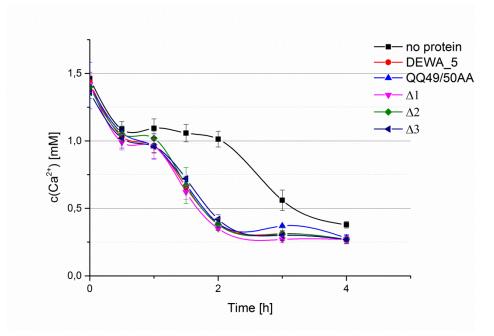
Accelerated nucleation of hydroxyapatite using an engineered hydrophobin fusion protein

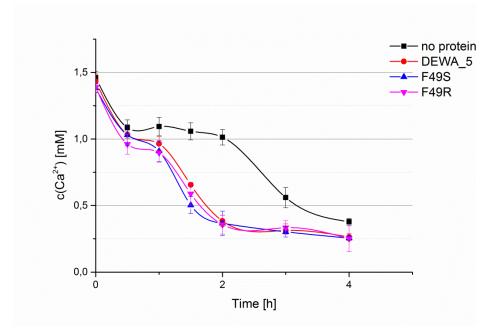
Melanie Melcher¹, Sandra J. Facey¹, Thorsten M. Henkes¹, Thomas Subkowski², and Bernhard Hauer¹*

¹ Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

² Fine Chemicals Research, BASF SE, 67056 Ludwigshafen, Germany

* Corresponding author: Bernhard Hauer, Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, Phone: 0049-711-685-63193; Fax: 0049-711-685-64569; E-mail: <u>bernhard.hauer@itb.uni-stuttgart.de</u>


Figure S1: Nucleation in artificial saliva. Calcium consumption in the presence of DEWA_3 and the statherin variants.

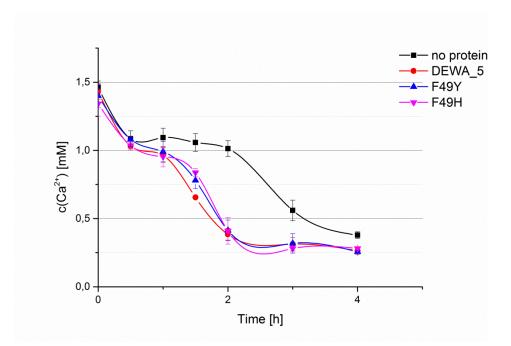

Figure S2: Nucleation of the alanine scan single variants in the sequence of P_{11} -4 within DEWA_5. Calcium consumption in artificial saliva in presence of 25 μ M protein and the control without protein.

Figure S3: Nucleation in artificial saliva. Calcium consumption in the presence of DEWA_5 and variants lacking glutamine residues in the sequence of P_{11} -4 within DEWA_5 either by alanine substitution (QQ49/50AA) or by deletion ($\Delta 1$, $\Delta 2$ and $\Delta 3$).

Figure S4: Nucleation in artificial saliva. Calcium consumption in the presence of DEWA_5 and variants F49S (40aaYaaD-SEWEFE-DEWA) or F49R (40aaYaaD-REWEFE-DEWA).

Figure S5: Nucleation in artificial saliva. Calcium consumption in the presence of DEWA_5 and variants F49Y (40aaYaaD-YEWEFE-DEWA) or F49H (40aaYaaD-HEWEFE-DEWA).