Supporting Information

B(C₆F₅)₃-catalyzed Group Transfer Polymerization of *N,N*-Disubstituted Acrylamide Using Hydrosilane: Effect of Hydrosilane and Monomer Structures, Polymerization Mechanism, and Synthesis of α-End-functionalized Polyacrylamides

Seiya Kikuchi,^a Yougen Chen,^{b,c} Kodai Kitano,^a Shin-ichiro Sato,^d Toshifumi Satoh,^d and

Toyoji Kakuchi^{b,d,e} *

^a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan

^b Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan

^c Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong, 518060, China

^d Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan

^eResearch Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, WeiXing Road 7989, Jilin, 130022, China

CORRESPONDING AUTHOR FOOTNOTE

Tel & Fax: +81-11-706-6602. E-mail: kakuchi@poly-bm.eng.hokudai.ac.jp

[†]Hokkaido University

Contents

1.	Experimental section (Materials and Measurements)	1
2.	Synthesis of 1-(4-morpholinyl)-1-dimethylethylsiloxy-1-propene (Mor-SKAm Me_2Et)	3
3.	Synthesis of functional methacrylamides (Fn-MAms).	4
4.	Polymerization procedure.	8
5.	Scheme S2. Schematic representation for (a) coordination between DEtAAm and $B(C_6F_5)$	3 and
	(b) abstraction of hydride from HSi.	10
6.	Figures S1-S3.	11
7.	References	14

1. Experimental section

Materials. Dichloromethane (CH₂Cl₂, >99.5%; water content, <0.001%), toluene (>99.5%; water content, <0.001%), methanol (MeOH), calcium hydride (CaH₂), deuterated chloroform $(CDCl_{3,} > 99.8\%)$, and potassium carbonate (K_2CO_3) were purchased from Kanto Chemicals Co., *N*,*N*-Diethylacrylamide *N*,*N*-dimethylacrylamide Inc. (DEtAAm), (DMeAAm), *N*-acryloylmorpholine (MorAAm), *N*-(trimethylsilyl)bis(trifluoromethanesulfonyl)imide dimethylphenylsilane (Me₂PhSiH), (Me₃SiNTf₂), methyldiphenylsilane (MePh₂SiH), triisopropylsilane (iPr₃SiH), triphenylsilane (Ph₃SiH), tert-butyldimethylsilane (tBuMe₂SiH), tri-*n*-butylsilane (nBu₃SiH), triethylsilane (Et₃SiH), dimethylethylsilane (Me₂EtSiH), dimethylethylchlorosilane (Me₂EtSiCl), *tert*-butyldimethylchlorosilane (tert-BuMe₂SiCl), N.N-dimethylmethacrylamide (DMeMAm), imidazole, N.N.N.N-tetramethylethylenediamine (TMEDA), and *trans*-3-indoleacrylic acid were purchased from Tokyo Kasei Kogyo Co., Ltd. 1-Methylimidazole, sodium trifluoroacetate, silver trifluoroacetate. and 1,8-dihydroxy-9-(10H)-anthracenone were purchased from the Sigma-Aldrich Chemicals Co. Tris(pentafluorophenyl)borane (B(C_6F_5)₃) was purchased from Wako Pure Chemical Industries, Ltd., and used after recrystallization from *n*-hexane at -30 °C. DEtAAm, DMeAAm, MorAAm, DMeMAm, CH₂Cl₂, and HSis, except for Ph₃SiH, were distilled from CaH₂, degassed by three freeze-pump-thaw cycles, and stored under an Ar atmosphere prior to use. Ph₃SiH was used after *N*,*N*-Diallyacrylamide (DAlAAm),¹ *n*-hexane. recrystallization from (BMEAAm),¹ *N*,*N*-bis(2-methoxyethyl)acrylamide

2,2,5-trimethyl-1,3-dioxan-5-ylmethanol-tosylate,²

N-(2-*tert*-butyldimethylsilyloxyethyl)-*N*-(prop-2-ynyl)amine,³ were synthesized according to a previous report. The Spectra/Por® 6 Membrane (MWCO: 1000) was used for the dialysis. All

other chemicals were purchased from available suppliers and used without purification.

and

Measurements. The ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded using a JEOL ECS400. The preparation of the polymerization solution was carried out in an MBRAUN stainless steel glove box equipped with a gas purification system (molecular sieves and copper catalyst) and a dry argon atmosphere (H₂O, $O_2 < 1$ ppm). The moisture and oxygen contents in the glove box were monitored by an MB-MO-SE 1 and MB-OX-SE 1, respectively. Size exclusion chromatography (SEC) in DMF containing lithium chloride (LiCl; 0.01 mol L^{-1}) was performed at 40 °C using a Jasco high performance liquid chromatography (HPLC) system (PU-980 Intelligent HPLC pump, CO-965 column oven, RI-930 Intelligent RI detector, and Shodex DEGAS KT-16) equipped with a Shodex Asahipak GF-310 HQ column (linear, 7.6 mm \times 300 mm; pore size, 20 nm; bead size, 5 μ m; exclusion limit, 4 \times 10⁴) and a Shodex Asahipak GF-7M HQ column (linear, 7.6 mm × 300 mm; pore size, 20 nm; bead size, 9 µm; exclusion limit, 4×10^7) at the flow rate of 0.6 mL min⁻¹. The $M_{\rm n SEC}$ and $M_{\rm w}/M_{\rm n}$ of the acrylamide polymers were determined by the RI based on poly(methyl methacrylate) (PMMA) with the $M_{\rm w}$ (M_w/M_p) s of 1.25×10^6 g mol⁻¹ (1.07), 6.59×10^5 g mol⁻¹ (1.02), 3.003×10^5 g mol⁻¹ (1.02), 1.385×10^5 g mol⁻¹ (1.05), 6.015×10^4 g mol⁻¹ (1.03), 3.053×10^4 g mol⁻¹ (1.02), and 1.155×10^4 g mol⁻¹ (1.05) with the second seco 10^4 g mol^{-1} (1.04), $4.90 \times 10^3 \text{ g mol}^{-1}$ (1.10), $2.87 \times 10^3 \text{ g mol}^{-1}$ (1.06), and $1.43 \times 10^3 \text{ g mol}^{-1}$

(1.15), respectively. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurements were performed using an Applied Biosystems Voyager-DE STR-H mass spectrometer with a 25 kV acceleration voltage. The positive ions were detected in the reflector mode (25 kV). A nitrogen laser (337 nm, 3 ns pulse width, 106–107 W cm⁻²) operating at 3 Hz was used to produce the laser desorption, and the 100-300 shots were summed. The spectra were externally calibrated using a sample prepared from narrow-dispersed polystyrene (Chemco Scientific Co., Ltd., M_n , 3.6 kg mol⁻¹; M_w/M_n , 1.08; 30 μ L, 10 mg mL⁻¹ in THF), the matrix (1,8-dihydroxy-9-(10*H*)-anthracenone, 30 mg mL⁻¹, 100 μ L), and the cationizing agent (silver trifluoroacetate, 10 mg mL⁻¹, 15 μ L) with a linear calibration. Samples for the MALDI-TOF MS were prepared by mixing the polymer (1.5 mg mL⁻¹, 10 μ L), the matrix (*trans*-3-indoleacrylic acid, 10 mg mL⁻¹, 90 μ L), and the cationizing agent (sodium trifluoroacetate, 10 mg mL⁻¹, 10 μ L) in THF.

2. Synthesis of 1-(4-morpholinyl)-1-dimethylethylsiloxy-1-propene (Mor-SKAm^{Me₂Et}). To a solution of diisopropylamine (3.37 mL, 24.0 mmol) in dry-THF (30 mL) in a 100-mL three-necked flask, *n*-butyllithium (13.6 mL, 22.0 mmol; 1.60 mol L⁻¹ in *n*-hexane) was dropwise added at 0 °C under an argon atmosphere. After stirring for 30 min, 1-(4-morpholinyl)-1-propanone (2.68 mL, 20 mmol) was slowly added. The reaction mixture was stirred at 0 °C for 1 h. Me₂EtSiCl (4.18 mL, 52.2 mmol) was then added. After stirring for 90 min at 0 °C, the solvent was removed under reduced pressure. The product was then directly

distilled under reduced pressure (98-101 °C/4.50 mmHg) to afford Mor-SKAm^{Me₂Et} as a transparent liquid. Yield, 2.11 g (46.0%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.13 (s, 6H, -Si(CH₃)₂), 0.63 (q, J = 8.3 Hz, 2H, -SiCH₂CH₃), 0.94 (t, J = 8.4 Hz, 3H, -SiCH₂CH₃), 1.49 (d, J = 6.8 Hz, 3H, CH₃CH=C-), 2.72 (t, J = 5.6 Hz, 4H, N(CH₂CH₂)₂O), 3.64 (t, J = 5.4 Hz, 4H, N(CH₂CH₂)₂O), 3.69 (q, J = 6.8 Hz, 1H, CH₃CH=C-). ¹³C NMR (100 MHz): δ (ppm) –2.0, 6.8, 8.5, 10.5, 49.2, 66.9, 82.2, 154.0.

3. Synthesis of functional methacrylamides (Fn-MAms)

Scheme S1. Synthetic route of functional methacrylamides (Fn-MAms).

Synthesis of *N*-(2-hydroxyethyl)-*N*-methylmethacrylamide. Method SA: To a suspension of 2-(methylamino)ethanol (20.0 mL, 250 mmol), 1-methylimidazole (1.64 mL, 20.8 mmol), TMEDA (3.10 mL, 20.8 mmol), and K₂CO₃ (34.5 g, 250 mmol) in acetonitrile (200 mL), methacryloyl chloride (20.1 mL, 208 mmol) was added dropwise at 0 °C under a N₂ atmosphere. After stirring for 1 h, the reaction mixture was filtered and then condensed under reduced pressure. The crude product was purified by silica gel column chromatography (ethyl acetate \rightarrow acetone), affording *N*-(2-hydroxyethyl)-*N*-methylmethacrylamide as transparent liquid. Yield, 22.1 g (74.2 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.94 (s, 3H, CH₂=C(CH₃)-), 2.96, 3.07 (s, 3H, NCH₃), 3.40-3.60 (m, 3H, -NCH₂CH₂OH), 3.66-3.82 (m, 2H, -NCH₂CH₂OH), 5.00-5.24 (m, 2H, CH₂=C(CH₃)-). ¹³C NMR (100 MHz): δ (ppm) 20.0, 20.6, 32.5, 37.9, 50.0, 52.8, 59.3, 60.2, 115.3, 115.9, 140.3, 140.7, 173.7.

Synthesis of *N*,*N*-bis(2-hydroxyethyl)methacrylamide. Method SA was used to react diethanolamine (21.0 g, 200 mmol), 1-methylimidazole (1.30 mL, 16.5 mmol), TMEDA (2.45 mL, 16.5 mmol), K₂CO₃ (34.5 g, 200 mmol), acetonitrile (150 mL), and methacryloyl chloride (16.0 mL, 165 mmol). *N*,*N*-Bis(2-hydroxyethyl)methacrylamide was obtained as a transparent liquid purified by silica gel column chromatography (ethyl acetate \rightarrow acetone). Yield, 11.0 g (38.6 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.91 (s, 3H, CH₂=C(CH₃)-), 2.96, 3.07 (s, 3H, NCH₃), 3.51 (m, 4H, -N(CH₂CH₂OH)₂), 3.62-3.85 (m, 4H, -N(CH₂CH₂OH)₂), 4.2-4.7 (br, 2H, -N(CH₂CH₂OH)₂), 5.05, 5.14 (m, 2H, CH₂=C(CH₃)-). ¹³C NMR (100 MHz): δ (ppm) 20.7, 31.0, 49.3, 53.1, 60.6, 116.1, 140.6, 174.8.

Synthesis of *N*-(2-*tert*-butyldimethylsiloxyethyl)-*N*-methylmethacrylamide (Fn₁-MAm).

Method SB: To a solution of N-(2-hydroxyethyl)-N-methylmethacrylamide (5.00 g, 34.9 mmol), imidazole (3.56 52.4 mmol), and CH₂Cl₂ (100)mL), solution of g, а tert-butyldimethylchlorosilane (7.89 g, 52.4 mmol) in CH₂Cl₂ (10.0 mL) was added at room temperature under a N_2 atmosphere. After stirring for 9 h, the reaction mixture was filtered and washed with 0.5 N HCl aq. (100mL \times 1), saturated NaHCO₃ aq. (100 mL \times 2), and distilled water (100 mL \times 1). The organic layer was concentrated under reduced pressure after drying with anhydrous MgSO₄. The residue was purified by distillation under reduced pressure (83 °C/0.03 mmHg) to afford Fn₁-MAm as a transparent liquid. Yield, 6.13 g (68.2 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) -0.02, (s, 6H, -Si(CH₃)₂C(CH₃)₃), 0.82 (s, 9H, -Si(CH₃)₂C(CH₃)₃) 1.88 (s, 3H, $CH_2=C(CH_3)$ -), 2.90, 3.04 (s, 3H, NCH_3), 3.39-3.46 (m, 2H, $-NCH_2CH_2O$ -), 3.61-3.77 (m, 2H, -NCH₂CH₂O-), 4.94, 5.30-5.11 (m, 2H, CH₂=C(CH₃)-). ¹³C NMR (100 MHz): δ (ppm) -5.4, 18.2, 20.2, 21.0, 26.0, 32.6, 38.6, 49.7, 52.6, 60.9, 61.5, 115.0, 141.0, 172.0, 173.2. Anal. Calcd. for C₁₃H₂₇NO₂Si (257.18): C, 60.65; H, 10.57; N, 5.44. Found: C, 60.31; H, 10.63; N, 5.42.

Synthesis of *N*,*N*-bis(2-*tert*-butyldimethylsiloxyethyl) methacrylamide (Fn₂-MAm). Method SB was used to react *N*,*N*-bis(2-hydroxyethyl)methacrylamide (6.00 g, 34.6 mmol), imidazole (5.89 g, 86.6 mmol), and CH₂Cl₂ (100 mL), and *tert*-butyldimethylchlorosilane (13.1 g, 86.6 mmol). Fn₂-MAm was obtained as a transparent liquid purified by distillation under reduced pressure (130-134 °C/0.03 mmHg). Yield, 6.99 g (50.3 %). ¹H NMR (400 MHz, CDCl₃): δ

(ppm) -0.13, (s, 12H, (-Si(CH₃)₂C(CH₃)₃)₂), 0.71 (s, 18H, (-Si(CH₃)₂C(CH₃)₃)₂), 1.78 (s, 3H, CH₂=C(CH₃)-), 3.31-3.46 (m, 4H, -N(CH₂CH₂O-)₂), 3.46-3.67 (m, 4H, -N(CH₂CH₂O-)₂), 4.83, 4.95 (m, 2H, CH₂=C(CH₃)-). ¹³C NMR (100 MHz): δ (ppm) -5.5, 20.8, , 25.8, 47.4, 51.8, 61.1, 114.6, 141.0, 172.8. Anal. Calcd. for C₂₀H₄₃NO₃Si₂ (401.73): C, 59.79; H, 10.79; N, 3.49. Found: C, 59.32; H, 10.90; N, 3.48.

Synthesis of N-(2,2,5-trimethyl-1,3-dioxan-5-ylmethoxyethyl)-N-methylmethacrylamide (Fn₃-MAm). To a suspension of N-(2-hydroxyethyl)-N-methylmethacrylamide (5.00 g, 34.9 mmol), KOH (3.91 g, 69.8 mmol), and DMSO (100)mL), 2,2,5-trimethyl-1,3-dioxan-5-ylmethanol-tosylate (13.2 g, 41.9 mmol) was added. After stirring for 45 h at 60 °C, distilled water (300 mL) was added after the reaction mixture was cooled to r.t., then the mixture was extracted with diethyl ether (200 mL \times 4). The organic layer was concentrated under reduced pressure following by drying over anhydrous MgSO₄. The residue was purified by silica gel column chtomatography (ethyl acetate, $R_{\rm f} = 0.40$) and distillation under reduced pressure (95 °C/0.03 mmHg) to afford Fn₃-MAm as a transparent liquid. Yield, 1.10 g (11.0 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.78-0.86 (m, 3H, CH₃C(CH₂-)₃), 1.35, 1.39 (s, 6H, C(CH₃)₂), 1.92 (s, 3H, CH₂=C(CH₃)-), 2.95, 3.06 (s, 3H, NCH₃), 3.38-3.69 (m, 10H, NCH₂CH₂OCH₂C(CH₃)(CH₂O-)₂), 5.00, 5.10-5.18 (m, 2H, CH₂=C(CH₃)-). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 18.2, 20.3, 20.8, 21.1, 26.5, 27.3, 32.9, 34.4, 38.3, 47.0, 50.4, 66.5, 69.5, 69.8, 74.0, 74.4, 97.9, 115.3, 141.0, 172.4. Anal. Calcd. for C₁₅H₂₇NO₄ (285.38): C, 63.13; H, 9.54; N, 4.91. Found: C, 62.68; H, 9.56; N, 4.88.

Synthesis of *N*-(2-*tert*-butyldimethylsilyloxyethyl)-*N*-(prop-2-ynyl)methacrylamide

(Fn₄-MAm). Method SB used was to react *N*-(2-*tert*-butyldimethylsilyloxyethyl)-*N*-(prop-2-ynyl)amine 62.5 mmol), (13.3)g, 1-methylimidazole (0.49 mL, 6.25 mmol), TMEDA (0.93 mL, 6.25 mmol), K₂CO₃ (10.4 g, 75.0 mmol), acetonitrile (100 mL), and methacryloyl chloride (5.46 mL, 62.5 mmol). Fn₄-MAm was obtained as a transparent liquid purified by silica gel column chromatography (CH₂Cl₂, $R_f =$ 0.10) and distillation under reduced pressure (83 °C/0.03 mmHg). Yield, 0.69 g (3.92 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) -0.02, (s, 6H, -Si(CH₃)₂C(CH₃)₃), 0.81 (s, 9H, $-Si(CH_3)_2C(CH_3)_3$, 1.90 (s, 3H, $CH_2=C(CH_3)_2$), 2.21 (s, 1H, -C=CH), 3.51-3.59 (m, 2H, -NCH₂CH₂O-), 3.62-3.80 (m, 2H, -NCH₂CH₂O-), 4.22 (s, 2H, -CH₂C=CH), 4.98-5.18 (m, 2H, $CH_2 = C(CH_3) - 1.^{13}C$ NMR (100 MHz): δ (ppm) -5.4, 18.2, 20.6, 26.0, 33.7, 40.5, 46.9, 49.5, 61.0, 61.7, 72.0, 72.4, 79.0, 79.4, 115.9, 140.3, 172.2. Anal. Calcd. for C₁₅H₂₇NO₂Si (281.47): C, 64.01; H, 9.67; N, 4.98. Found: C, 63.89; H, 9.76; N, 4.96.

4. Polymerization procedure

Polymerization of acrylamide monomers using hydrosilane and $B(C_6F_5)_3$. The typical polymerization procedure was as follows: Me₂EtSiH (5.28 µL, 40 µmol) was added to a solution of MorAAm (126 µL, 1.00 mmol) and $B(C_6F_5)_3$ (10.2 mg, 20.0 µmol) in CH₂Cl₂ (869 µL) at room temperature (~25 °C). After 13 h, MeOH was added to the solution to quench the polymerization. The crude product was purified by dialysis against MeOH. Yield, 60.4 mg (43%); $M_{n,NMR}$, 3.11 kg mol⁻¹, M_w/M_n , 1.04. Synthesis of α -end functionalized poly(N,N-diethylacrylamide)s (Fn-PDEAAs) using hydrosilane and functional mthacrylamides. The typical procedure for the polymerization was as follows: Me₂EtSiH (14.5 µL, 110 µmol) was added to a solution of Fn₁-MAm (100 µL, 100 μ mol; 1.00 mol L⁻¹ in toluene) and B(C₆F₅)₃ (5.10 mg, 10.0 μ mol) in toluene (96 μ L) at room temperature (25 °C). After stirring for 6 h, a small portion of the reaction mixture was sampled to determine the efficiency of the 1,4-hydrosilylation. A mixture of DEtAAm (343 µL, 2.5 mmol) and Me₃SiNTf₂ (20.0 μ L, 2.00 μ mol; 0.10 mol L⁻¹ in CH₂Cl₂) in CH₂Cl₂ (1.93 mL) was then added to the residual mixture to start the polymerization. After stirring for 15 min, a small amount of MeOH was added to the solution to quench the polymerization. The α -end functionalized PDEtAAm with the dimethyl-tert-butylsiloxy group was deprotected using tetrabutylammoniumfluoride (TBAF; 500 μ L, 500 μ mol, 1.00 mol L⁻¹ in THF) in MeOH. The crude product was purified by dialysis against MeOH. Yield, 260 mg (82%); $M_{n,NMR}$ = 3.89 kg mol^{-1} , $M_w/M_n = 1.06$.

5. Scheme S2. Schematic representation for (a) coordination between DEtAAm and $B(C_6F_5)_3$

and (b) abstraction of hydride from HSi

(a) coordination between DEtAAm and $B(C_6F_5)_3$

$$\bigwedge^{N} O + B(C_6F_5)_3 \xrightarrow{K_{eq.DEtAAm}} \bigwedge^{N} O \rightarrow B(C_6F_5)_3$$

(b) abstraction of hydride from HSi

$$H - S_{R_{3}}^{i} + B(C_{6}F_{5})_{3} - \frac{K_{eq.HSi}}{K_{a}} - C_{6}F_{5}^{c} + H - S_{R_{3}}^{i} + \frac{K_{eq.HSi}}{K_{a}} - C_{6}F_{5}^{c} + H - S_{R_{3}}^{i} + \frac{K_{eq.HSi}}{K_{a}} - \frac{K_{eq.HSi}}{K_{a}}$$

K_{eq.DEtAAm} >> K_{eq.HSi}

6. Figures

Figure S1. ¹H NMR spectra of the obtained polymer by $B(C_6F_5)_3$ -catalyzed GTP of DAAm using Me₂EtSiH, (a) PDEtAAm (run 8), (b) PDMeAAm, (run 12) (c) PMorAAm (run 18), (d) PDAlAAm (run 14), and (e) PBMEAAm (run 16) in CDCl₃ (400 MHz).

Figure S2. MALDI-TOF MS spectra of the obtained polymer by $B(C_6F_5)_3$ -catalyzed GTP of DAAm using Me₂EtSiH, (a) PDMeAAm (run 12), (b) PDAlAAm (run 14), (c) PBMEAAm (run 16), and (d) the obtained polymer by $B(C_6F_5)_3/Me_3SiNTf_2$ -catalyzed GTP of MorAAm using Me₂EtSiH.

Figure S3. MALDI-TOF MS spectra of the products from (a) run 22, (b) run 23, and (c) run 24, obtained by the $B(C_6F_5)_3$ -catalyzed GTPs of DEtAAm using Me₂EtSiH and DMeMAm under various [DMeMAm]_0/[Me_2EtSiH]_0/[B(C_6F_5)_3]_0 ratios.

7. References

1. Kikuchi, S.; Chen, Y.; Kitano, K.; Takada, K.; Satoh, T.; Kakuchi, T. Organic acids as efficient catalysts for group transfer polymerization of *N*,*N*-disubstituted acrylamide with silyl ketene acetal: polymerization mechanism and synthesis of diblock copolymers. *Polym. Chem.* **2015**, *6*, 6845-6856.

 Liu, S.-T.; Wang, H.-E.; Cheng, M.-C.; Peng, S.-M. Unusual tripodal ligands. Synthesis of 2,2-bis(diphenylphosphinomethyl)-1-phenylthiopropane and its group VI complexes. J. Organomet. Chem. 1989, 376, 333-342.

3. Efthymiou, T. C.; Huynh, V.; Oentoro, Peel, B.; Desaulniers, J. P. Efficient synthesis and cell-based silencing activity of siRNAS that contain triazole backbone linkages. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 1722-1726.