Quantum Electronic Transport of Topological Surface States in β-Ag₂Se Nanowire

Jihwan Kim,^{†,¶} Ahreum Hwang,^{†,¶} Sang-Hoon Lee,[‡] Seung-Hoon Jhi,[‡] Sunghun Lee,^{†,#} Yun Chang Park,[§] Si-in Kim,[†] Hong-Seok Kim,[#] Yong-Joo Doh,^{#,*} Jinhee Kim,^{⊥,*} Bongsoo Kim^{†,*}

[†]Department of Chemistry, KAIST, Daejeon 34141, Korea

[‡]Department of Physics, Pohang University of Science and Technology, Pohang 37673,

Korea

[§]Department of Measurement and Analysis, National Nanofab Center, Daejeon 34141,

Korea

^{II} Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju

Institute of Science and Technology(GIST), Gwangju 61005, Korea

[⊥]Korea Research Institute of Standards and Science, Daejeon 34113, Korea

[#]Present Address: School of Chemistry and Centre for Research on Adaptive

Nanostructures and Nanodevices, Trinity College Dublin, Ireland

[¶]These authors contributed equally to this work.

Supporting Information

- 1. Parameters of nanowires and nanoribbon
- 2. Experimental setup
- 3. XRD spectrum
- 4. TEM analyses of β-Ag₂Se nanowires and nanoplate
- 5. 2D weak antilocalization fitting result
- 6. Aharonov-Bohm oscillation
- 7. Ambipolar effect in β -Ag₂Se nanowire
- 8. Resistivity vs. temperature curves of β-Ag₂Se nanostructures

*Address correspondence to bongsoo@kaist.ac.kr, jinhee@kriss.re.kr, yjdoh@gist.ac.kr

Fax: +82-42-350-2810

No.	Resistivity at	Width	Height	Channel length
	2 K (mΩ·cm)	(nm)	(nm)	(µm)
D1	5.2	102	95	0.75
D2	1.3	139	75	0.79
D3	0.15	227	150	3.69
D4	0.18	2770	200	11.8
D5	0.40	140	150	0.55

Table S1. Parameters of β -Ag₂Se nanowires and nanoribbon samples.

Figure S1. Experimental setup for the synthesis of β -Ag₂Se nanowires, nanoribbons and nanoplates.

Figure S2. The X-ray diffraction (XRD) pattern obtained from as-grown nanowires, nanoribbons, and nanoplates on c-Al₂O₃ substrate. All the diffraction peaks are indexed to an orthorhombic β -Ag₂Se crystal structure (JCPDS card No. 01-071-2410).

Figure S3. TEM images of β -Ag₂Se nanowires and nanoplate.

First column ((a), (e), (i)): Low-resolution TEM images of the β -Ag₂Se nanowires and nanoplate. Second column ((b), (f), (j)): High-resolution TEM images and FFT patterns (inset image) of β -Ag₂Se nanowires and nanoplate. Lattice spacings of 0.200 nm, 0.353 nm, and 0.262 nm agree well to those of (211), (020), and (003) planes of an orthorhombic β -Ag₂Se crystal structure, respectively. Third column ((c), (g), (k)): The SAED patterns along the various zone axes. The patterns show the single crystalline nature of β -Ag₂Se nanostructures. Fourth column ((d), (h), (l)): TEM-EDS spectra of β -Ag₂Se nanowires and nanoplate. The analyses of these results reveal that the atomic ratios of Ag and Se atoms are 2:0.86, 2:1.01, and 2:0.95, respectively, indicating the existence of selenium vacancies. For the accuracy of quantification, we used only the K-electron shells for both Ag and Se.

Figure S4. 2D differential magnetoconductance (MC) data (symbols) obtained from (a) sample D1 and (b) D6 at T = 2.0 K. Blue curves are a fit to the 2D weak antilocalization (WAL) model.¹ The model expects 2D MC $\Delta \sigma = -(\alpha e^2)/(2\pi^2\hbar)[\ln(B_0/B) - \psi(1/2 + B_0/B)]$, where α is a prefactor, $B_0 = \hbar/(4eL_{\varphi}^2)$, L_{φ} is a phase coherence length, and ψ is a digamma function. A least square fit results in $\alpha = -0.25$ and $L_{\varphi} = 270$ nm for sample D1 and $\alpha = -1.0$ and $L_{\varphi} = 300$ nm for sample D6. Geometric dimension of sample D6 is given by w = 303 nm and L = 4.5 µm. In case of sample D6, the prefactor $\alpha = -1$ presents that the negative MC is due to the destructive interference with the Berry's phase of π in the top and bottom surfaces of the nanoribbon.

Figure S5. Differential MC obtained from sample **D5** at T = 2.0 K. A smooth background MC was subtracted out. The dotted lines indicate an average period $\Delta B_{axial} = 0.21$ T for the δG oscillations. Assuming that the nanowire has a rectangular cross section, the area becomes 2.10×10^{-14} m². Thus, the oscillation period corresponds to a magnetic flux $\Phi = 1.07\Phi_0$, where $\Phi_0 = h/e$ is the magnetic flux quantum. The flux can be overestimated by the approximation of the cross sectional shape.

Figure S6. Resistivity vs. gate voltage curve of β -Ag₂Se nanowire. Sample D7 shows a signature of an ambipolar gate dependence near $V_g = -80$ V. The optical microscope image for the sample is displayed in the inset.

Figure S7. Resistivity vs. temperature curves. Insulating behavior is observed in the samples of **D1** and **D8**, while metallic behavior is observed at low temperatures below the hump (~10 K for **D1**, ~170 K for **D8**, ~300 K for **D5**). Relatively weak insulating behavior is attributed to the contribution of the bulk conductivity.

References

1. Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System. *Progr. Theor. Exp. Phys.* **1980**, *63*, 707-710.