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S.M Supplementary Methods
S.M.1 Problem formulation
In the main text we want to evaluate the similarity of plasmid barcodes in order to monitor the
spread of plasmids. This is done by answering the following two questions:

Q1. “Are the two barcodes identical (at some level of significance)?”

Q2. “Is the shorter barcode a part of the longer barcode (at some level of significance)?”.

We start with asking Q1. If the answer to this question is negative, we proceed to answer Q2.
In order to define the theoretical problem at hand, namely provide means for answering Q1 and
Q2, consider two circular barcodes (barcode 1 and barcode 2). In the paper both barcodes are
consensus barcodes. Before turning to the general problem of dealing with noisy barcodes, let
us assume that the barcodes are noiseless. In such a scenario, despite the absence of noise, two
barcodes originating from identical DNA sequences will not be identical, since the intact DNA
of interest herein is in its circular form. Hence, if barcode 1 and 2 originate from the same DNA
sequence (Q1) barcode 2 must be “slided” across barcode 1 (to the optimal shift position, d̂)
before they can be compared. Also, as the orientation of one barcode with respect to the other
is not known, one must compare the two barcodes for both flip directions, and find the optimal
flip, f̂ . Further, as we describe in the next section, in order to answer Q2, we must circularly
shift barcode 2, and find an optimal shift, ∆̂.

In the presence of experimental noise, the problem becomes more challenging. Even if the
two barcodes originate from the same underlying DNA sequence they will, due to the noise,
differ slightly. It is the purpose here to provide means for answering Q1 and Q2 above for two
such noisy barcodes. To that end, we first, in Sec. S.M.2, introduce the Pearson correlation
coefficient. This quantity, evaluated at optimal parameters (d̂, f̂ and ∆̂), is denoted Ĉ (“best
Pearson correlation coefficient”) and quantifies the similarity of two barcodes. However, the
average best Pearson correlation coefficient for “non-match” barcodes decreases with the length
of the barcodes. Hence, one cannot directly use Ĉ to quantify whether two barcodes are identical.
In Sec. S.M.3, we therefore introduce a quantity, which we refer to as p-value. The p-value utilizes
randomized barcodes as reference and turns a particular Ĉ into a quantity insensitive to barcode
length. By applying a universal threshold to the p-value we can deem two barcodes are the same,
or the same + insert (at some level of significance).

S.M.2 Quantifying the similarity of two barcodes
In this section we introduce the Pearson correlation coefficient which quantifies the similarity
of two barcodes. We find that answering Q1 (Q2), introduced in Sec. S.M.1, requires us to
introduce two (three) optimal slide/flip/(shift) parameters.

S.M.2.1 Q1. Detecting barcodes originating from identical DNA sequences

In order to introduce means for addressing Q1 (Sec. S.M.1), consider two simple, noiseless
barcodes consisting of three pixels each, see Figure S1 (Top). The intensity levels of the barcodes
areA, B, C. In our example, barcode 1 is described by an intensity vector (B1(1), B1(2), B1(3)) =
(A,B,C) and barcode 2 has intensity levels (B2(1), B2(2), B2(3)) = (C,A,B). Are the two
barcodes from an identical DNA sequence? To address this question, we slide barcode 2 across
barcode 1 (remember the circular nature of the plasmids) with a shift d, see Figure S1 (Top).
For d = 0 we compare barcode 2 to the original barcode 1, for d = 1 we compare barcode 2 to
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Figure S1: Finding optimal slide/flip/shift parameters when comparing two barcodes.
(Top) in order to check the similarity of two circular barcodes (1 and 2), barcode 2 is slided across
barcode 1 (here, ignoring the unknown relative orientation of the two barcodes). The optimal
position is denoted by d̂ (here d̂ = 2). For noisy barcodes the same procedure is applied, but then
the optimal position and optimal flip (f̂) are determined by maximizing the Pearson correlation
coefficient, C(d,∆ = 0, f) in Eq. (S.1). (Bottom) In order to identify whether barcode 1 has an
insert (X), but is otherwise identical (or, highly similar, for noisy barcodes) to barcode 2, the steps
under (Top) are performed for all circularly shifted versions of barcode 2. For noisy barcodes
the same procedure is applied, but then the optimal position, optimal flip and optimal circular
shift (∆̂) are determined by maximization of the Pearson correlation coefficient, C(d,∆, f) in
Eq. (S.1).
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(B,C,A) and for d = 2 we compare barcode 2 to (C,A,B). Thus, for a shift of two pixels, d = 2
(and no flip), we get perfect agreement between the two barcodes. This optimal shift is denoted
by d̂ (here, d̂ = 2).

Above, we considered noiseless barcodes. Real, experimental, barcodes are however subject to
noise. How can we determine d̂ and the optimal flip, f̂ in such a scenario? In subsection S.M.2.3,
we define the Pearson correlation coefficient, C(d, f) [see Eq. (S.1)] between two barcodes at
given shift positions, d and flip direction, f . The Pearson correlation coeffcient takes values
between -1 and 1. A Pearson correlation coefficient of 1 means that the barcodes are identical,
or perfectly correlated, and -1 is then the opposite, perfectly anti-correlated. Two uncorrelated
barcodes will have C = 0 on average. The optimal parameters d̂ and f̂ are, for noisy barcodes,
simply obtained the by maximizing C(d, f) with respect to d and f . The Pearson correlation
coefficient at these best parameters is denoted by Ĉ.

S.M.2.2 Q2. Detecting barcodes originating from identical DNA sequences but
where one barcode has an insert

Let us now consider the more challenging question Q2 from Sec. S.M.1. To that end, consider
again noiseless barcodes, and assume that barcode 1 has an insert, (B1(1), B1(2), B1(3), B1(4)) =
(A,X,B,C), where X is the inserted region (we, again, ignore the flip), see Figure S1. Barcode
2 is (B2(1), B2(2), B2(3)) = (C,A,B) as before. Now, if we were to proceed as in the previous
subsection we would compare barcode 2, i.e. (C,A,B), to either (A,X,B), (X,B,C), (B,C,A)
or (C,A,X), and, in neither case will there be a match. Thus, we conclude that the two barcodes
are not the same, which is indeed true since barcode 1 has an extra region inserted.

To be able to find if there might be an inserted region, both barcodes have to be shifted, i.e.
we now have two parameters d (measuring how much the shorter barcode is slided across the
longer one as before) and a parameter ∆ which measures how much the shorter barcode is shifted
before sliding. We now circularly shift barcode 2 using all possible shifts ∆ (∆ = 0, ..., N2 − 1,
where N2 is the number of pixels in barcode 2). Thus, we now have three versions of barcode 2:
∆ = 0 for which barcode 2 is (C,A,B), ∆ = 1 for which barcode 2 is shifted to (B,C,A), and
∆ = 2, where we have a shifted barcode (A,B,C). For each ∆ we go through all possible shifts
d, in exactly the same way as in the previous subsection. In the present example we then find
that for d = d̂ = 2 and ∆ = ∆̂ = 1 (optimal shift) we compare two identical sequences [the first
three pixels in (B,C,A,X) are then compared to (B,C,A)]. Thus, we conclude that barcode 1
is equal to barcode 2 but with an inserted region.

What if the barcodes are “noisy”? In this case, just like in the previous subsection, we
determine optimal sliding positions, d̂, flip directions, f̂ , and shift ∆̂ simply by maximizing
C(d,∆, f) with respect to d, ∆ and f . The cross correlation value at these best parameters is,
as before, denoted by Ĉ.

S.M.2.3 Pearson correlation coefficient for comparing two barcodes

In this subsection we formally define the Pearson correlation coefficient, which was used in the
previous discussions.

Consider two noisy circular consensus barcodes, B1(x) and B2(x).1 Barcode 1 has length
N1 (long barcode), i.e. x = 1, ..., N1 and barcode 2 has length N2 (short barcode). Without
loss of generality we assume that N1 ≥ N2. The sample estimator for the Pearson correlation

1A consensus barcode is an average over several barcodes, circularly shifted to optimal positions, with the
ends "masked" over a distance equal to three times the standard deviation of the point spread function.
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coefficient for comparing the two barcodes is:

C(d,∆, f) = 1
N2 − 1

∑N2
x=1[B1(x+ d)− µ1(d)][B2(x+ ∆)− µ2]

σ1(d)σ2
, (S.1)

where d = 0, ..., N1 − 1 is the “sliding” parameter of the short barcode along the longer one
and ∆ = 0, ..., N2 − 1 measures the circular shift of the short barcode. The parameter f labels
orientation of barcode 2: f = 0 (original orientation) or f = 1 (flipped orientation). We
leave this parameter implicit in all expressions below. Due to the circular symmetry we have
B1(x+N1) = B1(x) and B2(x+N2) = B2(x). The mean barcode intensity, µ2 and the associated
standard deviation, σ2, for the short barcode are:

µ2 = 1
N2

N2∑
x=1

B2(x), (S.2)

and

[σ2]2 = 1
N2 − 1

N2∑
x=1

[B2(x)− µ2]2. (S.3)

We also introduce the local mean value, µ1(d) and local standard deviation σ1(d) for the long
barcode according to:

µ1(d) = 1
N2

N2∑
x=1

B1(x+ d), (S.4)

and

[σ1(d)]2 = 1
N2 − 1

N2∑
x=1

[B1(x+ d)− µ1(d)]2. (S.5)

Eqs. (S.1)-(S.5) define the Pearson correlation coefficient used throughout this study. When
addressing Q1 (Sec. S.M.1) we do not need to shift barcode 2 and hence set ∆ = 0 above.

Let us finally address computational costs. In a “brute force” approach, the number of oper-
ations required for evaluating C(d,∆, f) for all d, ∆ and f is proportional to 2N1N

2
2 . However,

because of the convolution type structure of the Pearson correlation coefficient, Fast Fourier
Transforms (FFT) can be used to bring down computational costs to N1N2 log(N2) scaling.2

S.M.3 Turning Pearson correlation coefficients into p-values using a
probabilistic framework

In this section we introduce a method for turning the Pearson correlation coefficients introduced
in the previous section into a probabilistic framework, by defining a p-value. Our p-value is
defined in the usual way, i.e., it is the probability that a Pearson correlation coefficient is larger
than or equal to the measure value, given some “zero model”. In [1] we based our zero model
on random sequence barcodes. Here, we introduce a different approach for generating our zero
model, phase randomization [2, 3]. Our new method has three advantages compared to the

2In order to show explicitly how FFT can be used to evaluate Eq. (S.1) it is convenient to first rescale the
shorter barcode to have mean 0 and standard deviation = 1, i.e., define a rescaled barcode, b2(x) according to:
b2(x) = [B2(x) − µ2]/σ2. This rescaling requires on the order of 2N2 operations, i.e. is computationally cheap.
Eq. (S.1) now becomes (using the fact that

∑N2
x=1 b2(x+∆) = 0): C(d,∆, f) = A

∑N2
x=1[B1(x+d)b2(x+∆)] with

A = 1/σ1(d). For a given value of d, this expression has the form of a convolution, and can hence be evaluated
using FFT. The computational cost is proportional to N2 log(N2). Since d takes on N1 possible values, the total
computational cost can be brought to scale as N1N2 log(N2).
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previous approach: (i) phase randomization works also in the case when we do not know the
underlying DNA sequence, i.e. can be applied directly to experimental barcodes from DNA
with unknown sequence, (ii) it is computationally fast (see discussion at the end of subsection
S.M.3.1), (iii) the phase randomized barcodes have a degree of statistical similarity to the input
barcode (same autocorrelation function), and are therefore very “realistic” looking, see Figure
S2.

In subsection S.M.3.1 we introduce our method for generating “randomized’ barcodes and in
S.M.3.2 we use these randomized barcodes to calculate p-values.

S.M.3.1 Generating random barcodes using Phase randomization

Let us now introduce our method for generating the randomized barcodes using phase random-
ization [2, 3]. The phase randomization procedure takes one “realistic” barcodes as input, and
produces several randomized output barcodes. These output barcodes have identical autocorre-
lation function as the input barcode. As input barcode we herein use an average (defined below)
over a set of all available plasmid theory barcodes from the RefSeq database.3

Our algorithm for producing “realistic looking” zero model barcodes is the following:

1. Provide a set of J “realistic” barcodes, {Bj(x)}, where j = 1, ..., J . If experimental bar-
codes obtained under different experimental conditions are used, then stretch/compress
all barcodes to have the same kbp/pixel value, Sinput, using linear interpolation. The
length (in pixels) of barcode j is now Nj , and the pixels for barcode j are labeled by
x = 0, ..., Nj−1. The barcode set consists of experimental barcodes or theory barcodes. In
this study, we use the J = 3127 theory plasmid barcodes from the RefSeq database, which
all were rescaled to have mean zero and standard deviation = 1, i.e.,

B̄j = 1
Nj

Nj−1∑
x=0

Bj(x) = 0,

σ2
j = 1

Nj − 1

Nj−1∑
x=0

[Bj(x)− B̄j ]2 = 1. (S.6)

Denote by Nmax = max{Nj} the length of the longest barcode in the set.

2. Calculate the Fourier amplitudes (absolute value of the discrete Fourier transforms, DFT)
for the set of barcodes from 1. above, i.e.

B̃j(fn) = |FFT{Bj(x)}|, (S.7)

where |...| corresponds to taking the absolute value. In practice, the discrete Fourier
transform above is evaluated using the fast Fourier Transform (FFT) algorithm. Above,
we have frequencies: fn = n/N , with n = −N/2, ..., 0, ..., N/2 − 1 if N is even, and
n = −(N − 1)/2, ..., 0, ..., (N − 1)/2 if N is odd. In Fourier space, Eqs. (S.6) become

B̃(f0) = 0, (S.8)

1
Nj(Nj − 1)

∑
n

[B̃j(fn)]2 = 1, (S.9)

where Eq. (S.8) follows from the DFT definition, and Eq. (S.9) is the Parseval’s theorem
for DFTs [4].

3Plasmid DNA sequences were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/refseq/, June 2015). Based
on these sequences, theory barcodes were calculated using the transfer matrix method, see Ref. [1] for details.
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3. Interpolate all B̃j(fn) barcodes to the length Nmax. When performing the interpolation
we use that (since B(x) is real valued) B̃(fn) is symmetric, B̃(−fn) = B̃(fn). We leave
the Fourier amplitude for f0 “untouched”. We then interpolate the positive frequencies (fn
for n > 0) and “fold” the interpolated result to negative frequencies (for N odd). For N
even, we keep the Fourier amplitudes for f0 and fn with n = −N/2 “untouched”. After
interpolation, we normalize the Fourier amplitudes so that the last equation in Eqs. (S.8)
and (S.9) is satisfied. This normalization makes sure that, in real space, the interpolated
barcodes have mean 0 and standard deviation 1. We now have J Fourier amplitudes,
{B(interp)

j (f)}, each consisting of Nmax frequencies.

4. Average the squared Fourier amplitudes:

[B̄(fn)]2 = (1/J)
J∑
j=1

[B̃(interp)
j (fn)]2 (S.10)

for all n. The quantity B̄(fn) serves as our input barcode to be used for phase ran-
domization. Note that the averaging method above makes sure that the average Fourier
amplitudes, B̄(fn), satisfy the relations in Eqs. (S.8) and (S.9). Hence, the corresponding
real space barcode will have mean 0 and standard deviation equal to 1.

5. The average Fourier amplitudes, B̄(fn), allows us to generate randomized barcodes of
arbitrary length, N , and with kbp/pixel value, Sinput. To that end, we interpolate B̄(fn)
to have N frequencies. As above, we interpolate the positive frequencies (fn > 0), and
then “fold” the interpolated result to negative frequencies. We also, as above, make sure
that Eqs. (S.8) and (S.9) are satisfied for the interpolated barcodes. Then a zero model
barcode is obtained by multiplying B̄(fn) with “symmetrized” random phase factors4, and
the inverse Fourier transform is applied [2, 3]

B̄(PR)(x) = IFFT{B̄(PR)(f)}. (S.13)

This procedure yields a real valued randomized barcode, B̄(PR)(x), of (arbitrary) length
N .

By repeating the last two steps n times, we generate n randomized barcodes, which are used
to calculate the p-value, see subsection S.M.3.2.

Figure S2A displays our averaged Fourier amplitudes, B̄(f), based on the plasmid barcode
database. Figure S2 B-C shows two barcodes generated using the phase randomization proce-
dure. Note that they look clearly distinguishable, but still contain general features which visually
make them resemble each other.

The procedure above only works if Sinput is the same as the kbp/pixel value for the exper-
imental barcode, Sexp. If, Sinput 6= Sexp some modification to step 5 has to be done. If the
target length, for the fully prepared random barcode, is N , then B̄(fn), should be interpolated

4In practice, this step is performed by drawing K = (N − 1)/2 (for N odd), or K = (N − 2)/2 (for N even)
uniformly distributed random numbers, Rk ∈ [0, 1], k = 0, ...,K. Then, for positive frequencies we calculate:

B̄(PR)(fk) = B̄(fk) exp(2πiRk). (S.11)

For negative frequencies we calculate

B̄(PR)(f−k) = B̄(f−k) exp(−2πiRk). (S.12)

For f0 = 0 we set the phase factor equal to 1. Also, for the case where N is even, we set the phase factor for the
frequency f−N/2 to 1 (this choice makes sure that the phase randomized barcodes are real).
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Figure S2: Phase randomization of plasmid barcodes generates randomized, “realistic
looking”, DNA barcodes. (A) Averaged Fourier amplitudes B̄(fn), based on theory barcodes
from the RefSeq plasmid database. (B and C) Two zero model barcodes as obtained using
phase randomization based on B̄(fn). We use all 3127 plasmid barcodes for the average Fourier
amplitudes and the randomized barcodes.
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to length Nraw = N(Sexp/Sinput). The new barcode B̄(PR)(x), with length Nraw, can now be
interpolated to length N in order to change Sinput with the factor Nraw/N . This results in
Sinput,new = Sinput(Nraw/N) = Sinput(Sexp/Sinput) = Sexp which is the correct kbp/pixel value.
After interpolation B̄(PR)(x), has the correct length, N , as well as the correct Sinput,new value.

In [1] a different way of calculating random barcodes was introduced: generate random DNA
sequences and then make theoretical barcodes out of those. However, the computational cost is
much higher for this method compared to the phase randomization method. Using a standard
desktop computer of today, generating 1000 barcodes using the present method takes roughly
20 seconds. On the other hand, generating 1000 barcodes from random sequences takes roughly
2700 seconds. Thus, using phase randomization speeds things up with at least a factor 100.
Because of the speed advantage, as well as the fact that it represents barcodes better than
random sequence barcodes (same average autocorrelation function as of the input barcodes),
phase randomization is herein used to generate random zero model barcodes.

S.M.3.2 p-value, definition

The p-value, used in the main text, is defined as

p− value =
∫ ∞
Ĉ

φ(Ĉ ′)dĈ ′. (S.14)

The quantity φ(Ĉ) is the probability density for the best cross correlation values obtained when
matching a particular barcode to a set of phase randomized barcodes. From the definition above
follows that the p-value has the following properties: (1) 0 ≤ p−value ≤ 1, (2) 〈p−value〉 = 1/2
under the null hypothesis.5 A p-value smaller than a specifically chosen (small) threshold, pthresh,
indicates that there is a significant resemblance (compared to the zero model) between the two
barcodes being compared.

Depending on which question, (Q1) or (Q2) in Sec. S.M.1, we are interested in our matching
procedures are slightly different:

Q1. When addressing Q1 from Sec. S.M.1, the two barcodes being compared are stretched
to the same length, Nexp (two barcodes, which are not identical after being stretched to
the same length, cannot originate from the same DNA sequence). The same procedure is
applied to the random barcodes, i.e. the target length N (as previously discussed) is the
same as the length of the two experimental barcodes after stretching. When comparing one
of the experimental barcodes to a random barcode, there will be 2N number of Pearson
correlation coefficients. If this is done for, say, n random barcodes, there will be 2nN
Pearson correlation coefficients instead.

Q2. If, on the other hand, it is suspected that one of the two barcodes in a pair has an insert,
then the barcodes are instead stretched to the same kbp/pixel-value. The stretching is
done to ensure that the pixels from one barcode contain the same amount of information
as the pixels from the other. A concern here is that the kbp/pixel-values might have
some experimental uncertainty associated with them, and thus each barcode is allowed

5What is the meaning of 〈p− value〉 = 1/2 under the null hypothesis? This means that if we match a “new”
zero model barcode to the set of all “previous” zero model barcodes, then the value of this match will on average
give p-value = 1/2. This result follows immediately because p-values, under the null hypothesis, are uniformly
distributed on [0, 1]. Mathematically the latter result is straightforward to derive: the PDF of a p-value=p is
formally given by ρ(p) =

∫∞
−∞ δ[p −

∫∞
Ĉ

φ(Ĉ′)dĈ′]φ(Ĉ)dĈ, where δ[z] is the Dirac delta-function. Making the

change of variables, t =
∫∞

Ĉ
φ(Ĉ′)dĈ′ we find ρ(p) =

∫ 1
0 δ(p− t)dt, i.e. ρ(s) = 1 if 0 ≤ p ≤ 1 and zero otherwise.

Thus, indeed, p-values are uniformly distributed on [0, 1].
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to be stretched, within some uncertainty interval, when doing the comparison. Since
the barcodes are not the same length, and both have to be circularly permuted, each
comparison generates 2N1N2 correlation coefficients, where N1 and N2 are the lengths of
the first and the second barcode, respectively. If this is done using n random barcodes,
there will be 2nN1N2 Pearson correlation coefficients generated. Adding stretching for
uncertainty in kbp/pixel value as a parameter (ignoring the change in length N1), there
will be another factor, a (number of stretches) to consider, and the total number of Pearson
correlation coefficients becomes 2anN1N2. We use a = 11 and allow changes around the
experimental value, Sexp = 0.5 kbp/pixel, by 5 percent.

What form will φ(Ĉ) have? To answer this question, assume that we have K best Pearson
correlation coefficients, Ĉk for k = 1, ...,K. For large enough number of best Pearson correlation
coefficients, these Ĉs are expected to be distributed according to the Gumbel PDF (probability
density function for the best) [5]

φ(Ĉ) = 1
β

exp[−(y + e−y)], (S.15)

where y = y(Ĉ) = (Ĉ − κ)/β, with parameters κ and β. To be able to fit these two parameters,
we use method of moments (moment matching). For large K, we first estimate β using

β =
√

6
π
σ, (S.16)

where σ2 = [1/(K − 1)]
∑K
k=1(Ĉk − µ)2, i.e., σ2 is the sample variance of the Ĉks with mean

µ = (1/K)
∑K
k=1 Ĉk. The parameter κ is subsequently determined by

κ = µ− βγ, (S.17)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Representative histograms alongside mo-
ment matching fitted φ(Ĉ) for two plasmids are displayed in Figure S3.

Plugging Eq. (S.15) in to Eq. (S.14), and using the known cumulative distribution for the
Gumbel PDF, we obtain the explicit expression

p− value = 1− exp[−e−(Ĉ−κ)/β ], (S.18)

which is used throughout this study.

S.M.3.3 Symmetrizing p-values

When turning a Pearson correlation coefficient, obtained by comparing barcode 1 (length N1)
and barcode 2 (length N2), into an p-value, certain care is required, in particular if the two
barcodes are of different lengths and/or the barcodes are very dissimilar. As seen in Tables S1
and S2 we get slightly different results if barcode 1 is matched to phase randomized barcodes
of length N2, than if barcode 2 is matched to phase randomized barcodes of length N1. This
asymmetry effect is, in general, minor but, nevertheless, needs to be addressed.

In order to tackle the asymmetry issue, let us denote by p1 the p-value obtained by matching
to phase randomized barcodes of length N1, and by p2 the p-value obtained by matching to
phase randomized barcodes of length N2. A standard method for combining p-values is Fisher’s
combined probability test [6]. One introduces

qi = − log(pi), i = 1, ..., N, (S.19)
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Figure S3: Fitting of Ĉ to a Gumbel probability density. Illustration of the normalized
histogram φ(Ĉ) and fitted Gumbel probability densities using moment matching, see Eq. (S.15).
The histogram uses data obtained by matching consensus barcodes for plasmid from the shared
plasmid in isolate P1a (see main text) to 1000 phase randomized barcodes, see subsection S.M.3.1.
These fits provides estimates for the Gumbel parameters, β and κ, which are subsequently used
to calculate p-values using Eq. (S.18). (Left) Plasmid barcodes where treating using the Q1
methodology, see Sec. S.M.3.2. The common length was 81 kbps. (Right) Barcodes treated
using the Q2 methodology. The plasmid’s the target length was 74 kbp (length of plasmid in
isolate P2a) and we used a = 11 stretching factors within 5 percent of this value. Notice that
we, due to the stretching approach for Q2, generate more Pearson correlation coefficients (more
“attempts”) for Q2 than for Q1. This results in the average Ĉ being higher for Q2 than for Q1.

where, here, N = 2. Since the pi are uniformly distributed (see footnote in Sec. S.M.3.2), the
qi are exponentially distributed, i.e. the associated PDF is P (q) = exp(−q). In Fisher’s method
one then defines the sum

κ = 2
N∑
i=1

qi (S.20)

and denotes by %(κ) the PDF for κ. The combined p-value is then calculated as

ptot =
∫ ∞
κ̂

%(κ)dκ, (S.21)

where κ̂ is the observed value for κ as defined in Eq. (S.20). As noted in the footnote in
Sec. S.M.3.2, p-values should be uniformly distributed on [0, 1] under the null hypothesis. By
definition, ptot as defined above satisfies this condition.

What is %(κ) appearing in Eq. (S.21)? If the pi are independent, then κ has a χ2 distribution
with 2N degrees of freedom [6]. However, in our case p1 and p2 are highly correlated. For
instance, if p1 is small, then so is p2. If the two p-values were perfectly correlated the normalized
histogram of the average, κ/(2N), will be identical to the normalized histogram of q1 values.
Thus, in this perfectly correlated scenario, we have P (κ) = [1/(2N)] exp[−κ/(2N)]. Using this
as an approximation to the “true” PDF for κ, Eq. (S.21) becomes

ptot = exp[−κ̂/(2N)] = exp[−(1/N)
N∑
i=1

q̂i] = exp[(1/N)
N∑
i=1

log[p̂i]], (S.22)
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where q̂i and p̂i are observed values. Simplifying the expression above we obtain:

ptot = [
N∏
i=1

p̂i]1/N . (S.23)

For our case, namely N = 2, the method for computing the symmetrized p-value is then simply
to take the geometric mean,

ptot = √p1p2, (S.24)

of the two constituting p-values.

S12



S.T Supplementary Tables
From the outbreak, the shared plasmid detected in all nine isolates were compared with the
larger plasmid found in all ST131 samples, using the p-value methodology (see Supplementary
Methods). Furthermore, consensus barcodes (of three previously sequenced plasmids found in
the NCBI RefSeq Database), R100 from Shigella flexneri 2b (measured size 90.0 ± 5.6 kbp)[7],
RP1 from Pseudomonas aeruginosa (measured size 58.5 ± 4.0 kbp)[8], and pUUH239.2 (pUUH)
from Klebsiella pneumoniae (measured size 221.3 ± 10.3 kbp)[9] were included as controls.

In Tables S1 and S2, we show p-values for all plasmid pairs for Q1 and Q2 analysis respec-
tively. Tables S3 and S4 show the associated symmetrized p-values introduced in Sec. S.M.3.3.

Table S1. p-values for all plasmid pairs for Q1. p-values for all pairs of barcodes differing less
than 20% in length (for larger difference they can not be regarded as the same), calculated using
the method in Sec. S.M.3. S = shared plasmid which was detected in all isolated. R100, RP1
and pUUH = consensus of sequenced plasmids from the RefSeq database. L = large plasmids
found in ST131 isolates. All the p-values are in %.
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Table S2. p-values for all plasmid pairs for Q2. p-values for all pairs of barcodes, calculated
using the method in Sec. S.M.3. S = shared plasmid which was detected in all isolated. R100,
RP1 and pUUH = consensus of sequenced plasmids from the RefSeq database. L = large
plasmids found in ST131 isolates. All the p-values are in %.

Table S3. Symmetrized p-values for all plasmid pairs for Q1. Symmetrized p-values, ptot,
see Eq. (S.24), for all pairs of barcodes differing less than 20% in length (for larger difference
they can not be regarded as the same). S = shared plasmid which was detected in all isolated.
R100, RP1 and pUUH = consensus of sequenced plasmids from the RefSeq database. L = large
plasmids found in ST131 isolates. All the p-values are in %.
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Table S4. Symmetrized p-values for all plasmid pairs for Q2. Symmetrized p-values, ptot,
see Eq. (S.24). S = shared plasmid which was detected in all isolated. R100, RP1 and pUUH =
consensus of sequenced plasmids from the RefSeq database. L = large plasmids found in ST131
isolates. All the p-values are in %.

As noted in Supplementary Methods, p-values should be uniformly distributed on [0, 1] for
“non-match” plasmid barcodes. A consequence of this is that that the expected p-value should
equal 1/2 and the standard deviation should be

√
1/12 ≈ 0.2887 under the null hypothesis. To

validate our method, we calculated the mean and standard deviation from Table S4 of sym-
metrized p-values for Q2 for all non-match cases. We found: mean = 0.5801 and standard
deviation = 0.2810, thus validating the p-value method for identifying "match"/"non-match"
plasmid pairs.
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S.F Supplementary Figures
In Figure S4, we turn the p-value (Supplementary Method) into a categorization tool. If the
p-value is smaller than some threshold pthresh, then the two plasmids are deemed significantly
similar (Q1 in Supplementary Methods visualized in green). For two plasmids not the same, i.e.
for p-value≥ pthresh, a plasmid can still be deemed “the same + an insert” (Q2 in Supplementary
Methods) if below the threshold for Q2 (yellow). We here use pthresh = 0.01 = 1%.

As seen in Figure S4, neither of the three controls resulted in p-values below sthresh for either
Q1 or Q2 when compared to the consensus barcodes of the plasmids found in the resistance
outbreak. Furthermore, none of the shared plasmids found in all nine isolates showed high
enough similarity in order to be regarded the same (+ insert Q2) as the larger plasmid found in
all ST131 isolates.

However, when comparing the shared plasmids, all of them (except the combination of P1b
and P4b) showed p-values lower than sthresh for Q1 or/and Q2. As discussed in the main text,
the isolates in which the shared plasmid visually displayed an inserted DNA region (P2c, P3b,
P4a and P4b), were also separated from the remaining five isolates by using Q1 and Q2. It
should also be noted that all of the large plasmids found in the ST131 isolates rendered p-values
below pthresh, indicating that it is the same plasmid that is found both over time (P1a vs P1b
and P2a vs P2c) and in different patients (P1, P2 and P4) suggesting that the analysis is correct.

S16



Figure S4: Plasmid pair categorization. Imposing a p-value threshold on the symmetrized
p-values in Tables S3 and S4 allow us to categorize a particular pair of barcodes into one of three
categories: green = plasmids are deemed significantly similar, yellow = the pair are significantly
similar with an insert, red = not identical. S = shared plasmid which was detected in all isolated.
R100, RP1 and pUUH = consensus of sequenced plasmids from the RefSeq database. L = large
plasmids found in ST131 isolates. We used pthresh = 0.01 = 1%.
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