Supporting Information

Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties

Shao-Hung Lu, ${ }^{a, \dagger}$ Ri-Ping Phang, ${ }^{a, \dagger}$ and Jim-Min Fang ${ }^{a, b, *}$
${ }^{\text {a }}$ Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
${ }^{\mathrm{b}}$ The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.

Fax: (886-2)-23637812; Tel: (886-2)-33661663; E-mail: jmfang@ ntu.edu.tw
${ }^{\dagger}$ These authors contributed equally to this work.

Contents	Pages
Experimental	S4-S13
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1	S14
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 1	S14
Figure S3. Fluorescence titration of receptor 1 with G10 and binding isotherm of 1-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S15
Figure S4. UV-vis titration of receptor 1 with G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S15
Figure S5. Job's plot for the 1:1 complex of 1-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S16
Figure S6. ESI-MS analysis for the 1:1 complex of 1-G10	S16
Figure S7. Titration of receptor 1 with A10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S17
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2	S18
Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2	S18
Figure S10. Job's plot for the 1:1 complex of 2-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S19
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$	S20
Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$	S20
Figure S13. Job's plot for the 1:1 complex of 3-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S21
Figure S14. ESI-MS analysis for the 1:1 complex of 3-G10.	S21
Figure S15. Fluorescence titration of receptor $\mathbf{3}$ with G10 and binding isotherm of 3-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S22
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4	S23
Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4	S23
Figure S18. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 4	S24
Figure S19. HMQC spectrum of compound 4	S25
Figure S20. HMBC spectrum of compound 4	S26
Table S1. Photophysical properties of pyrene-hinged molecule 4	S26
Figure S21. UV-vis titration of receptor $\mathbf{4}$ with G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S27
Figure S22. Fluorescence titration of receptor $\mathbf{4}$ with G 10 and binding isotherm of 4-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S27
Figure S23. Job's plot for the 1:1 complex of 4-G10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S28
Figure S24. ESI-MS analysis for the 1:1 complex of 4-G10	S28
Figure S25. Fluorescence titration of receptor $\mathbf{4}$ with A10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S29
Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5	S30
Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5	S30
Table S2. Photophysical properties of guanidine-hinged molecule 5.	S31
Figure S28. UV-vis titration of receptor 5 with GMP	S31
Figure S29. Fluorescence titration of receptor 5 with GMP ($1 \times 10^{-2} \mathrm{M}$)	S32

and binding isotherm in aqueous solution	
Figure S30. Job's plot for the 1:1 complex of 5-GMP in water	S32
Figure S31. Titration of receptor $\mathbf{5}$ with cGMP in aqueous solution	S33
Figure S32. Titration of receptor 5 with AMP in aqueous solution	S33
Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$	S34
Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$	S34
Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9	S35
Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9	S35
Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10	S36
Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10	S36
Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13	S37
Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13	S37

Experimental

General. All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under an inert atmosphere of argon using standard techniques. Syringes and needles for the transfer of reagents were dried at $100{ }^{\circ} \mathrm{C}$ and allowed to cool in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use. All the reagents and solvents were reagent grade and used without further purification unless otherwise specified. Ethers were distilled from sodium benzophenone ketyl; (chlorinated) hydrocarbons, and amines from CaH_{2}. Reactions were monitored by TLC using aluminum plates pre-coated with a 0.25 mm layer of silica gel containing a fluorescent indicator. Kieselgel $60(40-63 \mu \mathrm{~m})$ and neutral aluminum oxide ($50-200 \mu \mathrm{~m}$) were used for column chromatography.

Melting points are uncorrected. Chemical shifts (δ) are given in parts per million (ppm) relative to $\delta_{\mathrm{H}} 7.24 / \delta_{\mathrm{C}} 77.0$ (central line of t) for $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}, \delta_{\mathrm{H}} 2.05 / \delta_{\mathrm{C}} 29.92$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, \delta_{\mathrm{H}} 3.31 / \delta_{\mathrm{C}} 49.0 \mathrm{CH}_{3} \mathrm{OD} / \mathrm{CD}_{3} \mathrm{OD}$, and $\delta_{\mathrm{H}} 2.49(\mathrm{~m}) / \delta_{\mathrm{C}} 39.5(\mathrm{~m})$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. The splitting patterns are reported as s (singlet), d (doublet), t (triplet) q (quartet), m (multiplet) and br (broad). Coupling constants (J) are given in Hz. Distortionless enhancement polarization transfer (DEPT) spectra were taken to determine the types of carbon signals.

UV-vis titration studies. The stock solutions of receptor compound $\left(1 \times 10^{-5} \mathrm{M}\right)$ and analyte (e.g. 9-decylguanine and GMP) $\left(1 \times 10^{-2} \mathrm{M}\right)$ were prepared by using spectroscopic grade solvent (e.g. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) or deionized water. The stock solution (2 mL) of receptor compound was placed in a quartz cell (1 cm length), and the absorption spectrum was recorded at 298 K . The stock solution of analyte was introduced in an incremental fashion (2 $\mu \mathrm{L}$ corresponds to 1.0 equiv) via microsyringe; the mixture was shaken well, and the corresponding UV-vis curves were recorded.

Fluorescent titration studies. The fluorescence spectra were taken using the same samples employed in the UV-vis study, i.e. transferring the same cuvette from the UV-vis spectrophotometer to the fluorescence spectrophotometer for each incremental addition. The fluorescence spectra were taken as a function of the concentrations of analyte.

Based on $1: 1$ stoichiometry of complex, the apparent binding constant was calculated according to the following equation, and determined by nonlinear least squares curve fitting method.
$\left.y=f+[(d-f) /(2 c)]\left\{K^{-1}+c+x-\left[\left(K^{-1}+c+x\right)^{2}-4 c x\right)\right]^{0.5}\right\}$
c : receptor concentration; d : maximum change of fluorescence intensity at saturation; f : initial fluorescence intensity; K : association constant; x : substrate concentration; y : fluorescence intensity.

Job's plot. Stock solutions of receptor compound and analyte were prepared in the same concentration ($1 \times 10^{-5} \mathrm{M}$). Sample solutions containing the receptor compound and guest molecule in different ratios ($0: 10$ to $10: 0$) were made to maintain total volume of 2 mL . Changes of the absorbance or fluorescence intensity $\left(I_{\mathrm{Fl}}\right)$ were monitored as a function of molar ratio of the receptor. The complex concentration was calculated as follows:
[complex] $=\Delta$ absorbance (or $\left.\Delta I_{\mathrm{FI}}\right) \times \mathrm{X}$
wherein Δ absorbance (or ΔI_{FI}) is the absorbance (or fluorescence intensity) after adding analyte minus the absorbance (or I_{of}) before adding any analyte, X is the molar ratio of the receptor.
${ }^{1} \mathbf{H}$-NMR titration studies. The stock solution of receptor compound $\left(2 \times 10^{-3} \mathrm{M}\right)$ and analyte $\left(1 \times 10^{-2} \mathrm{M}\right)$ was prepared in deuterated solvents $\left(\mathrm{CDCl}_{3}\right.$ for the pyrene-hinged receptor $\mathbf{4}$ and 9 -decylguanine; DMSO- d_{6} for the guanidine-hinged receptor 5 and guanosine monophosphate free acid). The stock solution of receptor compound (0.5 mL) was placed in an NMR tube, and the NMR spectrum was recorded at 298 K . The analyte solution was introduced in an incremental fashion ($10,20,30,50,70,100,250 \mu \mathrm{~L} ; 50 \mu \mathrm{~L}$ corresponds to 1 equiv).

ESI-MS analysis. A mixture of receptor compound (1-5) and guest molecule (e.g. 9-decylguanine) in 1:1 molar ratio was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solvent was then removed under reduced pressure. The residue was diluted to $\sim 1 \mu \mathrm{M}$ in aqueous $\mathrm{CH}_{3} \mathrm{CN}$ (50\%) containing 0.1% of HOAc as the spray solvent for MS analysis.

Synthetic Procedures and Characterization of Compounds

2-Acetamido-7-[2-(methylamino)phenyl]ethynyl-1,8-naphthyridine (1)

According to the previously reported procedure, ${ }^{5}$ compound 1 was prepared by Sonogashira coupling reaction ($70-80{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$) of 2-acetamido-7-chloro-1,8-naphthyridine (6) ${ }^{\mathrm{s} 1, \mathrm{~s} 2}(836 \mathrm{mg}, 3.8 \mathrm{mmol})$ with 2-ethynyl- N-methylaniline (7$)^{5, \mathrm{~s} 3}(390 \mathrm{mg}, 3.0 \mathrm{mmol})$ in anhydrous DMF (36 mL) in the presence of $\mathrm{Et}_{3} \mathrm{~N}(7 \mathrm{~mL})$ and co-catalysts $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(125$ $\mathrm{mg}, 0.18 \mathrm{mmol}$) and $\mathrm{CuI}(36.5 \mathrm{mg}, 0.19 \mathrm{mmol}) . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$; yellowish solid recrystallized from acetone, $\mathrm{mp}=227.4{ }^{\circ} \mathrm{C}$; TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 99)\right) R_{f}=0.15 ; \lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 399 \mathrm{~nm}$ $\left(\varepsilon=17500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 350 \mathrm{~nm}\left(\varepsilon=18100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) ; \lambda_{\max }$ (DMSO) $402 \mathrm{~nm}\left(\varepsilon=23900 \mathrm{M}^{-1} \mathrm{~cm}^{-}\right.$ ${ }^{1}$), $353 \mathrm{~nm}\left(\varepsilon=22400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; Fluorescence $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 518 \mathrm{~nm}$; $\lambda_{\max }$ (DMSO) 565 nm ;

IR $v_{\max }(\mathrm{KBr}) 2200,1691,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.96(1 \mathrm{H}, \mathrm{s}), 8.51(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.40(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 2.91(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.7,154.1,153.9,150.2$, 146.2, 138.5, 136.1, 132.4, 131.0, 123.4, 119.1, 115.7, 115.5, 108.8, 105.0, 95.0, 89.0, 30.4, 25.4; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}: 317.1397$, found: $m / z 317.1462[\mathrm{M}+\mathrm{H}]^{+}$.

References:

(s1) Newkome, G. R.; Garbis, S. J.; Majestic, V. K.; Fronczek, F. R.; Chiari, G. J. Org. Chem. 1981, 46, 833-839.
(s2) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.; Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475-10488.
(s3) Arcadi, A.; Cacchi, S.; Rosario, M. D.; Fabrizi, G.; Marinelli, F. J. Org. Chem. 1996, 61, 9280-9288.

2-(2-Ethynylphenylamino)ethanol (8).

To a solution of 2-iodoaniline ($7.8 \mathrm{~g}, 35.6 \mathrm{mmol}$) in 2-chloroethanol ($60 \mathrm{~mL}, 447.1 \mathrm{mmol}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(24 \mathrm{~g}, 173.7 \mathrm{mmol})$ under argon at room temperature. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 16 h . After evaporation in vacuo to remove 2-chloroethanol, the mixture was diluted with ice water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by SiO_{2} column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100\right.$ to $\left.5: 95\right)$ to afford 2-(2-iodophenylamino)ethanol ($6.2 \mathrm{~g}, 66 \%$). $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{INO}$; colorless oil; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}$ $=0.3$; IR $v_{\max }$ (neat) $3370,1586,1501 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.44(1$ $\mathrm{H}, \mathrm{s}), 3.86(2 \mathrm{H}, \mathrm{t}, 5.2 \mathrm{~Hz}), 3.35(2 \mathrm{H}, \mathrm{t}, 5.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 146.4,138.5$, 128.9, 118.6, 110.5, 85.7, 60.7, 46.2; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{INO}: 263.9885$, found: m / z 263.9883 [M + H] ${ }^{+}$.

To a solution of the above-prepared iodide ($928 \mathrm{mg}, 3.53 \mathrm{mmol}$) in 1,4-dioxane (5 mL) were added $\mathrm{NEt}_{3}(4 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{CuI}(6 \mathrm{mg}, 0.03 \mathrm{mmol})$ under argon at room temperature. The mixture was degassed and stirred at $50^{\circ} \mathrm{C}$ for 10 min ; then ethynyltrimethylsilane ($0.51 \mathrm{~mL}, 3.57 \mathrm{mmol}$) was added slowly. The mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 16 h . The catalysts were removed by filtration through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad 1: 9\right)$ to afford

2-(2-(2-(trimethylsilyl)ethynyl)phenylamino)ethanol ($748 \mathrm{mg}, 81 \%$). $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NOSi}$; yellow oil; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.4$; IR $v_{\max }$ (neat) $3395,2957,2144,1601,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.29(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.61(2 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{s})$, $3.82(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 3.34(2 \mathrm{H}, \mathrm{t}, 5.2 \mathrm{~Hz}), 2.01(1 \mathrm{H}, \mathrm{s}), 0.27(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 148.5,131.7,129.6,116.1,109.3,107.3,101.6,100.1,61.0,45.5,0.5\left(3 \mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20}$ NOSi: 234.1314, found: $m / z 234.1317[\mathrm{M}+\mathrm{H}]^{+}$.

To a solution of the above-prepared silane ($748 \mathrm{mg}, 3.21 \mathrm{mmol}$) in methanol (5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g}, 7.24 \mathrm{mmol})$ under argon at room temperature. The mixture was stirred at room temperature for 2 h . The mixture was concentrated under reduced pressure, diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0: 100\right.$ to 2.5:97.5) to afford compound $\mathbf{8}(388 \mathrm{mg}, 75 \%)$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$; yellow oil; TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5: 97.5\right)$ $R_{f}=0.25$; IR $v_{\max }$ (neat) 3401, 2937, 2881, 2094, 1601, $1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.32(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.64-6.59(2 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{s})$, $3.79(2 \mathrm{H}, \mathrm{t}, 5.2 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{t}, 5.2 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{s}),{ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 148.7,132.3,129.9,116.2,109.5,106.3,83.0,80.5,61.0,45.7$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}: 162.0919$, found: $m / z 162.0926[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-(2-(2-(2-Hydroxyethylamino)phenyl)ethynyl)-1,8-naphthyridin-7-yl)acetamide (2)

To a solution of chloride $6(330 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) and $\mathrm{NEt}_{3}(3 \mathrm{~mL})$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(40 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{CuI}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$ under argon at room temperature. The mixture was degassed and stirred at $80{ }^{\circ} \mathrm{C}$ for 10 min ; then alkynyl compound $\mathbf{8}(300 \mathrm{mg}, 1.86 \mathrm{mmol})$ in DMF (3 mL) was added slowly. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The catalysts were removed by filtration through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5: 97.5$ to $1: 9$) to afford the desired receptor compound 2 ($346 \mathrm{mg}, 67 \%$). $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$; yellow solid, $\mathrm{mp} 182.7-183.4{ }^{\circ} \mathrm{C}$; TLC ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$) R_{f} $=0.3 ; \mathrm{UV}$-vis $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 350 \mathrm{~nm}, 392 \mathrm{~nm} ; \varepsilon=17100,16200 ; \lambda_{\max }(\mathrm{DMSO}): 353 \mathrm{~nm}, 395$ $\mathrm{nm} ; \varepsilon=15300,15500 ;$ FL $\lambda_{\max } 525 \mathrm{~nm}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 568 \mathrm{~nm}$ (DMSO); IR $v_{\text {max }}$ (neat) 3447, 2994, 2194, 1772, 1610, $1500 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.38(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.23$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 3.82(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 3.40(2 \mathrm{H}, \mathrm{t}$,
$J=5.6 \mathrm{~Hz}), 2.24(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 172.6,156.2,155.4,151.7,147.5$, 140.1, 139.1, 134.1, 132.7, 124.8, 121.1, 117.3, 116.8, 111.1, 106.5, 95.3, 91.1, 61.5, 46.6, 24.6; ESI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$: 347.1508, found: $m / z 347.1508[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-Azidoethyl)-2-ethynylbenzenamine (9).

To a solution of 2-(2-iodophenylamino)ethanol ($7.38 \mathrm{~g}, 29.80 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(74.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ($11.05 \mathrm{~mL}, 71.40 \mathrm{mmol}$), then triethylamine ($19.90 \mathrm{~mL}, 71.40 \mathrm{mmol}$) was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and then concentrated under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was dried over MgSO_{4}, filtered and concentrated to give the mesylation product.

The crude mesylate in anhydrous DMF (75 mL) was treated with sodium azide (5.8 g , 89.2 mmol). The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 h , and then concentrated under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 19)$ to afford N-(2-azidoethyl)-2-iodobenzenamine ($6.94 \mathrm{~g}, 81 \%$). $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IN}_{4}$; light yellow oil; TLC $(E t O A c / H e x a n e=1: 19) R_{f}=0.3 ; v_{\text {max }}$ (neat) 3381, 2918, 2849, 2093, $1504 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dt}, J=$ $1.2,8.0 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.48(1 \mathrm{H}, \mathrm{t}, J$ $=6.0,5.6 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{t}, J=5.6,6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 146.1,138.9$, 129.2, 119.0, 110.3, 85.6, 49.8, 42.9; ESI-HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{IN} \mathrm{N}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$288.9950, found: $m / z 288.9949$.

To a solution of the-above prepared iodide ($3.30 \mathrm{~g}, 11.45 \mathrm{mmol}$) in 1,4-dioxane (20 mL) and $\mathrm{NEt}_{3}(20 \mathrm{~mL})$ were added $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.80 \mathrm{~g}, 1.15 \mathrm{mmol}) \text { and } \mathrm{CuI}(0.22 \mathrm{~g}, 1.15 \mathrm{mmol}) ~}^{\text {(}}$) under argon at room temperature. The mixture was degassed and stirred at $50{ }^{\circ} \mathrm{C}$ for 20 min , and then ethynyltrimethysilane ($4.07 \mathrm{~mL}, 28.63 \mathrm{mmol}$) was added dropwise over a period of 2 h . The mixture was stirred at $50^{\circ} \mathrm{C}$ for another 1.5 h . The catalysts were removed by filtration through a Celite pad, and the filtrate was concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography ($\mathrm{EtOAc} /$ hexane $=0: 100$ to $5: 95$) to afford the coupling product, N-(2-azidoethyl)-2-(2-(trimethylsilyl)ethynyl)benzenamine ($2.21 \mathrm{~g}, 75 \%$). $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Si}$; brown oil; TLC $(\mathrm{EtOAc} /$ hexane $=2.5: 97.5) R_{f}=0.32 ; v_{\max }$ (neat) 2958, 2144, $2101,1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{t}, J=$ $9.6,8.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 4.931(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.53(1 \mathrm{H}, \mathrm{t}$, $J=5.6,6.0 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 0.328(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 148.4, 132.1, 130.0, 116.7, 109,3, 107.9, 101.5, 100.5, 50.4, 42.3, -0.1 (3 x) ; ESI-HRMS
calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} .: 259.1377$, found: m / z 259.1379.
To a solution of the above-prepared coupling product ($1.03 \mathrm{~g}, 3.99 \mathrm{mmol}$) in MeOH (10 mL) was added $\mathrm{KF}(1.62 \mathrm{~g}, 27.93 \mathrm{mmol})$ under argon at room temperature. The mixture was stirred at room temperature for 3 h , concentrated under reduced pressure, diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by SiO_{2} column chromatography ($\mathrm{EtOAc} /$ hexane $=5: 95$) to afford the title compound $9(0.72 \mathrm{~g}, 97 \%) . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}$; brown oil; TLC ($(\mathrm{EtOAc} /$ hexane $=5: 95) R_{f}=0.26 ; v_{\text {max }}$ (neat) $3397,2100,1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.60$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{s}), 3.54(2 \mathrm{H}, \mathrm{t}, 6.0 \mathrm{~Hz}), 3.44-3.39(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 148.3,132.7,130.2,116.7,109.3,106.7,83.1,80.3,50.4,42.6$; ESIHRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 187.0983, found: m / z 187.0984.

N-(2-(2-(2-(2-Azidoethylamino)phenyl)ethynyl)-1,8-naphthyridin-7-yl)acetamide (10)

To a solution of chloride $6(674 \mathrm{mg}, 3.05 \mathrm{mmol})$ in DMF (10 mL) were added NEt_{3} (10 $\mathrm{mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(310 \mathrm{mg}, 0.44 \mathrm{mmol})$ and $\mathrm{CuI}(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ under argon at room temperature. The mixture was degassed and stirred at $80{ }^{\circ} \mathrm{C}$ for 10 min , and alkynyl compound 9 ($682 \mathrm{mg}, 3.66 \mathrm{mmol}$) was added slowly. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h. The catalysts were removed by filtration through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95\right)$ to afford the desired receptor compound $\mathbf{1 0}(804 \mathrm{mg}$, $71 \%)$. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}$; yellow solid, mp $176-178{ }^{\circ} \mathrm{C}$; TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95\right) R_{f}=0.3$; IR $v_{\max }$ (neat) 2924, 2854, 2198, 2100, 1695, 1597, 1501, 1318, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 9.92(1 \mathrm{H}, \mathrm{s}), 8.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{t}$, $J=8.4 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 3.52(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 3.45$ $(2 \mathrm{H}, \mathrm{q}, J=5.4 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.6,154.2,153.9$, 148.4, 146.0, 138.4, 136.1, 132.8, 130.9, 123.5, 119.2, 116.6, 115.5, 109.3, 105.9, 95.1, 88.5, 50.5, 42.7, 25.3; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}: 372.1573$, found: $m / z 372.1570[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-(2-(2-(2-Aminoethylamino)phenyl)ethynyl)-1,8-naphthyridin-7-yl)acetamide (3)

To a solution of azide $\mathbf{1 0}(1.82 \mathrm{~g}, 4.90 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ and THF $(16.0 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(6.43 \mathrm{~g}, 24.5 \mathrm{mmol})$ under argon at room temperature. The mixture was stirred at room temperature for 4 h . The mixture was concentrated under reduced pressure to remove $\mathrm{H}_{2} \mathrm{O}$ and THF. The residue was diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by SiO_{2} column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95$ to 2:8) to afford receptor compound $3(1.62,96 \%) . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$; yellow solid, mp $250.2-251.9{ }^{\circ} \mathrm{C}$; TLC (MeOH/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) R_{f}=0.16$; UV-vis $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 351$ $\mathrm{nm}(\varepsilon=4800)$ and $392 \mathrm{~nm}(\varepsilon=4600)$; $\lambda_{\text {max }}$ (DMSO): $353 \mathrm{~nm}(\varepsilon=14500)$ and $406 \mathrm{~nm}(\varepsilon=$ 15100); FL $\lambda_{\text {max }} 530 \mathrm{~nm}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\text {max }} 570 \mathrm{~nm}$ (DMSO); IR $v_{\text {max }}$ (neat) 2925, $2199 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.41(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{dt}, J=1.6,8.4 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, 8.4 \mathrm{~Hz})$, $6.65(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.39(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 2.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 172.9,156.5,155.8,151,9,147.9,140.3,139.3,134.5,132.9$, $124.9,121.3,117.4,116.9,111.2,106.5,95.3,91.3,46.8,41.7,24.5$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}: 346.1668$, found: $m / z 346.1667[\mathrm{M}+\mathrm{H}]^{+}$.

N-(2-(2-(2-(2-((Pyren-1-yl)methylamino)ethylamino)phenyl)ethynyl)-1,8-naphthyridi n-7-yl)acetamide (4)

A solution of amine $3(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ and pyrene-1-carbaldehyde ($67 \mathrm{mg}, 0.29 \mathrm{mmol}$) in cosolvent $\mathrm{MeOH} / \mathrm{DMSO}(1: 1,0.5 \mathrm{~mL})$ was stirred under argon at room temperature for 30 min ; and then $\mathrm{NaBH}_{3} \mathrm{CN}(27 \mathrm{mg}, 0.44 \mathrm{mmol})$ was added quickly. The mixture was stirred at room temperature for 20 h , and then concentrated under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=2.5: 97.5\right.$ to $\left.5: 95\right)$ to afford receptor compound 4 (49 mg, 60%). $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}$; UV-vis $\lambda_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 326 \mathrm{~nm}(\varepsilon=20700), 344 \mathrm{~nm}(\varepsilon=20700)$, $397 \mathrm{~nm}(\varepsilon=8100)$; $\lambda_{\max }$ (DMSO): $330 \mathrm{~nm}(\varepsilon=23800), 346 \mathrm{~nm}(\varepsilon=31400), 399 \mathrm{~nm}(\varepsilon=$ 10900); FL $\lambda_{\max } 523 \mathrm{~nm}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 542 \mathrm{~nm}$ (DMSO); IR $v_{\max }$ (neat) 2197, 1697, 1596, 1499, $746 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right) \delta 9.19(1 \mathrm{H}, \mathrm{s}), 8.10(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{dd}$, $J=9.2,3.2 \mathrm{~Hz}, ~), 7.89-7.80(4 \mathrm{H}, \mathrm{m}), 7.78-7.70(3 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.21(1 \mathrm{H}$, $\mathrm{t}, J=6.8 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz})$, $5.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.57(2 \mathrm{H}, \mathrm{s}), 3.45(2 \mathrm{H}, \mathrm{s}), 3.26(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 2.10(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right) \delta 170.0,154.0,153.6,149.4,145.5,138.1,135.9,132.6,131.4,131.0$, $130.9,130.3,129.2,128.0,127.7,127.4,127.1,125.9,125.3,125.2(2 \times), 124.5,124.4,124.2$, 122.6, 122.3, 118.8, 116.9, 115.2, 109.9, 106.0, 95.1, 89.2, 49.9, 47.4, 41.3, 24.7; ESI-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}: 560.2450$, found: $m / z 560.2451[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-(2-(2-(2-(2-(1,3-bis(fluorenylmethyloxycarbonyl))guanidine)aminoethylamino)p henyl)ethynyl)-1,8-naphthyridin-7-yl)acetamide (13).

To a solution of S-methylisothiourea hemisulfate salt ($100 \mathrm{mg}, 0.718 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous $\mathrm{NaHCO}_{3}(7: 3,5 \mathrm{~mL})$ was added fluorenylmethyloxycarbonyl chloride ($\mathrm{Fmoc}-\mathrm{Cl}, 409 \mathrm{mg}, 1.58 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography (EtOAc/hexane $=$ 5:95) to afford 1,3-bis(fluorenylmethyloxycarbony)-2-methyl-2-thiopseudourea (12) (347.7 mg, 95\%). $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$; white solid; mp 95.3-98.6 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc/hexane $=5: 95$) $R_{f}=0.3$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 12.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.79(4 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{br}), 7.60(2 \mathrm{H}, \mathrm{br})$, $7.45(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.36(4 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.48(4 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{br})$, $4.28(1 \mathrm{H}, \mathrm{br}), 2.52(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.9,161,1,151.5,143.6,143.0$, $141.2(8 \times), 127.9(2 \times), 127.8(2 \times), 127.1(4 \times), 125.2,124.9,120.0(4 \times), 68.6,68.5,46.6(2$ \times), 14.7; ESI-HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 535.1696$, found: $m / z 535.1698$

To a solution of amine $\mathbf{3}(10 \mathrm{mg}, 0.029 \mathrm{mmol})$, diisopropylethylamine ($5.3 \mu \mathrm{~L}$) and HgCl_{2} ($8.68 \mathrm{mg}, 0.029 \mathrm{mmol}$) in anhydrous DMF (1 mL) was added a solution of the above-prepared thiopseudourea ($15.6 \mathrm{mg}, 0.029 \mathrm{mmol}$) in anhydrous DMF ($790 \mu \mathrm{~L}, 0.037 \mathrm{M}$) over a period of 2 h at room temperature under an atmosphere of argon. The mixture was stirred for another 0.5 h at room temperature, concentrated under reduced pressure, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by SiO_{2} column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=0: 100$ to $5: 95$) to afford the Fmoc-protecting product $13(17 \mathrm{mg}, 70 \%)$. $\mathrm{C}_{51} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} ; \mathrm{TLC}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95\right) R_{f}=0.33 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right) \delta 11.89(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}), 9.01(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 8.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.37(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.69(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.46-$ $7.21(15 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.39(3 \mathrm{H}, \mathrm{m}), 4.21(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 3.79(2 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}), 3.59(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 100\right.$ $\mathrm{MHz}) \delta 169.6,163.9,156.4,154.3,154.2,153.7,149.5,146.7,144.1(2 \times), 143.0(2 \times), 141.2$
$(2 \times), 141.1(2 \times), 127.9(2 \times), 127.6(2 \times), 127.2(2 \times), 127.1(2 \times), 125.3(2 \times), 124.9(2 \times)$, 123.6, $120.0(2 \times), 119.9(2 \times), 119.4,116.7,115.2,110.0,106.0,95.3,89.2,68.4,67.8,47.0$, 46.4, 41.9, 40.0, 24.9; ESI-HRMS calcd for $\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 832.3247$, found: m / z 832.3257 .
N-(2-(2-(2-(2-Guanidinoethylamino)phenyl)ethynyl)-1,8-naphthyridin-7-yl)acetamide (5).

To a solution of compound $\mathbf{1 3}(49 \mathrm{mg}, 0.06 \mathrm{mmol})$ in anhydrous DMF $(0.5 \mathrm{~mL})$ was added a solution of tetrabutylammonium fluoride (TBAF, $1.19 \mathrm{mmol}, 0.1 \mathrm{M}$) in DMF (11.9 mL). The mixture was stirred at room temperature for 10 min , and then concentrated by rotary evaporation under reduced pressure. The residue was chromatographed on a reversed-phase column by elution with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (10:3) to afford the guanidine-hinged compound 5 (20 $\mathrm{mg}, 90 \%) . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.40(2 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 6.80$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{br}), 3.56(4 \mathrm{H}, \mathrm{dd}, J=4.8,7.2 \mathrm{~Hz})$, $2.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 171.9,158.2,155.7,154.8,150.4,146.7,139.5$, 138.6, 133.5, 132.1, 124.0, 120.4, 117.0, 116.2, 110.3, 105.9, 94.3, 90.1, 42.2, 41.0, 23.5; ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}: 388.1886$, found: $m / z 388.1885[\mathrm{M}+\mathrm{H}]^{+}$.

Guanosine $\mathbf{5}^{\prime}$-monophosphate free acid. A solution of guanosine 5^{\prime}-monophosphate disodium salt hydrate ($1.0 \mathrm{~g}, 2.5 \mathrm{mmol}$) in water and Dowex $50 \mathrm{~W} \times 8$ resin (2.0 g) were stirred at room temperature for 30 min . The resin was filtered, and the clear filtrate was concentrated under reduced pressure to afford the corresponding free acid GMP ($690 \mathrm{mg}, 99 \%$). $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 10.64(1 \mathrm{H}, \mathrm{br}), 7.89(1 \mathrm{H}, \mathrm{s}), 6.48(2 \mathrm{H}, \mathrm{br})$, $5.72(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.12-3.98(2 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 156.7,153.7,151.5,135.4,116.6,86.1,83.15(\mathrm{~d}, J=8.10 \mathrm{~Hz})$, 73.3, 70.6, $65.2(\mathrm{~d}, J=4.9 \mathrm{~Hz})$; ESI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 364.0658$, found: $\mathrm{m} / \mathrm{z} 364.0657$.

Adenosine 5'-monophosphate free acid. A solution of adenosine 5^{\prime} 'monophosphate disodium salt hydrate ($1.0 \mathrm{~g}, 2.6 \mathrm{mmol}$) in water and Dowex ${ }^{\circledR} 50 \mathrm{~W} \times 8$ resin (2.0 g) were stirred at room temperature for 30 min . The resin was filtered, and the clear filtrate was concentrated under reduced pressure to afford the corresponding free acid AMP (894 mg , $99 \%) . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.36(1 \mathrm{H}, \mathrm{s}), 8.17(1 \mathrm{H}, \mathrm{s}), 7.46(2 \mathrm{H}$,
br s), $5.93(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}), 4.06(2 \mathrm{H}$, $\mathrm{m}, J=6 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 156.7,153.7,151.5$, $135.4,116.6,86.1,83.15(\mathrm{~d}, J=8.10 \mathrm{~Hz}), 155.7,152.2,149.5,139.5,119.0,87.1,83.2(\mathrm{~d}, J=$ 8 Hz), 73.4, 70.5, 65.3; ESI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 348.0709$, found: m / z 348.0710 .

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$
(A)

(B)

Figure S3. (A) Fluorescence titration of receptor $\mathbf{1}\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decylguanine ($\mathrm{G} 10,1 \times 10^{-2} \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Excitation wavelength: 417 nm . (B) Binding isotherm of $1-\mathrm{G} 10$ obtained from the changes of intensity at the highest point of each curve ($518-535 \mathrm{~nm}$) in fluorescence titration; $K_{\text {ass }}=90800 \pm 980 \mathrm{M}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution using nonlinear least-squares curve-fitting method. ${ }^{19}$

Figure S4. UV-vis titration of receptor $\mathbf{1}\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decylguanine $\left(1 \times 10^{-2} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.
(A)

(B)

Figure S5. Job's plot for the $1: 1$ complex of $\mathbf{1}-\mathrm{G10}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Stock solutions of receptor compound (1) and analyte (G10) were prepared in the same concentration (1×10^{-5} M). (A) Absorption spectra of eleven sample solutions containing $\mathbf{1}$ and G10 in total volume of 2 mL ; (B) Changes of the $400-\mathrm{nm}$ absorbance were monitored as a function of receptoranalyte molar ratios ($0: 10$ to $10: 0$).

Figure S6. ESI-MS analysis for the 1:1 complex of 1 -G10. Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{9} \mathrm{O}_{2}$: 608.3461; found: $m / z 608.3450[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{9} \mathrm{NaO}_{2}$: 630.3281 ; found: $m / z 608.3275[\mathrm{M}$ $+\mathrm{Na}]^{+}$.
(A)

(B)

Figure S7. Titration of receptor $1\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decyladenine (A10, $1 \times 10^{-2} \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. (A) UV-vis titration; (B) Fluorescence titration $\left(\lambda_{\mathrm{ex}}=\right.$ 400 nm).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$

Figure S10. Job's plot for the 1:1 complex of $2-\mathrm{G} 10$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Stock solutions of receptor compound (2) and analyte (G10) were prepared in the same concentration (1×10^{-5} M). (A) Absorption spectra of eleven sample solutions containing 2 and G10 in total volume of 2 mL ; (B) Changes of the $400-\mathrm{nm}$ absorbance were monitored as a function of receptoranalyte molar ratios (0:10 to 10:0).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $3\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$

Figure S13. Job's plot for the 1:1 complex of $\mathbf{3}-\mathrm{G} 10$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Stock solutions of receptor compound (3) and analyte (G10) were prepared in the same concentration (1×10^{-5} M). (A) Absorption spectra of eleven sample solutions containing 3 and G10 in total volume of 2 mL ; (B) Changes of the $400-\mathrm{nm}$ absorbance were monitored as a function of receptoranalyte molar ratios ($0: 10$ to $10: 0$).

Figure S14. ESI-MS analysis for the $1: 1$ complex of 3-G10. Calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{9} \mathrm{O}_{3}$: 637.3489; found: $m / z 637.3727[\mathrm{M}+\mathrm{H}]^{+}$.

Figure S15. (A) Fluorescence titration of receptor $3\left(1.36 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decylguanine $\left(1 \times 10^{-2} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Excitation wavelength: 392 nm . (B) Binding isotherm of 3-G10 obtained from the changes of intensity at the highest point of each curve (528-545 nm) in fluorescence titration; $K_{\text {ass }}=233200 \pm 39500 \mathrm{M}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution using non-linear least squares curve-fitting method. ${ }^{19}$

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S18. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $4\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S19. HMQC spectrum of compound $4\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S20. HMBC spectrum of compound $\mathbf{4}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Table S1. Photophysical properties of pyrene-hinged molecule 4.

solvent	dielectric constant	$\lambda_{\text {abs }}(\mathrm{nm})(\varepsilon)^{a}$	$\lambda_{\mathrm{em}}(\mathrm{nm})^{b}$
EtOAc	6.0	$327(10800), 342(15600), 395(5100)$	503
THF	7.5	$328(13100), 343(18700), 394(6700)$	503
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8.9	$326(20700), 344(20700), 397(8100)$	523
MeOH	33	$326(24000), 341(27900), 398(9400)$	none c
MeCN	36	$326(29300), 346(32900), 391(12800)$	none c
DMSO	47	$330(23800), 346(31400), 399(10900)$	542

${ }^{a}$ Extinction coefficient ε is shown in a unit of $\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$.
${ }^{b}$ Excitation wavelength at 400 nm .
${ }^{c}$ No detectable fluorescence.

Figure S21. UV-vis titration of receptor $\mathbf{4}\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decylguanine ($\mathrm{G} 10,1 \times 10^{-2} \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Figure S22. (A) Fluorescence titration of receptor $\mathbf{4}\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decylguanine $\left(1 \times 10^{-2} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Excitation wavelength: 417 nm . (B) Binding isotherm of 4-G10 obtained from the changes of intensity at the highest point of each curve ($523-536 \mathrm{~nm}$) in fluorescence titration; $K_{\text {ass }}=1443900 \pm 207900 \mathrm{M}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution using nonlinear least-squares curve-fitting method. ${ }^{19}$

Figure S23. Job's plot for the $1: 1$ complex of $4-\mathrm{G} 10$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Stock solutions of receptor compound (4) and analyte (G10) were prepared in the same concentration (1×10^{-5} M). (A) Fluorescence spectra of eleven sample solutions containing 4 and G10 in total volume of 2 mL ; (B) Changes of intensity at the $550-\mathrm{nm}$ fluorescence were monitored as a function of receptor-analyte molar ratios (0:10 to 10:0).

Figure S24. ESI-MS analysis for the $1: 1$ complex of $4-\mathrm{G10}$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{9} \mathrm{O}_{2}$: 851.4509; found: $m / z 851.4509[\mathrm{M}+\mathrm{H}]^{+}$.

Figure S25. Fluorescence titration of receptor $\mathbf{4}\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of 9-decyladenine (A10, $1 \times 10^{-2} \mathrm{M}, 0.5-10$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. $\lambda_{\mathrm{ex}}=400 \mathrm{~nm} ; \lambda_{\mathrm{em}}=523$ nm .

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$

Table S2. Photophysical properties of guanidine-hinged molecule 5.

solvent	dielectric constant	$\lambda_{\mathrm{abs}}(\mathrm{nm})(\varepsilon)^{a}$	$\lambda_{\mathrm{em}}(\mathrm{nm})^{b}$
THF	7.5	$399(4030)$	500
MeOH	33	$396(9830)$	523
DMSO	47	$353(6200), 397(6270)$	548
$\mathrm{H}_{2} \mathrm{O}$	80	$350(11350), 381(10190)$	448

${ }^{a}$ Extinction coefficient ε is shown in a unit of $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.
${ }^{b}$ Excitation wavelength at 400 nm .

Figure S28. UV-vis titration of receptor $5\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of guanosine 5^{\prime}-monophosphate (GMP, $0.5-10$ equiv, $1 \times 10^{-2} \mathrm{M}$) in aqueous solution.
(A)

(B)

Figure S29. (A) Fluorescence titration of receptor $5\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of GMP $\left(1 \times 10^{-2} \mathrm{M}\right)$ in aqueous solution. Excitation wavelength: 350 nm . (B) Binding isotherm of 5-GMP obtained from the changes of 445 nm emission in fluorescence titration; $K_{\text {ass }}=16,000 \pm 2700 \mathrm{M}^{-1}$ in water using nonlinear least-squares curve-fitting method. ${ }^{19}$

Figure S30. Job's plot for the 1:1 complex of 5-GMP in water. Stock solutions of receptor compound (5) and analyte (GMP) were prepared in the same concentration ($1 \times 10^{-5} \mathrm{M}$). (A) Fluorescence spectra of eleven sample solutions containing 5 and GMP in total volume of 2 mL ; (B) Changes of intensity at the $450-\mathrm{nm}$ fluorescence were monitored as a function of receptor-analyte molar ratios ($0: 10$ to 10:0).

Figure S31. Titration of receptor $5\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of $3^{\prime}, 5^{\prime}$-cyclic GMP (cGMP, $1 \times 10^{-2} \mathrm{M}$) in aqueous solution. (A) UV-vis curves; (B) fluorescence curves ($\lambda_{\mathrm{ex}}=350 \mathrm{~nm}$).

Figure S32. Titration of receptor $5\left(1 \times 10^{-5} \mathrm{M}\right)$ upon incremental additions of adenosine 5^{\prime}-monophosphate (AMP, $1 \times 10^{-2} \mathrm{M}$) in aqueous solution. (A) UV-vis curves; (B) fluorescence curves $\left(\lambda_{\mathrm{ex}}=350 \mathrm{~nm}\right)$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{9}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{9}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

