Experimental Inferential Structure Determination of Ensembles for Intrinsically Disordered Proteins

David H. Brookes² and Teresa Head-Gordon^{1,2,3,4*}

¹Department of Chemistry, ²Department of Bioengineering, ³Department of Chemical and Biomolecular Engineering, ⁴Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720.

Table S1: Parameters of Gaussian distributions used to model each experimental nuisance parameter. The Karplus equation coefficients, and their mean and variances, are taken directly from Vuister and Bax¹. For chemical shifts we utilize SHIFTX2² as the back-calculator, which has well-documented error distributions.

Туре	Nuisance Parameter	Mean	Variance
Karplus equation coefficients	٨	6 51	0.14
$\xi_{(hack)}$	B	-1.76	0.14
$I = A \cos^2 \phi + B \cos \phi + C$	Б С	-1.70	0.05
$\int = H \cos \varphi + D \cos \varphi + C$	HZ	0	0.08121
	C	Ő	0 25969216
	CE1	0 0	0.84052224
	CB	0	0.28398241
	СА	0	0.14714896
	HB2	0	0.03290596
	CG	0	0.44023225
	CE	0	0.136161
	Ν	0	1.51979584
	CZ	0	1.36258929
	CD1	0	1.02272769
	CD2	0	1.39523344
	CG1	0	0.61387225
	HG3	0	0.02852721
	НА	0	0.01168561
	HG	0	0.14638276
SHIFTX2	HE	0	0.11168964
$\xi_{(back)}$	HG2	0	0.01962801
	CG2	0	0.84309124
	HD3	0	0.03225616
	HD2	0	0.03297856
	HD1	0	0.030976
	HE2	0	0.025281
	HE3	0	0.10361961
	HB	0	0.02143296
	HG12	0	0.03538161
	HG1	0	0.02217121
	CD	0	0.25593481
	HG13	0	0.01610361
	Н	0	0.05527201
	HE1	0	0.03798601
	HA2	0	0.07463824
	HA3	0	0.09042049
	HB3	0	0.04447881
	CE2	0	0.65480464

Figure S1: $log p(X, \xi | D, I)$ vs. *RMSD for ~25,000 misfolded structures for Trp-cage (PDB ID: IL2Y) for (a) OISD and (b) EISD, both using a Boltzmann prior.* Dotted black lines represent the fit-to-data probability of the native structure. All probabilities were normalized so the set had a mean of 0 and a variance of 1 (for easier comparison between schemes).

Figure S2: $log p(X, \xi | D, I)$ vs. *RMSD for* ~25,000 misfolded structures for 1JH8 for (a) OISD and (b) EISD, both using a uniform prior. Dotted black lines represent the fit-to-data probability of the native structure. All probabilities were normalized so the set had a mean of 0 and a variance of 1 (for easier comparison between schemes).

Figure S3: $log p(X, \xi | D, I)$ vs. RMSD for ~25,000 misfolded structures for 1JH8 for (a) OISD and (b) EISD, both using a Boltzmann prior. Dotted black lines represent the fit-to-data probability of the native structure. All probabilities were normalized so the set had a mean of 0 and a variance of 1 (for easier comparison between schemes).

Figure S4: Optimized coefficients of the Karplus equation that produce the highest EISD probability for a random coil ensemble (RC) for the amyloid-beta 42 ($A\beta 42$) monomer. The Gaussian PDF models the experimental Vuister and Bax scalar coupling constants A, B, and C used in the Karplus equation given in Table S1. The lines correspond to the optimized values of these constants used in the back-calculation from the RC structural ensemble to maximize fit-to-data probabilities using 16 $J_H^{N_{H}a}$ experimental measurements for A $\beta 42$. Similar results are obtained for all other parameters for all A $\beta 42$ ensembles.

REFERENCES

- (1) Vuister, G. W.; Delaglio, F.; Bax, A. J. Biomol. NMR **1993**, *3*, 67.
- (2) Han, B.; Liu, Y. F.; Ginzinger, S. W.; Wishart, D. S. J. Biomol. NMR 2011, 50, 43.