Supporting Information

Spectroscopic Investigation of Plasma-Fluorinated Monolayer Graphene and Application for Gas Sensing

Hui Zhang, †,‡ Liwei Fan, †,‡ Huilong Dong, † Pingping Zhang, † Kaiqi Nie, $^{\dagger,\$}$ Jun Zhong, † Youyong Li, † Jinghua Guo, $^{\$}$ Xuhui Sun *,†

[†]Jiangsu Key Laboratory for Carbon Based Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China

§Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

[‡]These authors contributed equally to this work.

^{*} Corresponding Author E-mail: xhsun@suda.edu.cn

Figure S1. The optical microscopy (A) and low magnified AFM image (B) of FG-20 film.

Figure S2. Ultraviolet-visible spectra (UV-vis) of intrinsic monolayer graphene and FG with 30 s, 50 s and 70 s plasma treatment.

Figure S3. (A)XPS survey scan of FG-20 and FG-90 with fluorine content \sim 24.6% and \sim 4.6% respectively. (B) C1s high resolution spectra of FG-90.

Figure S4. The responses of FG-20 based gas sensor for ammonia, CO, acetone and ethanol gas/vapor under air atmosphere at room temperature.

Figure S5. The most stable adsorption configuration of NH_3 on graphene (A) and $CF_{0.25}(B)$; The HOMO (C) and LUMO (D) of FG with ammonia adsorption.

Table S1. The content of fluorine and ration of C/F responding with the plasma treated time.

Treatment time	0s	10s	20s	30s	40s	50s	60s	90s
F At%	0	20.16	24.59	18.74	14.74	13.16	10.95	4.56
C-F	С	C ₄ F	C _{3.1} F	C _{4.3} F	C _{5.8} F	C _{6.6} F	C _{8.1} F	C _{20.9} F

Table S2. The Comparison of different sensor parameters of various device structures based on graphene and graphene dendrite.

Туре	Graphene type	operating condition	detection levels/range	response	response time	recovery time	reference
Resistive	CVD- graphene	150-200°C	65-75 ppm	3.8-4.3%	~9-14 min	~7-12 min	1
FET	Partial reduced graphene oxide	Room temperature	1%	22.2% ((Gg-Ga) /Ga)	~30 min	50 h	2
resistive	vertically oriented graphene sheets	Room temperature	1%	1.13%	15min	25min	3
Resistive	Graphene-Pt NPs	25-100°C	6-58ppm	2%-15%	~15min	>50min	4
resistive	Fluorinated CVD-graphene	room temperature	2-100ppm	0.3-3.8%	30s	<200s	this work

Reference:

- Gautam, M.; Jayatissa, A. H., Gas Sensing Properties of Graphene Synthesized by Chemical Vapor Deposition. Mater. Sci. Eng., C 2011, 31, 1405-1411.
- Lu, G.; Ocola, L. E.; Chen, J., Reduced Graphene Oxide for Room-Temperature Gas Sensors. Nanotechnology 2009, 20, 445502..
- 3. Yu, K.; Wang, P.; Lu, G.; Chen, K.-H.; Bo, Z.; Chen, J., Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications. J. Phys. Chem. Lett. 2011, 2, 537-542.
- Gautam, M.; Jayatissa, A. H., Adsorption Kinetics of Ammonia Sensing by Graphene Films Decorated with Platinum Nanoparticles. J. Appl. Phys. 2012, 111, 094317.